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ANIMAL BREEDING NOTES 

CHAPTER 16M 

MULTIBREED ANIMAL MODEL 

 

Multibreed Animal Model (MAM) 

Objective:  to predict additive genetic effects (AMBV), nonadditive genetic effects (NMBV), and 

total genetic effects (TMBV) of animals based on their own records and records of their relatives in 

a multibreed population. 

Assumptions 

1) Animals belong to a multibreed population, i.e., a population composed of purebred and 

crossbred animals that interbreed; 

2)  Animals may have 1 or more records; 

3) Nonadditive genetic effects are explained in terms of intrabreed and interbreed interaction 

effects at 1 or more loci that are modeled as independent regression effects; 

4) Multibreed additive genetic variances and covariances among records are linear 

combinations of  intrabreed and interbreed additive genetic variances and covariances; 

5) Multibreed nonadditive genetic variances and covariances among records are linear 

combinations of  intrabreed and interbreed nonadditive genetic variances and covariances; 

6) Multibreed environmental variances and covariances among records are linear combinations 

of  intrabreed and interbreed environmental variances and covariances; and  

7) There is either no selection in the population, or: 

a. If selection occurred based on records, selection was within fixed effects, and 

b. If selection occurred based on AMBV, the relationship matrix was complete. 
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The MAM is: 

    y = Xb + ZaQa ga + ZnQn gn + Za aa + Zn an + e 

   E[y] = Xb + ZaQa ga + ZnQn gn 
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  var(y)  = ZaGaZa
’
+ ZnGnZn

’
+ R, 

where 

 y = vector of animal records, 

 b = vector of unknown fixed effects (e.g., contemporary groups, sex of calf, age of dam), 

 ga = vector of unknown additive group genetic effects (e.g., breed, breed × year of birth),   

gn = vector of unknown nonadditive group genetic effects (e.g., heterosis at 1 locus, heterosis 

at  2 loci), 

aa = vector of unknown random additive genetic effects (AMBV),  

an = vector of unknown random nonadditive genetic effects (NMBV), 

 e = vector of unknown random residual effects, 

 X = known incidence matrix relating records to fixed effects in vector b, 

 Za = known incidence matrix relating records to elements of vector aa,  

 Zn = known incidence matrix relating records to elements of vector an, 

Qa = known incidence matrix relating random additive genetic effects to additive genetic 

groups in vector ga, 

Qn = known incidence matrix relating random nonadditive genetic effects to nonadditive 

genetic groups in vector gn, 
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 Ga = {gij}, where gij = multibreed additive genetic covariance between animals i and j, 

Gn = diag{Am*σnm
2
, m = 1,..., Nm}, where Am is the matrix of probabilities that pairs of 

animals received the same alleles at m loci, and σnm
2
 is the variance of interaction 

effects among alleles at m loci.  If m = 1, then Gn = A*σn1
2
, where A = matrix of 

additive relationships and σn1
2
 = variance of intralocus interaction effects (intrabreed 

and interbreed).  Further, if only interbreed intralocus effects are included in the model, 

then σn1
2
 = variance of intralocus interbreed interaction effects = variance of random 

heterosis effects, 

R = diag {σei
2
}, where σei

2
 = multibreed residual variance for animal i.  The multibreed 

residual variance is allowed to vary among animals of different breed composition due 

to environmental and nonadditive genetic effects not included in the multibreed model.  

If animals of all breed compositions are assumed to be similarly affected by 

environmental effects, and residual nonadditive genetic effects are assumed to be equal 

across breed compositions, then R = I * σe
2
, where σe

2
 = residual variance common to 

all animals in a multibreed population. 

The mixed model equations (MME) for the MAM are: 
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Example 1 of the MAM for a Non-inbred Multibreed Population 

Animal Breed 

Composn 

Sex Weaning 

weight 

(kg) 

Sire Breed 

Composn 

Dam Breed 

Composn 

1 A M 289 0 A 0 A 

2 B F 245 0 B 0 B 

3 ½ A ½ B F 256 0 A 2 B 

4 ½ A ½ B F 261 1 A 0 B 

5 ½ A ½ B M 292 1 A 2 B 

6 ¾ A ¼ B M 286 1 A 3 ½ A ½ B 

 

Assumptions for the Example 

1) Additive genetic variances: 

Intrabreed additive genetic variance for breed A = aAA
2
 = 36 kg

2 

Intrabreed additive genetic variance for breed B = aBB
2
 = 9 kg

2
 

Interbreed additive genetic variance for combination of breeds AB = aAB
2
 = 4 kg

2
 

2) Nonadditive genetic variances due to sire × breed group of dam interaction effects = 

nonadditive genetic variances due to dam × breed group of sire interaction effects.   Variation 

from nonadditive effects due to sire × dam intra and interbreed interaction effects are assumed to 

be part of the residual variance. 

