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ANIMAL BREEDING NOTES 

CHAPTER 14M 

BREEDING VALUE OF AN ANIMAL FOR A SINGLE TRAIT IN A MULTIBREED 

POPULATION 

 

Assumptions 

(a) nb unrelated breeds, 

(b) kb loci per breed, kb arbitrary, 

(c) rbk alleles per locus in breed b, rbk arbitrary, and 

(d) no linkage. 

Multibreed Breeding Value 

Genetic value of an individual based on the mean genotypic value of its progeny.  Because parents 

pass on their genes (not their genotypes) to their progeny, the mean genotypic value of their 

progeny is determined by the average effects of the parent's alleles (Falconer, 1981, p 106).  Thus, 

the breeding value of animal i for trait X in a multibreed population would be determined by the 

sum of the average effects of alleles all the breeds present in each of its parents: 

 uiX = asX + adX                     [1] 

where 

uiX  = random variable representing the breeding value of individual i for trait X 

asX  = random variable representing the sum of the average effects of all alleles from all 

breeds affecting trait X coming from the gamete of the sire of animal i, i.e., 
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, where abk belongs to the sire of animal i, kb = number of loci 
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in breed b, and δbk is a Kronecker delta, i.e., δbk = 0 or 1; δbk will be zero (2kb/2) times 

and one (2kb/2) times, because a random sample of only 2 of the male alleles from 

each breed is expected to be passed on to individual i. 

adX = random variable representing the sum of the average effects of all alleles affecting a 

trait, coming from the gamete of the dam of animal i, i.e.,  
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, where abk belongs to the dam of animal i. 

Average genetic effects are defined as deviations from the average gene at each locus within 

each breed; thus, the expected value of uiX is: 
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The variance of uiX is: 

 var(uiX) = var(asX + adX) 

    = var(asX) + var(adX) + 2 cov(asX,adX) 

The covariance between the breeding values of animal i for traits X and Z is: 

 cov(uiX, uiZ) = cov(asX + adX, asZ + adZ) 
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     = cov(asX, asZ) + cov(asX, adZ) + cov(adX, asZ) + cov(adX, adZ) 

By conditioning on the breeding values of the sire (usX) and the dam (udX) of animal i, var(uiX) 

becomes: 

 var(uiX) =  var(E[asX│usX]) + E[var(asX│usX)] 

     + var(E(adX│udX]) + E[var(adX│udX)] 

     + 2 cov(E[asX│usX], E[adX│udX]) 

     + 2 E[cov(asX│usX, adX│udX)] 

But asX is the average effect of 2 of the alleles affecting the trait in the sire, i.e., asX = 2 usX. 

Thus, 

 E[asX│usX]  = E[2 usX│usX] 

     = 2 usX 

Applying a similar argument to adX yields: 

 E[adX│udX]  = 2 udX 

Thus, for the sire of animal i, 

 var(E[asX│usX]) = var(2 usX) 

      = 3 var(usX) 
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 where 

        ncs   =  number of common ancestors for sire s 
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 
csds,ssa =  additive relationship between the sire and the dam of sire 
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Similarly, for the dam of animal i, 
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What is E[var(asX│usX)]? 

 E[var(asX│usX)] = var (asX) B var(E[asX│usX]) 

Here,  

 var(asX) = 
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Also, by definition, 
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An expression for the multibreed additive genetic variance for trait X can be obtained by 
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conditioning on the breed of origin of alleles as follows: 
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where superscripts i, s and d correspond to animal, sire and dam, subscripts b and b represent 

two breeds, and 

  nb  = number of breeds 

  pb
x  = expected fraction of breed b in animal x, x = i, s, d 

 (σaX
2)b  = additive intrabreed variance of trait X for breed b 

 (σaX
2)bb = additive interbreed variance of trait X for the pair of breeds b and b 

Thus, for the sire of animal i, 
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Similarly, for the dam of animal i, 
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 var(adX) = 
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The covariance terms of var(uiX) are: 

 2 cov(E[asX│usX], E[adX│udX])  = 2 cov(2 usX, 2 udX) 

          = 2 cov(usX, udX) 
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The value of 2 E[cov(asX│usX, adX│udX)] = 0 because the sire and the dam random samples of 2 of 

their respective set of alleles are taken independently of each other, i.e., there is no connection 

between the formation of sire gametes and dam gametes (biological fact).   

