

68th Florida Beef Cattle Short CourseMay 10th 2019

Reproductive Challenges in Cow-calf Operations

Mario Binelli, PhD
Department of Animal Sciences
(mario.binelli@ufl.edu)

She is in estrus.

This is an Ovulation: release of an oocyte (egg) to be fertilized.

This is an Ovulation: release of an oocyte (egg) to be fertilized.

Oocyte + sperm = embryo \rightarrow fetus \rightarrow calf \rightarrow <u>MEAT</u>

Pre-ovulatory follicle

Ovulation

Formation of corpus luteum

Pre-ovulatory follicle

Ovulation

Formation of corpus luteum

Pre-ovulatory follicle

Ovulation

Formation of corpus luteum

Pre-ovulatory follicle

Ovulation

Formation of corpus luteum

estrus

Take home points:

1. Estrus – ovulation – embryo – fetus – calf – meat.

1. The challenge: the yearling heifer has +/- one year from birth to first conception.

The evaluation: ultrasonography, reproductive tract score (RTS).

Reproductive Tract Score

Table 1. Reproductive tract score (RTS) system (Anderson et al., 1991)

		Ovary				
RTS	Uterine horn	${\rm Length,mm}$	${\rm Height,mm}$	${\rm Width,mm}$	Ovarian structures	
1	Immature < 20-mm diameter, no tone	15	10	8	No palpable structures	
2	20- to 25-mm diameter, no tone	18	12	10	8-mm follicles	
3	25- to 30-mm diameter, slight tone	22	15	10	8- to 10-mm follicles	
4	30-mm diameter, good tone	30	16	12	>10-mm follicles, corpus luteum possible	
5	>30-mm diameter, good tone, erect	>32	20	15	>10-mm follicles, corpus luteum present	

1. The challenge: the yearling heifer has +/- one year from birth to first conception.

The evaluation: ultrasonography, reproductive tract score (RTS).

The strategy: induction of cyclicity using progesterone (CIDR, MGA).

Impact of progesterone and estradiol treatment before the onset of the breeding period on reproductive performance of *Bos indicus* beef heifers

M.F. Sá Filho^{a,*}, L.F.T. Nasser^b, L. Penteado^c, R. Prestes^c, M.O. Marques^d, B.G. Freitas^a, B.M. Monteiro^a, R.M. Ferreira^a, L.U. Gimenes^e, P.S. Baruselli^{a,*}

Nelore, 20-22 months, 100% pre-pubertal

Heat: 88.9% (56/63)

Heat: 88.9% (56/63)

UF Puberty induction protocol (under testing)

Variable	Pubert	al	Prepubertal		
variable	Non-CIDR	CIDR	Non-CIDR	CIDR	
Mean of RTS1	3.54	3.68	2.27	2.18	
Mean of ICTOT	3.61		2.23	2.23	
Mean of RTS2	3.61	3.58	2.91	2.27	
Mean of R132	3.60		2.59	2.59	
Mean of RTS3	3.73	3.64	3.60	3.70	
IVICALI DI K133	3.69		3.68	3.68	
Increase from RTS1 to RTS3	2%		65%	65%	

Take home points:

- 1. Estrus ovulation embryo fetus calf meat.
- 2. Reproductive management of heifers should aim to maximize pregnancies early in the breeding season.

2. The challenge: poor control of timing of ovulation.

The evaluation: heat detection.

The strategy: a synchronization protocol + AI based on heat

Estrus distribution in heifers (Pelaez & Sons, Marianna and BRU)

Proportion of estrus by TAI (59.3% [192/324])

Pregnancy rates to Al in heifers (heat vs. non-heat)

o Pelaez & Sons, Marianna and BRU

Scenario 3: UF – Beef Research Unit, Gainesville, FL (2018-2019)

Estrus distribution in cows from BRU

Pregnancy rates to AI in cows from BRU (heat vs. non-heat)

Take home points:

- 1. Estrus ovulation embryo fetus calf meat.
- 2. Reproductive management of heifers should aim to maximize pregnancies early in the breeding season.
- 3. Use of a protocol + AI at estrus maximizes chances of pregnancy.

3. The challenge: 40-50% embryonic mortality during the first 30 days after Al.

The evaluation: preg check 30 days after AI and 30 days after end of the breeding season.