Intrabreed nonadditive genetic variance for breed A = nAA
2
 = 4 kg

2
 

Intrabreed nonadditive genetic variance for breed B = nBB
2
= 9 kg

2
 

Interbreed nonadditive genetic variance for combination of breeds AB = nAB
2
 = 16 kg

2
 

Simplifying assumption: only intralocus interbreed sire × breed group of dam and dam × breed 

group of sire interaction effects (i.e., sire and dam random heterosis effects) are important.  
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Intralocus intrabreed AA and BB nonadditive effects and interactions among alleles at 2 or more 

loci due to sire × breed group of dam and dam × breed group of sire interactions are assumed to be 

contained in the residual. Thus, only intralocus interbreed interactions will be fitted in the model 

for the example.  Consequently, only nAB
2
 = 16 kg

2
 will be needed. 

3) Environmental variances: 

Environmental variance for breed A = eAA
2
 = 49 kg

2
 

Environmental variance for breed B = eBB
2
 = 16 kg

2
 

Environmental variance for combination of breeds AB = eAB
2
 = 25 kg

2
 

4) Environmental covariances among records of different animals are zero. 

 

Multibreed Animal Model for the Example 

 Wean wt = overall mean + breed regression + heterosis regression + sex  

+ animal additive genetic + animal nonadditive genetic regression 

+ residual 

 E [Wean wt] = overall mean + breed regression + heterosis regression + sex 

 Var (Wean wt) = var (animal additive genetic) + var (animal nonadditive genetic regression) 

+ var (residual) 

 cov(Wean wtik, Wean wti’k’) = cov (animal additive genetici, animal additive genetici’)  

+ cov (animal nonadditive genetici, animal nonadditive 

genetici’) + cov (residualik, residuali’k’) 

The vectors and matrices of the MAM model are: 
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Multibreed Additive Genetic Variances 

Multibreed additive genetic variances are computed by conditioning them on breed of origin of 

alleles using the expression: 

 σat
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where a = additive genetic, t = trait, superscripts i = individual, s = sire, and d = dam, subscripts 

b and b represent two breeds, and 

  nb  = number of breeds, 

  pb
x
  = expected fraction of breed b in animal x, x = i, s, d, 

 (σat
2
)b  = additive intrabreed genetic variance for trait t in breed b, 

(σat
2
)bb  = additive interbreed genetic variance for trait t in pair of breeds b and b (non- 
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  zero only when one or both parents are crossbreds). 

The multibreed additive genetic variances for the 6 animals in the example are: 

 Animal 

 Number Breed Group Multibreed Additive Genetic Variance 

Parents 1 A 36 

 2 B 9 

 3 ½ A ½ B ½ (36) + ½ (9) = 22.5 

Non-parents 4 ½ A ½ B ½ (36) + ½ (9) = 22.5 

 5 ½ A ½ B ½ (36) + ½ (9) = 22.5 

 6 ¾ A ¼ B ¾ (36) + ¼ (9) + [(1)(0) + (½)(½)](4) = 30.25 

 

Inverse of the Multibreed Additive Genetic Covariance Matrix 

The equation for the inverse of the covariance matrix of multibreed additive genetic effects, Ga
-1

, is: 

  Ga
B1

 = (I B 2 P) Da
B1

 (I B 2 P) 

where 

  I = identity matrix, 

P = matrix that relates animals to their sires and dams; each row of P contains up to 2 

nonzero elements: a 1 for the sire and a 1 for the dam of an animal, 

  Da = diagonal matrix of residual additive genetic variances. 