Thus, 
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Equivalent model for the breeding value of an animal for a single trait in a 

multibreed population 

An equivalent model (same first and second moments; Henderson, 1985) to the single trait 

multibreed breeding value model, 

  uiX  = asX + adX 
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is: 

 ux =  2 us + 2 ud + 2 εs + 2 εd               [2] 

where 

 uiX = breeding value of animal i for trait X (random), 
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 usX = breeding value of sire s for trait X (random), 

 udX = breeding value of dam d for trait X (random), 

 εsX = Mendelian sampling occurring during gametogenesis in sire s for trait X (random), 

 εdX = Mendelian sampling in dam d for trait X (random). 

The Mendelian sampling terms εsX and εdX are independent of each other and independent from 

breeding values.  All random variables have expected values equal to zero, i.e.,  

   E[uiX] = 0 

and 

  var(uiX) = var(2 usX + 2 udX) + var(2 εsX) + var(2 εdX) 

where 

  var(2 usX + 2 udX) = var(2 usX) + var(2 udX) + 2 cov(2 usX, 2 udX) 
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Because the sampling process during gamete formation (Mendelian sampling) in the male and 

female gametes is completely independent of each other, any loss of variation during this process 

would be due to (i) inbreeding in the male present in the male gamete, and (ii) inbreeding in the 

female present in the female gamete.  Thus,  
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and 
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Remarks:  var(2 εsX) + var(2 εdX) = var(φX) represents the variability that exists among gametes 

in the sire and in the dam.  Thus, it is affected negatively by the level of inbreeding in the sire (FsX) 

and dam (FdX) and it is independent of the level of inbreeding of the individual (FiX). 

 

Derivation of general rules to compute the inverse of the multibreed additive 

covariance matrix directly 

The multibreed additive genetic model can be generalized to include not only the case when both 

parents are identified, but also the cases when only the sire, only the dam or neither parent is 

known. 

Unidentified parents are assumed to be non-inbred and unrelated among themselves and to all 
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other identified animals in the population, just like base animals. 

Base animals are those that all other animals in the population descend from.  They are assumed to 

be unrelated and non-inbred. 

The extended version of the multibreed additive genetic model with animals ordered such that 

parents precede progeny (e.g., by birth date), in matrix notation, is: 

  uX = 2 P uX + φ X                  [3] 

where 

uX = vector multibreed breeding values of animals for trait X, where parents precede 

progeny; 

P = lower triangular matrix relating parents to progeny.  A row of P contains ones in the 

columns corresponding to the known parents and zeroes elsewhere.  Thus, a row of P 

contains: 

   (i)  two 1's if both parents are known, 

   (ii)  one 1 if either the sire or the dam of an animal is known, 

   (iii)  zeroes if both parents are unknown; 

φX =  vector of independent random variables representing: 

(i) Mendelian sampling in the sire and in the dam, if both parents of animal i are 

known, i.e., 

       φiX  = 2 εsX + 2 εdX 

(ii) Mendelian sampling in the sire and the dam plus: 

(a) the breeding value of the dam, if only the sire of animal i is known, i.e., 

       φiX  = 2 udX + 2 εsX + 2 εdX 

(b) the breeding value of the sire, if only the dam animal i is known, i.e., 
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       φiX  = 2 usX + 2 εsX + 2 εdX 

(iii) the breeding value of animal i if neither its sire nor its dam are known, i.e., 

       φiX  = uiX   

From equation [3] we can see that: 

  φX = (I B 2 P) uX 

  uX = (I B 2 P)B1 φX 

 E[uX] = (I B 2 P)B1 E[φX] 

   = 0 

  var(uX) = (I B 2 P)B1 var(φX) (I B 2 P)B1 

     var(uX) = (I B 2 P)B1 D (I B 2 P)B1 
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  D = diag{var(φiX)} 
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        if s and d are known 

(ii) 







 dsd XXX
 

2

1
 +  

2

1
 + u 

2

1
var   =   








 u

2

1
 var   uvar  siX X

 

