Pasture Fertilization

Jerry B. Sartain

Professor Soil and Water Science Department UF/IFAS Gainesville, FL

TYPICAL AGRICULTURAL FLORIDA SOIL

- 1. ENTISOLS, SPODOSOLS, ULTISOLS
- 2. 84% SANDS
- 3. 87% CONTAIN < 1% OM
- 4. MEDIAN pH OF 5.8, < 2% pH > 8 OR < 4
- 5. 62% LOW IN K
- 6. 55% HIGH IN P
- 7. MEDIAN CA AND MG, 780 AND 106 KG/HA

TYPICAL PASTURE FLATWOODS SOIL

MYAKKA, POMONA, POMPANO, TAVARES 96% Sand, 2.5% Silt and 1.5% Clay

Spodic Horizon (Organic Hardpan) 18 -36 in

pH 4.0-4.9; CEC 2-4;

Extractable P and K - Low

Drainage - Poor to Moderate

EFFECT OF SOIL pH ON MICRONUTRIENTS

SOLUBILITY OF FE, MN, CU, ZN, AND B <u>DECREASES</u> WITH INCREASING pH

SOLUBILITY OF MO <u>INCREASES</u> WITH INCREASING pH

MOST HEAVILY USED NUTRIENT SOURCE

AFFECTS GROWTH RATE AND COLOR

CAN BE EASILY MISUSED

FATE OF NITROGEN	
TAKEN UP BY GRASS	40-70%
LOST TO VOLATILIZATION	0-60%
LOST TO LEACHING	0-50%
LOST TO RUNOFF	0-20%

NITROGEN RECOMMENDATIONS

NOT BASED ON SOIL TEST

MOST SOIL N SOURCES LEACH RAPIDLY IN ACID SAND SOILS

N FERTILIZATION BASED ON GRASS REQUIREMENT, INTENSITY OF MANAGEMENT, AND DESIRED GROWTH RATE AND QUALITY

NITROGEN ANALYSIS

TISSUE ANALYSIS - TOTAL KJELDAHL N

BAHIA TISSUE N LEVELS: < 1.8 % LOW 1.8 – 2.5 % SUFFICIENT > 2.5 % HIGH

RECOMMENDATIONS BASED ON %N, DESIRED GROWTH RATE AND QUALITY

Ammonium Nitrate • 34% N • Very soluble • Highly leachable • Subject to volatilization • Low acidity - 1.8kg acid/kg • High salt index -2.99 • Can be explosive

N SOURCE	N (%)	CAL. EQUIV*
AS	21	535
NH3	82	180
AN	33.5	180
Ca(NO3)2	15	135B
NaNO3	16	180B
KNO3	13	200B
UREA	46	180

POUNDS OF CALCIUM CARBONATE NEEDED TO NEUTRALIZE THE ACIDITY FORMED FROM 100 POUNDS OF N.

NITROGEN SOURCE	SOIL pH	FE	TISSUE (ppm)	MN
NH4CI	6.8	155		32
NH4NO3	7.0	160		12
NaNO3	7.5	140		10
(NH4)₂SO4	6.0	180		74
Ca(NO3)2	7.2	140		8

Reactions of Urea in Soils Ureas (NH.) + 2H,0 CO (NH CO. (NHA) 2NIH_O If urea is applied to the surface as much as 40% of the applied N may be lost by volatilization.

BAHIAGRASS SOD ON A LEON F.S. pH 5.8		
N SOURCE	NO LIME	1 TON 4 M PRIOR
AS	0.5 %	19.7%
UREA	29%	36%
AN	0.3%	3.4%

Г

Non-Pressure Solutions

1. URAN 28, 30 or 32 % N

- Urea-NH₄NO₃ solution, most common N solution, specially in Florida
- Salt-out temp = 32° F
- Can be either surface or foliage applied.
- 2. FERAN 21 % N
 - $\cdot \quad \mathrm{NH_4NO_3\,dissolved\ in\ water.}$
 - Salt out at 58 ° F
- 3. SODAN 20 % N
 - NH₄NO₃ and NaNO3 dissolved in water
 - Used more in tropical areas, salt-out at 58 ° F

4. 10-34-0 AND 11-37-0 MADE BY REACTING ANHYDROUS AMMONIA AND PHOSPHORIC ACID IN A PIPE REACTOR USED AS A BASE SOLUTION TO MAKE OTHER COMPLETE MIX SOLUTIONS

IF MADE USING SUPERPHOSPHORIC ACID POLY ACID CONTENT ENABLES THE FORMULATION OF HIGHER ANALYSIS SOLUTIONS.

STABALIZED N SOURCES

UMAXX AND UFLEXX UREA WITH NBPT AND DCD ADDED NBPT INHIBITS UREASE DCD INHIBITS NITRIFICATION

ADVANTAGES 1. MORE ECONOMICAL THAN MOST SLOW-RELEASE N SOURCES 2. DON'T VOLATILIZE AS MUCH N AS UNSTABALIZED UREA

Fertilization Management for Bahiagrass Pastures

High-N Option 160 # N P and K at Recommended Rates Above Average Production

Medium-N Option 100 # N Soil test Low P - Apply 25 lbs P₂O₅ Soil test Low K - Apply 50 lbs K₂O If Hay Produced Apply an additional 80 lbs N

Low -N Option - Grazed Pastures 50 # N No P or K applied If this practice is followed more than one year soil test and apply P and K every third or fourth year.

