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ANIMAL BREEDING NOTES 

 

CHAPTER 13M 
 

MULTIBREED VARIANCES AND COVARIANCES 

Definitions 

Multibreed population: a population composed of straightbred and crossbred animals that 

interbreed (Elzo, 1983; 1990a; 1994). 

Breed group: a group of animals whose genetic composition falls within a range of fractions of 

breeds.  For example, if five breed groups are constructed to group animals in a two-breed 

multibreed population (A = breed 1, B = breed 2), the group ranges could be: group 1 = (1.0 to 

.81)A (.0 to .19)B, group 2 = (.80 to .61)A (.20 to .39)B, group 3 = (.60 to .41)A (.40 to .59)B, 

group 4 = (.40 to .21)A (.60 to .79)B, and group 5 = (.0 to .19)A (1.0 to .81)B. 

Regression model: a model that defines multibreed nonadditive effects in terms of intra- and 

interbreed interactions between alleles at K loci, K = arbitrary. 

Additive intrabreed genetic covariance: a covariance due to additive genetic effects within a 

breed. 

Additive interbreed genetic covariance: a covariance arising from differences between 

intrabreed means of additive genetic effects; it is equal to twice the segregation covariance (Lo et 

al., 1994). 

Multibreed additive genetic covariance: an additive genetic covariance for animals in a 

multibreed population; equal to either an additive intrabreed genetic covariance (straightbred 

animals) or a weighted sum of additive intrabreed and interbreed genetic covariances (progeny of 

at least one crossbred parent). 

Nonadditive configuration: a representation of K loci using the breed of origin of the alleles.  
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For example: if animals are composed of two breeds, A and B, there are four configurations at 

one locus: A/A, A/B, B/A and B/B; three configurations result if A/B and B/A are defined as one 

configuration.  A possible set of configurations for one and two loci is shown in Elzo (1990b). 

Nonadditive intraconfiguration genetic covariance: a covariance due to nonadditive genetic 

effects caused by the interaction between alleles from one or more breeds within a nonadditive 

configuration.  Nonadditive configurations are to nonadditive genetic covariances as breeds are 

to additive genetic covariances. 

Nonadditive interconfiguration genetic covariance: a covariance arising from differences 

between intraconfiguration means of nonadditive genetic effects. 

Multibreed nonadditive genetic covariance: a nonadditive genetic covariance for animals in a 

multibreed population; equal to a weighted sum of nonadditive intraconfiguration and 

interconfiguration genetic covariances. 

Environmental intrabreed covariance: a covariance due to environmental effects within a 

breed. 

Environmental interbreed covariance: a covariance arising from differences between 

intrabreed means of environmental effects. 

Environmental multibreed covariance: an environmental covariance equal to either an 

intrabreed environmental covariance (straightbred animals) or a weighted sum of intrabreed and 

interbreed environmental covariances (progeny of one or two crossbred parents). 

Residual intrabreed, interbreed and multibreed covariances: weighted sums of additive and 

environmental intrabreed, interbreed and multibreed covariances. 

Assumptions 

1) Traits are determined by the combined effects of alleles at a large number of unlinked loci,  
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2) Random segregation and assortment of alleles occur during meiosis, and 

3) Covariances remain constant over time. 

Multibreed additive genetic covariances 

Multibreed additive genetic covariances could potentially be different for each breed group 

combination.  Multibreed covariances can be computed as the sum of two terms.  The first 

term is equal to the weighted sum of the intrabreed covariances between traits X and Z, where 

the weights are the expected frequencies of each breed in the g
th

 breed group combination (Elzo, 

1983,1990a; Lo et al., 1994).  The second term is equal to the weighted sum of the interbreed 

covariances between traits X and Z, where the weights are the sums of the products of the 

expected breed frequencies in the parental breed groups (Lo et al., 1994).  Thus, the multibreed 

additive genetic covariance between traits X and Z for an animal in a noninbred multibreed 

population computed by conditioning on the breed of origin of alleles is: 
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Proof: 

Let 

 uiX = asX + adX  

uiZ = asZ + adZ             

where 

uiX , uiZ  = random variables representing the breeding values of individual i for traits X and Z 

asX , asZ  = random variables representing the sum of the average effects of all alleles from all 

breeds affecting traits X and Z coming from the gamete of the sire of animal i, e.g., 



Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.                    [13M-4] 
 

 

sire

k

k

bkXbk

n

b

sX

bb

aa 







 



2

11

 , where abkX belongs to the sire of animal i, kb = number of 

loci in breed b, and δbk is a Kronecker delta, i.e., δbk = 0 or 1; δbk will be zero (2kb/2) 

times and one (2kb/2) times, because a random sample of only 2 of the male alleles 

from each breed is expected to be passed on to individual i. 

adX , adZ  = random variables representing the sum of the average effects of all alleles affecting 

traits X and Z, coming from the gamete of the dam of animal i, e.g.,  
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 , where abkX belongs to the dam of animal i. 