         =  
i

2

AX  -     







 


cs

2

AX

n

1c

css

2

AX4
1

cs

F  

         =  
i

2

AX  -  
s

2

AX4
1   -  

cs

2

AX

n

1c

cs4
1

cs

F 


 

         if s is known only 

(iii) 







 dss XXX
 

2

1
 +  

2

1
 + u 

2

1
var   =   








 u

2

1
 var   uvar  diX X

 

         =  
i

2

AX  -     







 


cd

2

AX

n

1c

cdd

2

AX4
1

cd

F  

         =  
i

2

AX  -  
d

2

AX4
1   -  

cd

2

AX

n

1c

cd4
1

cd

F 


 

          if d is known only 

(iv) 







 dsds XXXX
 

2

1
 +  

2

1
 + u 

2

1
 + u 

2

1
var   = var(uiX) 

           =  
i

2

AX  

            if neither s nor d are known 

But 

 var(uX)  = 




















’ P
2

1
I  D  P

2

1
I

11

  

= GAX 
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  GAX
B1 = 

















  P 

2

1
I  D  P’ 

2

1
I 1  

  GAX
B1 = DB1  B  2 DB1 P  B  2 P DB1  +  3 P DB1 P 

                 
    diagonals    parentBprogeny    parentBparent 

 

Let P =























 

’p 

  

’p 

’p 

n

2

1


where pi is a vector with at most two 1's and the rest zeroes. 

Thus, 

 B2 DB1 P  = 





























p d 
2

1

p d 
2

1

1
nn

1
1

11

  

     = 



























 







[animal]d 
2

1
d 

2

1

[dam][sire]

1
ii

1
ii

 

 B2 P DB1  = 







  p d 

2

1
p d 

2

1
n

1
nn1

1
11   
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     = 























































[dam]d 
2

1

[sire]d 
2

1

[animal]

1
ii

1
ii

 

 3 P DB1 P  = ’p p d ii

1
ii

n

1=i

  

     = 



















































[dam]d 
4

1
d 

4

1

[sire]d 
4

1
d 

4

1

[dam][sire]

1
ii

1
ii

1
ii

1
ii

 

Based on the pattern of contributions of the four matrices contributing to GAX
B1, the following 

rules to compute GAX
B1 directly can be inferred: 

(1) if both the sire (s) and the dam (d) of animal i are identified, add: 

  d 
1

ii
  to i  i 

 d 
2

1 1
ii
   to i  s, i  d, s  i, d  i 

 d 
4

1 1
ii
   to s  s, s  d, d  s, d  d 

where 
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  1

iid          
1

cd

2

AX

n

1c

cdd

2

AX4
1

cs

2

AX

n

1c

css

2

AX4
1

i

2

AX

cdcs

FF































   

 (2)   if only the sire (s) is known, add: 

  d 
1

ii
  to i  i 

 d 
2

1 1
ii
   to i  s, s  i 

 d 
4

1 1
ii
   to s  s 

where  

  1

iid      
1

cs

2

AX

n

1c

css

2

AX4
1

i

2

AX

cs

F






















   

(3)   if only the dam (d) is known, add: 

  d 
1

ii
  to i  i 

 d 
2

1 1
ii
   to i  d, d  i 

 d 
4

1 1
ii
   to d  d 

where  

  1

iid      
1

cd

2

AX

n

1c

cdd

2

AX4
1

i

2

AX

cd

F






















   

(4)   if neither s nor d are known, add: 

 d 
1

ii
  to i  i 

where 
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  d 
1

ii
  =    1

i

2

AX


  

These computational rules correspond to the multibreed version of Henderson's rules. 

In order to apply these rules we must know the dii.  If there is no inbreeding the dii can be easily 

computed using only the multibreed additive genetic covariances of the genetic groups of the 

animal, its sire, and its dam.  But, if there is inbreeding, the computation of the dii requires 

knowledge of the inbreeding coefficients of each common ancestor of an animal and its 

corresponding multibreed variance for trait X. Because we are computing GAX
-1 without computing 

GAX first, it is easier to compute the dii directly using a recursive procedure based on computing C, 

where CC = GAX.  This approach will be used here. 