If the pasture is used for Sod production P and K will have to be applied according to soil test for proper root and mat production for lifting

Fertilization Management for Improved Perennial Warm-Season Grasses (Bermuda, Star, Limpo and Digit)

Grazed Established Stand - 160 # N 40 # P₂O₅ & K₂O

If Intensively Grazed Bermuda or Star may use 200 # N

PHOSPHORUS NUTRITION

PLANTS NEED P FOR:

PHOTOSYNTHESIS

ENERGY TRANSFER AND STORAGE

ROOT GROWTH

MOST RESPONSE DURING EARLY GROWTH STAGES

PHOSPHORUS ANALYSIS

SOIL ANALYSIS - MEHLICH I EXT. P
NON-LEACHABLE IN
MOST SOILS - BUT
LEACHES IN SAND SOILS
< 15 PPM P LOW
- MEHLICH I DISSOLVES P
NOT AVAILABLE TO PLANT
- CORRELATED WITH
PLANT GROWTH
PLANT GROWTH

PHOSPHORUS ANALYSIS

RECOMMENATIONS BASED ON:

SOIL TEST P AS CORRELATED WITH ANTICIPATED GROWTH RESPONSE

TISSUE P CONCENTRATION CORRELATED WITH SOIL TEST LEVEL, GROWTH AND QUALITY RESPONSE

nosphorus ketenti v limina	on by a Leon fine sa	a as arrected
y ming.		
a applied Is CaCOz	Soil pH	P Retaine
lbs/Acre		
0	4.6	55
400	5.6	58
600	6.5	71
2800	7.0	89

POTASSIUM USE IN PLANTS:

- 1) VITAL IN PHOTOSYNTHESIS
 2) IMPROVES WATER USE EFFICIENCY
- 3) **PROMOTES ROOTING**
- 4) IMPROVES TOLERANCE TO DISEASE AND STRESS

POTASSIUM ANALYSIS

SOIL ANALYSIS - MEHLICH I EXT. K HIGHLY MOBILE IN SAND SOILS OF LOW OM ANALYZE FREQUENTLY

- < 35 PPM K LOW

POTASSIUM ANALYSIS

RECOMMENDATIONS BASED ON:

SOIL TEST LEVELS AS CORRELATED WITH ANTICIPATED RESPONSE

TISSUE K LEVELS AS CORRELATED WITH GROWTH AND QUALITY RESPONSE.

SOIL POTASSIUM

- * K LEACHES RAPIDLY IN SAND SOILS
- * K TYPICALLY LOW IN FLORIDA SOILS
- * RESPONSE TO K FERTILIZATION MOST LIKELY WHERE K REQUIREMENT IS HIGH
- * ADEQUATE K FERTILIZATION PROMOTES STRONG ROOT GROWTH AND TOLERANCE TO STRESS AND DISEASE

CALCIUM ANALYSIS
TISSUE ANALYSIS - TOTAL CALCIUM
- Ca DEFICIENCIES MAY OCCUR IN SOME VEG.
- HIGH RATES OF Mg AND K REDUCE TISSUE CA LEVELS
- RECOMMENDED % Ca 0.5 TO 1.0%

MAGNESIUM ANALYSIS

SOIL ANALYSIS MEHLICH I -

- < 20 PPM LOW -
- Ca/Mg RATIO NOT IMPT. -
- SOIL Mg STATUS IMPT. -

MAGNESIUM

Mg COMMONLY LOW TO DEFICIENT IN SAND SOILS

MEHLICH I EXTRACTABLE LEVELS OF LESS THAN 40 LBS/ACRE MG CONSIDERED DEFICIENT

HIGH K FERTILIZATION MAY INDUCE A MG DEFICIENCY ON SOILS CONTAINING MARGINAL LEVELS OF MG

HIGH K FERTILIZATION MAY INDUCE 'GRASS TETANY' IN ANIMALS GRAZING LOW MG GRASS.

USUALLY SUPPLIED AS DOLOMITIC LIME, MgS04 (EMJEO) OR K₂SO₄· MgSO₄ (SUL-PO-MAG)

MAGNESIUM ANAL	YSIS
TISSUE ANALYSIS -	TOTAL Mg
-	HAVE OBSERVED A
	RESPONSE TO APPLIED
	Mg WHEN SOIL Mg
	DROPPED BELOW 20 PP
	AND TISSUE < 0.15% Mg

PPM

ALTHOUGH SULFUR OCCURS IN THE SOIL AS THE SULFATE (SO $_4$ =) ION, THE MAJOR SOIL SOURCE IS ORGANIC MATTER. THEREFORE, ORGANIC MATTER LEVEL

- AND RATE OF ITS DECOMPOSITION
- STRONGLY INFLUENCE SULFUR
- AVAILABILITY.

SULFUR RECOMMENDATIONS

- * EXT SOIL TESTING LAB DOES NOT ANALYZE FOR S
- * LITTLE RESPONSE/CORRELATION DATA EXISTS
- * BECAUSE OF LOW % OF OM MOST FL SOILS LOW IN S
- * S DEFICIENCY SYMPTOMS RESEMBLE N DEFICIENCY - USE OF AS SHOULD SOLVE THE PROBLEM IF IT EXISTS
- * RESPONSE TO S APPLICATION ON BAHIA IN GAINESVILLE.

Notes:

Notes: