

## Forage Conservation: Hay vs. Silage

## Dr. Matt Hersom, Extension Beef Cattle Specialist, UF/IFAS, Dept. Animal Sciences

Conservation of forages in the Gulf Coast area for later feeding is limited by a number of challenges. The timely harvest of forage in the Gulf Coast for hay production is often limited by optimal drying conditions. Therefore alternative methods of forage conservation need to be examined. Round bale silage offers an alternative forage harvesting and storage system to traditional hay harvest and storage. The use of RBS may be an attractive compliment to traditional hay harvest system by overcoming several of the challenges to hay production in the Southeast.

Making Round Bale Silage

- Harvest forage at optimum quality, 4-5 weeks re-growth.
- Cut and condition the forage as normal for hay making.
- Wilt forage to 50-60% dry matter, 2.5 to 4 hours during good drying conditions.
- Bale with normal hay baling equipment.
- Make well-shaped dense bales of appropriate weight.
- Use untreated sisal or plastic twine, or net-wrap

Wrapping Round Bale Silage

- Wrapping should occur the same day as baling, but can be delayed up to 48 hours.
- Choose a quality, sunlight (UV) stable stretch wrap.
- Four wraps of plastic minimum, six layers plastic likely the optimum.
- Additional labor associated with wrapping may be similar to labor associated with hay making.
- Cost of round bale silage may be offset by reduction in field losses of nutrients and potential yield of poor hay making.
- Bale quality is dependent on excluding air from the bale storage system.

## Advantages

- Flexibility to conserve forage when the crop is at its nutritional peak
- Reduced field loss
- Reduced storage loss
- Increased dry matter (DM) recovery
- Increased nutrient recovery
- Dual use of equipment

## Disadvantages

- Plastic cover cost/disposal
- Plastic damage during storage
- Special tape to seal damage
- Increased cost per bale
- Potential for increased spoilage/loss
- Limited transportation/storage options

| Effect preservation method on conserved forage quality UF work. |       |       |  |  |  |
|-----------------------------------------------------------------|-------|-------|--|--|--|
| Item                                                            | Hay   | RBS   |  |  |  |
| Mean bale                                                       |       |       |  |  |  |
| Wet weight, lb                                                  | 824   | 1,556 |  |  |  |
| Dry matter, %                                                   | 92.5  | 41.3  |  |  |  |
| Crude protein, %                                                | 10.4  | 13.1  |  |  |  |
| TDN,%                                                           | 54.1  | 57.2  |  |  |  |
| Dry matter, lbs                                                 | 769   | 638   |  |  |  |
| Crude protein, lb                                               | 77.9  | 82.8  |  |  |  |
| TDN, lb                                                         | 415.8 | 365.2 |  |  |  |

Adapted from Hersom et al. 2007 Florida Beef Research Report data.

Effect preservation method on conserved forage costs.

|                                    | UF Study <sup>1</sup> |         | Alterna | Alternative Scenario |  |
|------------------------------------|-----------------------|---------|---------|----------------------|--|
| Item                               | Hay                   | RBS     | Hay     | RBS                  |  |
| # of bales harvested               | 259                   | 479     | 300     | 475                  |  |
| Per bale cost, $\frac{1}{2}$       | 25.55                 | 20.80   | 25.55   | 20.80                |  |
| Cost of baling method, \$          | 6,617                 | 9,963   | 7,665   | 9,880                |  |
| As-fed forage production, lb       | 219,123               | 745,324 | 255,000 | 712,500              |  |
| Cost wet forage production, \$/cwt | 3.02                  | 1.34    | 3.01    | 1.39                 |  |
| Dry matter forage production, lb   | 202,743               | 305,582 | 235,875 | 299,250              |  |
| Cost dry production, \$/cwt        | 3.26                  | 3.26    | 3.25    | 3.30                 |  |
| TDN, %                             | 54.1                  | 57.2    | 50.0    | 62.0                 |  |
| Lbs of DM TDN                      | 109,684               | 174,793 | 117,938 | 185,535              |  |
| \$ / cwt of TDN                    | 6.03                  | 5.70    | 6.50    | 5.33                 |  |
| CP%                                | 10.4                  | 13.1    | 8.5     | 14.0                 |  |
| Lbs of DM CP                       | 21,085                | 40,031  | 20,049  | 41,895               |  |
| \$ / cwt of CP                     | 31.38                 | 24.89   | 38.23   | 23.58                |  |

<sup>3</sup> Adapted from Hersom et al. 2007 Florida Beef Research Report data. <sup>2</sup> Based on 2009 Iowa Custom Rate Survey; costs of mowing, baling, and one raking for hay.