 

Rules to compute the dii in a non-inbred multibreed population 

If all animals in a multibreed population are non-inbred then: 

(1) if both the sire (s) and the dam (d) of animal i are identified, add: 

  d 
1

ii
  to i  i 

 d 
2

1 1
ii
   to i  s, i  d, s  i, d  i 

 d 
4

1 1
ii
   to s  s, s  d, d  s, d  d 

where 

  1

iid        1

d

2

AX4
1

s

2

AX4
1

i

2

AX


  

 (2)   if only the sire (s) is known, add: 

  d 
1

ii
  to i  i 
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 d 
2

1 1
ii
   to i  s, s  i 

 d 
4

1 1
ii
   to s  s 

where  

  1

iid      1

s

2

AX4
1

i

2

AX


  

(3)   if only the dam (d) is known, add: 

  d 
1

ii
  to i  i 

 d 
2

1 1
ii
   to i  d, d  i 

 d 
4

1 1
ii
   to d  d 

where  

  1

iid      1

d

2

AX4
1

i

2

AX


 , 

(4)   if neither s nor d are known, add: 

 d 
1

ii
  to i  i 

where 

  d 
1

ii
 =    1

i

2

AX


  
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Example of GAXB
1 in a non-inbred multibreed population 

 Animal Sire Dam 

 Number Breed 

Group 

Number Breed 

Group 

Number Breed 

Group 

Parents 1 A 0 A 0 A 

 2 B 0 B 0 B 

 3 ½ A ½ B 0 A 2 B 

Non-parents 4 ½ A ½ B 1 A 0 B 

 5 ½ A ½ B 1 A 2 B 

 6 ¾ A ¼ B 1 A 3 ½ A ½ B 

 

Intrabreed additive genetic variance of trait X for breed A   =  AAX
2  =  36 

Intrabreed additive genetic variance of trait X for breed B   =  BBX
2 =  9 

Interbreed additive genetic variance of trait X for combination of breeds AB  =  ABX
2  =  4 

 

Multibreed additive genetic variances for the 6 animals are computed using the expression: 

 

σAX
2 =    

'bb

2

aX

n

b'b

d

'b

d

b

s

'b

s

b

n

1b

1n

1b
b

2

aX

i

b

bb b

)pppp(p   






 

 

 Animal 

 Number Breed Group Multibreed Additive Genetic Variance 

Parents 1 A 36 

 2 B 9 

 3 ½ A ½ B ½ (36) + ½ (9) = 22.5 

Non-parents 4 ½ A ½ B ½ (36) + ½ (9) = 22.5 

 5 ½ A ½ B ½ (36) + ½ (9) = 22.5 

 6 ¾ A ¼ B ¾ (36) + ¼ (9) + [(1)(0) + (½)(½)](4) = 30.25 
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The (dii)-1 values for the 6 animals are: 

 Animal 

 Number Breed Group (dii)-1 

Parents 1 A (36)-1 

 2 B (9)-1 

 3 ½ A ½ B 22.5 – ¼ (9) = (20.25)-1 

Non-parents 4 ½ A ½ B 22.5 – ¼ (36) = (13.5)-1 

 5 ½ A ½ B 22.5 – ¼ (36) – ¼ (9) = (11.25)-1 

 6 ¾ A ¼ B 30.25 – ¼ (36) – ¼ (22.5) = (15.625)-1 

 

The inverse of the GAX matrix is:  GAX
B1 = DB1 B 2 DB1 P B 2 P DB1 + 3 P DB1 P, where : 

P = 

































 000|101 

 00|011 

  0|001 

---|---

   |010 

   | 00 

   |  0 

, 

DB1  = 

















































1

1

1

1

1

1

)15.625(|

)25.11(|

)5.13(|

|

|)25.20(

|)9(

|)36(

, thus 
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GAX
 B1 = 

nonparents

parents

g|

0g|

00g|

|

g00|g

0g0|gg

ggg|ggg

66

55

44

3633

252322

161514131211



































  

    parents   non-parents 

where each gij term is computed using the recursive multibreed rules above, i.e.,  

 g11  = (36)-1 + ¼ (13.5)-1 + ¼ (11.25)-1 + ¼ (15.625)-1 

 g12  = ¼ (11.25)-1 

 g13  = ¼ (15.625)-1 

 g14  = B ½ (13.5)-1 

 g15  = B ½ (11.25)-1 

 g16  = B ½ (15.625)-1 

 g22  = (9)-1 + ¼ (20.25)-1 + ¼ (11.25)-1  

g 23  = B ½ (20.25)-1 

 g25  = B ½ (11.25)-1 

 g33  = (20.25)-1 + ¼ (11.25)-1  

 g36  = B ½ (15.625)-1 

 g44  = (13.5)-1 

 g55  = (11.25)-1 

 g66  = (15.625)-1 
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Multibreed Inbred Population 