To simplify notation, let   
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Inserting the above expression in    ( [  |  )  [  | ]) yields 
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where  (    )     is the segregation covariance between traits X and Z due to differences in 

allele frequencies in breeds b and b’. 

Thus,  
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Similarly, for the dam of animal i,  
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Thus, the covariance between traits X and Z for animal i is: 
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where the superscripts i, s and d correspond to an individual animal, its sire and its dam, the 

subscripts b and b represent two breeds, and 

 nb  = number of breeds, 

 pb
x
  = expected fraction of breed b in animal x, x = i, s, d,  

 (σaXZ)b  = additive intrabreed covariance for breed b, and 

 (σaXZ)bb = additive interbreed covariance for the pair of breeds b and b. 

Multibreed nonadditive genetic covariances 

Nonadditive genetic effects can be modeled in terms of subclass or regression procedures.   

Regression multibreed nonadditive genetic covariances. These covariances involve 
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interactions between alleles from one or more breeds at k loci.  Only nk intraconfiguration 

nonadditive genetic covariances between traits Y and Z at k loci, i.e., (σnYZ)k,  k = 1, ... , nk, need 

to be estimated.  No interconfiguration nonadditive genetic covariances are needed.  For the case 

of two breeds and assuming three configurations at 1 locus, there would be three 

intraconfiguration variances: two intrabreed: var(A/A) and var(B/B), and one interbreed: 

var(A/B). 

Subclass multibreed nonadditive genetic covariances.  These covariances are assumed to 

differ for each breed-group-of-sire × breed-group-of-dam combination.  They are computed by 

conditioning them on the intraconfiguration populations of nonadditive genetic effects (as 

multibreed additive covariances are conditioned on base breeds).  Thus, the subclass multibreed 

nonadditive genetic covariances between traits X and Z at k loci, are computed using the 

following expression: 
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where tik is the probability of intraconfiguration i at k loci in breed-group-of-sire × breed-group-

of-dam combination T, iknXZ)( = intraconfiguration covariance i between traits X and Z, 

'k'i,iknXZ)( = interconfiguration covariance ik,i’k’ at k loci between traits X and Z, and nik = 

number of intraconfigurations at k loci.  For example, assuming 2 breeds and 1 locus there would 

be 2 intrabreed (A/A and B/B) and 1 interbreed (A/B) configurations.  The probabilities of the 2 

intrabreed configurations would be ti1 = [pA
s 
pA

d
] and ti2 = [pB
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d
], and the probability of the 

interbreed configuration would be ti3 = [pA
s 
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].  Notice that the terms 
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intraconfiguration and interconfiguration when referring to multibreed nonadditive covariances 

are equivalent to intrabreed and interbreed when referring to multibreed additive covariances. 

Multibreed Environmental and Residual Covariances 

Multibreed environmental covariances could be assumed 1) to be equal for all breeds and 

crossbred groups, 2) to be different for each breed and crossbred group (i.e., given an 

environment each genotype reacts differently), and 3) something in between alternatives 1 and 2. 

If multibreed environmental covariances were assumed to be different across breed groups, 

and to behave in an additive fashion, then their computation would be similar to the procedure 

used to compute additive genetic covariances.  Thus, the multibreed environmental covariance 

between traits Y and Z, would be: 
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where the superscript i represents an individual animal, the subscripts b and b represent two 

breeds and 

(σeYZ)b  = environmental intrabreed covariance for breed b, and 

 (σeYZ)bb = environmental interbreed covariance for pair of breeds b and b. 

The structure of multibreed residual covariances will depend on 1) the additive model used 

(animal, reduced animal, sire-dam, bull, sire model), 2) the ancestors identified on an animal 

with records, and 3) the assumptions made with respect to multibreed environmental 

covariances.  For example, the expression of the multibreed residual covariance between traits Y 

and Z for a sire-maternal grandsire model is the following: 
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where superscripts i, s, and mgs refer to an animal, its sire, and its maternal grandsire, the 

subscripts v, a, and e represent residual, additive genetic, and environmental, and  

δ
x
 = indicator equal to 1 if animal x is not identified and to 0 if animal x is 

identified, where x = s, mgs, 

cova(Y,Z)
i
 = cova(YD,ZD)

i
 , where the subscript D = direct genetic effects. 

cova(Y,Z)
s
 = cova(YD,ZD)

s
 , and 

cova(Y,Z)
mgs

 = cova(YD,ZD)
mgs

 . 

Multibreed additive genetic covariances in Equation [3] are computed using Equation [1], and 

multibreed environmental covariances using Equation [2].  If a model includes sires and dams, 

then additive dam covariances (and multiplying factors δ
d
 and .25) will be substituted for those 

of the maternal grandsire.  For an animal model with all relatives known, multibreed residual 

covariances will contain environmental covariance components and covariances due to 

nonadditive multibreed effects not accounted for sire × breed group of dam interactions. 
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