The strategy: a synchronization protocol + AI based on heat

Pregnancy rates to AI in cows from BRU (heat vs. non-heat)

Diameter of the pre-ovulatory follicle is associated positively with P/TAI

Diameter of the pre-ovulatory follicle is associated positively with P/TAI of ovulated cows

Table 3

Association between follicle diameter at fixed-time artificial insemination (FTAI) on the probabilities of ovulation, estrus and pregnancy among cows evaluated for ovulation or estrus.

Variable	Diameter of the largest follicle at FTAI, mm				P
	<7.5	7.5–11	11.1-14.4	>14.4	
Ovulation rate, %	42.5c (34/80)	73.9b (161/218)	95.8a (407/425)	97.8a (88/90)	< 0.001
Ovulated before FTAI, %	79.4a (27/34)	0.6b (1/161)	0.0b (0/407)	0.0b (0/88)	< 0.001
Estrus at FTAIa, %	54.8c (51/93)	33.6d (43/128)	68.9b (126/183)	90.2a (37/41)	0.001
P/AI in ovulated cowsb, %	32,4b (11/34)	50.3b (81/161)	60.0a (244/407)	68,2a (60/88)	0.004

The alphabets (a-c) in the same row differ (P < 0.05).

^a Proportion of cows that showed estrus between the withdrawal of the progesterone device and FTAI.

^b Pregnancy per AI only in cows that had ovulations in response to the FTAI protocol.

Take home points:

- 1. Estrus ovulation embryo fetus calf meat.
- 2. Reproductive management of heifers should aim to maximize pregnancies early in the breeding season.
- 3. Use of a protocol + AI at estrus maximizes chances of pregnancy (because of a synchronous ovulation).
- 4. Use of a protocol + AI at estrus maximizes chances of pregnancy (because of lower embryonic loss).

4. The challenge: the post-partum cow has 75 days to get pregnant again.

(This challenge is accentuated for primiparous heifers)

The evaluation: ultrasonography.

The strategy: induction of cyclicity using progesterone (CIDR, MGA), associated

with a protocol.

There is a 30-45 days window to get a cow pregnant in a 90-day breeding season, to keep a 12 mo. calving interval

Proportion of cows with a corpus luteum at the beginning of the synchronization protocol (>45 days post-partum; BRU)

Pregnancy rates to AI in cows from BRU (according to category)

Group TAI + NS (N = 252 cows)

Review: Using artificial insemination v. natural service in beef herds

P. S. Baruselli^{1†}, R. M. Ferreira¹, M. F. Sá Filho¹ and G. A. Bó²

Review: Using artificial insemination v. natural service in beef herds

P. S. Baruselli^{1†}, R. M. Ferreira¹, M. F. Sá Filho¹ and G. A. Bó²

Table 1 Cumulative pregnancy rate every 21 days (P21, P42, P63, P84 and P105) of treated and non-treated (control) postpartum primiparous beef cows exposed to bull natural breeding (NB) during a 105-day breeding season

	Control	TNB	TNB + eCG	<i>P</i> value
P21 (% (<i>n</i> / <i>n</i>))	5.7 ^c (7/123)	30.4 ^b (35/115)	51.8 ^a (58/112)	0.001
P42 (% (n/n))	17.1° (21/123)		58.9 ^a (66/112)	
P63 (% (n/n))	27.6° (34/123)	52.2 ^b (60/115)	70.4° (79/112)	0.001
P84 (% (n/n))		58.3 ^b (67/115)		
P105 (% (n/n))	65.0 ^b (80/123)	68.7 ^{ab} (79/115)	82.1 ^a (92/112)	0.01

P21, P42, P63, P84 and P105 = cumulative pregnancy rates at 21, 42, 63, 84 and 105 days of the breeding season.

Control cows received no prior hormonal treatment; timed NB (TNB) and TNB + equine chorionic gonadotropin (eCG) cows received a protocol to synchronize follicular wave emergence and ovulation without and with eCG, respectively. Adapted from Ferreira et al. (2018).

^{a,b,c}Values within a row with different superscript letters differ significantly at the *P* value presented.

Take home points:

- 1. Estrus ovulation embryo fetus calf meat.
- 2. Reproductive management of heifers should aim to maximize pregnancies early in the breeding season.
- 3. Use of a protocol + AI at estrus maximizes chances of pregnancy (because of a synchronous ovulation).
- 4. Use of a protocol + AI at estrus maximizes chances of pregnancy (because of lower embryonic loss).
- 5. Use of a protocol (+ Al at estrus) maximizes chances of pregnancy (because of induction of cyclicity).