 
The multibreed additive genetic covariance of an animal with itself for trait X is: 

 gii = var(uiX) =  
i

2

AX +    
ci

2

AX

n

1c
cisd2

1

ci

a 


 

or 

 gii = var(uiX) =  
i

2

AX +  
ci

2

AX

n

1c

ci

ci

F 


 

where 

 
cisda  = additive genetic relationship between the sire (s) and the dam (d) of animal i 

through common ancestor ci 

Fci =  coefficient of inbreeding of animal i due to common ancestor ci 

 =   
cisd2

1 a  

In an inbred multibreed population the diagonal elements of the matrix D, i.e., the dii, will depend 

on the coefficient of inbreeding of the parents of the animals included in the relationship matrix A.  

Thus, the dii cannot be computed based solely on knowledge of (σAX
2)bx, b = 1 to nbx, where nbx = 

number of breed group combinations.  We also need to know the coefficients of inbreeding of the 

parents thorough each one of their common ancestors weighted by the multibreed additive genetic 

covariances of their breed group.  However, we do not need to compute the complete matrix GAX, 

only need the diagonal elements, because 

  iid           






















 


cd

2

AX

n

1c

cdd

2

AX
d

cs

2

AX

n

1c

css

2

AX
s

i

2

AX

cdcs

F
4

F
4

 

where 
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   
 








otherwise0 

known is d s if1 
     ds  

Thus, what we need is an efficient method to compute the diagonal elements of GAX, i.e., the gii.  

This is accomplished by a recursive algorithm (Elzo, 1990), based on an algorithm developed by 

Quaas (1976) to compute the diagonals of the additive relationship matrix. 

 

Recursive method to compute the diagonals of the multibreed additive genetic covariance 

matrix GAX 

 

The multibreed additive genetic covariance matrix GAX is equal to: 

  




















’ P
2

1
I D  P

2

1
I    G

11

AX  

Claim: 

  




































P
2

1
 +  + P

2

1
 + P

2

1
 + P

2

1
 + I    P

2

1
I

m321

  

where 

 m = maximum number of generations separating two individuals in GAX, m  n , where  

n  = order of matrix GAX  

=  number of animals in the pedigree 

Proof (Quaas, 1986):  P is a lower triangular matrix with zeroes on and above the diagonal.  Thus, 

Pm+1 = 0 for m  n. 

Consider, 

  















 P

2

1
 +  + P

2

1
 + P

2

1
 + I    T

m2

  
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and 

  








































P

2

1
 + P

2

1
 +  + P

2

1
 + P

2

1
 + P

2

1
    T  P

2

1
1 + mm32

  

Subtract the second term from the first term: 

  
















 P

2

1
I    T  P

2

1
  T

1 + m

 

But  

  0    P
2

1
1 + m









 

Thus, 

  I    P
2

1
I  T 








  

  











P
2

1
I    T

1

 

  




























P
2

1
 +  + P

2

1
 + P

2

1
 + I    P

2

1
I

m21

  

Remarks: 

The rows of the matrices P, P2, P3, ..., identify parents, grandparents, great-grandparents, ..., i.e., 

  Rows of     identify 

   P      parents 

   P2      grandparents 

   P3      great-grandparents 

               

   Pm    ancestors m generations back from the 

current generation 
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Example of GAXB
1 in an inbred multibreed population 

 Animal Sire Dam 

 Number Breed 

Group 

Number Breed 

Group 

Number Breed 

Group 

Parents 1 A 0 A 0 A 

 2 B 1 B 0 B 

 3 ½ A ½ B 1 A 2 B 

 4 ¼ A ¾ B 3 ½ A ½ B 2 B 

Non-parents 5 8
3 A 8

5 B 3 ½ A ½ B 4 ¼ A ¾ B 

 6 8
3 A 8

5 B 3 ½ A ½ B 4 ¼ A ¾ B 

 

Intrabreed additive genetic variance of trait X for breed A = AAX
2 = 36 

Intrabreed additive genetic variance of trait X for breed B = BBX
2 = 9 

Interbreed additive genetic variance of trait X for combination of breeds AB = ABX
2 = 4 

 

 Animal 

 Number Breed Group Multibreed Additive Genetic Variance 

Parents 1 A 36 

 2 B 9 

 3 ½ A ½ B ½ (36) + ½ (9) = 22.5 

 4 ¼ A ¾ B ¼ (36) + ¾ (9) + (½)(½)(4) = 16.75 

Non-parents 5 8
3 A 8

5 B 8
3 (36) + 8

5 (9) + [(½)(½) + (¼)(¾)](4) = 20.875 

 6 8
3 A 8

5 B 8
3 (36) + 8

5 (9) + [(½)(½) + (¼)(¾)](4) = 20.875 
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P = 































00|1100

0|1100

|

|0110

|011

|01

|0

 

 

P2 = P P = 































00|1100

0|1100

|

|0110

|011

|01

|0































00|1100

0|1100

|

|0110

|011

|01

|0

=































00|0121

0|0121

|

|0012

|001

|00

|0

 

                        
      parents             grandparents 

 

P3 = P2 P = 































00|0121

0|0121

|

|0012

|001

|00

|0































00|1100

0|1100

|

|0110

|011

|01

|0

=































00|0013

0|0013

|

|0001

|000

|00

|0

 

                         
                    great-grandparents 
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P4 = P3 P = 































00|0013

0|0013

|

|0001

|000

|00

|0































00|1100

0|1100

|

|0110

|011

|01

|0

=































00|0001

0|0001

|

|0000

|000

|00

|0

 

                        
                   great-great-grandparents 

P5 = P4 P = 































00|0001

0|0001

|

|0000

|000

|00

|0































00|1100

0|1100

|

|0110

|011

|01

|0

 =  0  

  animals in the current generation have no known ancestors beyond their 4th ancestral 

generation. 













P
2

1
I 

1

 = 





























































 10

2

1

2

100 

 1 

2

1

2

100 

  1 

2

1

2

10 

   1 

2

1

2

1
 

    1 

2

1
 

     1  
1 
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











P
2

1
I 

1

 = 



























   1.0    0   0.5  0.750.6250.6875 

    1.0   0.5  0.750.6250.6875 

     1.0   0.5  0.75 0.625 

      1.0   0.5  0.75 

       1.0   0.5 

        1.0 

 

Alternatively, 













P
2

1
I 

1

 = 























P

2

1
 + P

2

1
 + P

2

1
 + P

2

1
 + I

432

 

    = 























































005.05.000

05.05.000

05.05.00

05.05.0

05.0

0

1

1

1

1

1

1

 

    + 























































0000125.0375.0

000125.0375.0

000125.0

000

00

0

10025.050.025.0

1025.050.025.0

0025.050.0

0025.0

00

0

 

    + 



























000000625.0

00000625.0

0000

000

00

0
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











P
2

1
I 

1

 = 



























 10   0.5  0.750.6250.6875 

 1   0.5  0.750.6250.6875 

     1   0.5  0.75 0.625 

      1   0.5  0.75 

       1   0.5 

        1 

 

Let us look at the sums , 4  j , P
2

1
   + I

cj

1=c









  more closely. 

P
2

1
 + I  = 

1 generation  rows parental

0.105.05.000

0.15.05.000

0.15.05.00

0.15.05.0

0.15.0

0.1






































 









 P

2

1
 + I

c2

1=c

 = 
2 generation  row parental

1 generation  rows parental

 

 1.000.50.750.500.25 

 1.00.50.750.500.25 

  1.0 0.50.750.50 

---------------------

    1.0 0.50.75 

---------------------

     1.0 0.5 

      1.0 










































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







 P

2

1
 + I

c3

1=c

 = 

3 generation  row parental

2 generation  row parental

1 generation  rows parental

 

 1.000.50.750.6250.625 

 1.00.50.750.6250.625 

------------------------

  1.0 0.5 0.750.625 

---------------------

    1.0  0.5 0.75 

---------------------

      1.0 0.5

      1.0 

















































 









 P

2

1
  + I

c4

1=c

 = 

3 generation  row parental

2 generation  row parental

1 generation  rows parental

 

 1.000.50.750.6250.6875 

 1.00.50.750.6250.6875 

-------------------------

  1.0 0.5 0.75 0.625 

------------------------

    1.0  0.5  0.75 

------------------------

      1.0   0.5 

        1.0 

















































 

 

Generalizing: 

(1) The ith row of  T = 











P
2

1
I 

1

 is equal to the sum of the ith rows of  I, P
2

1
, 








P

2

1
2

, ..., 









P

2

1
m

, i.e.,  ith row of T is equal to the sum of the ith rows of  I, P
2

1
, 








P

2

1
2

, ..., 







P

2

1
m

.  
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However, the ith row of  T is also equal to the sum of the ith rows of I, P
2

1
, 








P

2

1
2

, ..., 









P

2

1
mi

, where  mi  (mi ≤ m) is the number of generations separating animal i from its oldest 

known ancestor. 

(2) The parental rows of P
2

1
  I   are the same as the corresponding ones of 

  ,    ,P
2

1
 + P

2

1
 + P

2

1
 + I  , P

2

1
 + P

2

1
 + I

322

























 and of 

T    P
2

1
 +  + P

2

1
 + P

2

1
 + P

2

1
 + I 

m32

























 .   

Similarly, the parental rows of 







P

2

1
 + P

2

1
 + I

2

are the same as the corresponding ones of 

















P

2

1
 + P

2

1
 + P

2

1
 + I

32

, ..., and T; etc.  The reason for it is that the differences that exist between 

   







 P

2

1
  + I

c1_j

1=c

  and  







 P

2

1
  + I

cj

1=c

 

are related to accounting for the passage of alleles, from ancestors c generations removed form 

each animal, to these same individuals.  For instance, if c = 3, the difference between 







 P

2

1
  + I

c2

1=c

 

and 







 P

2

1
  + I

c3

1=c

, are the elements of 







P

2

1
3

 which reflect the passage of alleles from great-

grandparents to great-grandprogeny.  Thus, rows of animals with unknown ancestors from the cth 

generation backwards remain unchanged, i.e., when the passage of alleles from all known 
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ancestors of an animal has been explained, its row will not change anymore.  These fixed rows are 

called parental rows if these animals have progeny.  In particular, notice that: 

   












































































 P

2

1
   + I

  

 of rows parental  the

    

P
2

1
   + I

  

 of rows parental  the

cm

1=c

cm

1=c

i1_i

 

because the animals from the last generation have not become parents yet. 

(3) The ith row of T is a linear function of the rows of the parents of animals i, i.e., 

 ith row of 




















  P

2

1
   + I 

cm

1=c

i

 = ith row of 































   P

2

1
   _ I    P

2

1
 + I 

cm

1=c

1_i

 

         = 1 on diag +



















 P

2

1
   + I ’p

2

1
cm

1=c

i

1_i

 

where 

 pi = ith row of P, it has at most two non-zero elements:  a 1 on the column corresponding 

to the sire of animal i (s) and another 1 on the column of the dam of animal i (d), i.e., 

     pi = [0 ... 010 ... 010 ... 0] 

                  
            s       d 

(4) Because T contains all the parental rows and the row for an animal is a linear function of the 

rows of its parents, a recursive procedure to compute T can be outlined as follows: 

 (i) Order animals such that parents precede progeny, numbering them from 1 (oldest) to n 

(youngest). 

  (ii) Compute the elements of T = {tij}, one row or one column at a time, as follows: 
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   (a) tij =   i < jfor   t
2

1
 + t

2

1
j , dj , s ii

  if si and di are known, 

     =   i < jfor   t
2

1
j , si

    if si is known only, 

     =   i < jfor   t
2

1
j , di

    if di is known only, 

     =   i < jfor   0      if neither si nor di is known, 

     = i > jfor   0  

   (b) tii = 1 

The matrix GAX, written in terms of T, is: 

  GAX = T D T 

Because D is diagonal and positive, D = D2 D2.  Thus, 

  GAX  =  T D2 D2 T 

  GAX  = CC 

where 

  C  =  T D2 

  C  =  Cholesky decomposition of GAX 

The elements of C can be computed recursively, using the procedure to compute T, as follows: 

(i) cij = d  t 2
1

jjij  

  =   i < jfor   d  t   + t  
2

1
2

1

iiii jjj , ddj , ss   

where 

   ds ii
   = 1 if si (di) > 0 
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    = 0 if si (di) = 0 

(ii) cii = d 2
1

ii  

 cii
2 = dii  

 cii
2 =          



































 


i

icd

i

i

i

ics

ii

i

cd

2

AX

n

1c

cdd

2

AX

d

cs

2

AX

n

1c

css

2

AX

s

i

2

AX F
4

F
4

 

 cii
2 =  

ii

i

ii dd

d

ss
is

i

2

AX g 
4

  g 
4

  





  

But 

 GAX = CC 

 c     g 2
k,s

s

1=k

ss i

i

ii   

 c     g 2
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




  

 to compute the dii = cii
2 we only need the squares of the diagonal elements of Cholesky matrix 

C.  Also, computations can proceed one column at a time.  Consequently, the matrix C does not 

need to be stored to compute the gii. 

The computational procedure to obtain the gii, proceeding one column at a time (Elzo, 1990), 

is as follows: 

[1] Define: 

u = vector of sums of squares of the elements of a row of C 

v = vector containing the diagonal elements of C and work vector (used to store 



Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2012, 2014. [14M-34] 
 

offdiagonal elements of C temporarily) 

[2] Order animals so that parents precede progeny and number them from 1 to n.  Set the numbers 

of unknown parents to zero. 

[3] For the ith round (i.e., the ith animal) compute: 

 (a)  vi = cii  

    =    







 u + u

4

1
  dsi

2

AX ii

2
1

  if si, di > 0 

    =   







 u

4

1
  si

2

AX i

2
1

    if si > 0, di = 0 

    =   







 u

4

1
  di

2

AX i

2
1

    if si = 0, di > 0 

    =    2
1

i

2

AX       if si = di = 0 

 (b)  vj = c ji    for j = i + 1, ... , n 

    = v
2

1
 + v

2

1
ds jj

     if i  sj, dj 

    = v
2

1
s j

       if dj < i  sj 

    = v
2

1
d j

       if sj < i  dj 

    = 0        if sj, dj < i 

 (c)  uj = uj + (vj)
2 for j = i, ... , n 

 (d)  dii
B1 = (vi)B

2 

[4] Compute and sum the contributions of the ith animal to GAX
 B1 using the multibreed recursive 

rules.  If the matrix is too big to be kept in core, use a linked-list subroutine to sum and store 
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only the non-zero elements of GAX
B1. 

[5] Repeat steps [3] and [4] until the last animal is processed, i.e., do steps [3] and [4] for i = 1, ... , 

n. 

[6] If matrix GAX
B1 is to be stored on disk or type, copy the non-zero elements accompanied by 

their row and column numbers. 

 

References 

Falconer, D. S.  1981.  Introduction to Quantitative Genetics.  2nd Ed., Longman, Inc., New York.  

Henderson, C. R. 1976.  A simple method for computing the inverse of a large numerator 

relationship matrix used in prediction of breeding values.  Biometrics 32:69-83. 

Elzo, M. A.  1990.  Recursive procedures to compute the inverse of the multiple trait additive 

genetic covariance matrix in inbred and noninbred multibreed populations.  J. Anim. Sci. 

68:1215-1228. 

Elzo, M. A.  1996.  Animal Breeding Notes.  University of Florida, Gainesville, Florida, USA. 

Quaas, R. L. 1975.  From Mendel's laws to the A inverse.  Mimeograph, Cornell University, p 16. 

Quaas, R. L. 1976.  Computing the diagonal elements and inverse of a large numerator relationship 

matrix.  Biometrics 32:949-953. 

Quaas, R. L. 1986. Personal Communication.  Animal Science 720.  Cornell University, Ithaca, 

NY. 