The diagonal elements of the Da
-1

 matrix are computed using the expression: 
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where Fcs and Fcd are the coefficients of inbreeding of common ancestors of the sire and the dam of 

animal i, and δs = 1 if the sire is known, else δs = 0, and δd = 1 if the dam is known, else δd = 0.   
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In non-inbred multibreed populations, the Fcs and Fcd are equal to zero.  Thus, the expression for 

daii
-1

 simplifies to: 

1

aiid        1

d

2
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1

s

2
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1

i

2

at
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Thus, the daii
-1

 for the six animals in the example, computed using the formula for a non-inbred 

multibreed population, are: 

 Animal 

 Number Breed Group daii
-1 

Parents 1 A (36)
-1 

 2 B (9)
-1

 

 3 ½ A ½ B [22.5 – ¼ (9)]
-1

 = (20.25)
-1 

Non-parents 4 ½ A ½ B [22.5 – ¼ (36) ]
-1

  = (13.5)
-1

 

 5 ½ A ½ B [22.5 – ¼ (36) – ¼ (9) ]
-1

  = (11.25)
-1

 

 6 ¾ A ¼ B [30.25 – ¼ (36) – ¼ (20.25) ]
-1

  = (15.1875)
-1

 

 

The P matrix is: 

P = 
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The inverse of the multibreed additive genetic covariance matrix, in terms of parental and non-

parental terms, is :  

Ga
B1

 = Da
B1
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The rules used to compute the elements of Ga
B1

 are : 

1) Add  daii
-1

 to i × i, 

2) Add  –½ daii
-1

 to i × s and s × i if the sire of animal i is identified, 

3) Add  –½ daii
-1

 to i × d and d × i if the dam of animal i is identified, and  

4) Add  ¼ daii
-1

 to s × s, s × d, d × s, and d × d if the sire and dam of animal i are identified. 

Thus, 

 ga
11

   = (36)
-1

 + ¼ (13.5)
-1

 + ¼ (11.25)
-1 

+ ¼ (16.1875)
-1

 = 0.084 
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 ga
 12

  = ¼ (11.25)
-1

 = 0.022 

 ga
 13

  = ¼ (16.1875)
-1

 = 0.015 

 ga
 14

  = B ½ (13.5)
-1

 = -0.037 

 ga
 15

  = B ½ (11.25)
-1

 = -0.044
 

 ga
 16

  = B ½ (16.1875)
-1

 = -0.031 

 ga
 22

  = (9)
-1

 + ¼ (20.25)
-1

 + ¼ (11.25)
-1 

 = 0.146 

ga
 23

  = B ½ (20.25)
-1

 = -0.025 

 ga
 25

  = B ½ (11.25)
-1

 = -0.044
 

 ga
 33

  = (20.25)
-1

 + ¼ (16.1875)
-1

 = 0.065 

 ga
 36

  = B ½ (16.1875)
-1

 = -0.031  

 ga
 44

  = (13.5)
-1

 = 0.074 

 ga
 55

  = (11.25)
-1

 = 0.089
 

 ga
 66

  = (16.1875)
-1

 = 0.062 

Consequently, Ga
 B1

 is equal to : 
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Multibreed Nonadditive Genetic Variances 

Multibreed nonadditive genetic variances in a regression model that accounts for sire × breed group 

of dam and dam × breed group of sire interaction effects are equal to the intrabreed and interbreed 
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interaction variances at 1 or more loci.  Nonadditive genetic regression effects are independent 

of each other.  For example, if 2 nonadditive genetic effects (e.g., intrabreed AA and interbreed 

AB) were fitted in a model, the matrix of multibreed nonadditive genetic variances would be block 

diagonal, i.e., Gn = diag{GnAA, GnAB}.   However, only a single random nonadditive genetic effect:  

intralocus interbreed interaction will be fitted here.  Under this assumption, Gn = GnAB, and the only 

nonadditive genetic variance needed for the example here is the  variance of intralocus interbreed 

interaction effects, nAB
2
 = 16 kg

2
.   

 

Thus, the multibreed nonadditive genetic variances for the 6 animals in the example is: 

 

 Animal 

 Number Breed Group Multibreed Nonadditive Genetic Variance 

Parents 1 A 16 

 2 B 16 

 3 ½ A ½ B 16 

Non-parents 4 ½ A ½ B 16 

 5 ½ A ½ B 16 

 6 ¾ A ¼ B 16 

 

Inverse of the Multibreed Nonadditive Genetic Covariance Matrix 

Covariances among sire × breed group of dam and dam × breed group of sire interaction effects are 

assumed to be caused by similarities among sires and(or) dams due to common ancestry.  Thus, the 

equation for the inverse of the covariance matrix of multibreed nonadditive genetic effects due to 

intralocus interbreed sire × breed group of dam interaction and dam × breed group of sire interaction 

effects, Gn
-1

, is: 

  Gn
B1

 = (I B 2 P) Dn
-1

 (I B 2 P) 
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where 

  I  = identity matrix, 

P = matrix that relates animals to their sires and dams; each row of P contains up to 2 

nonzero elements: a 1 for the sire and a 1 for the dam of an animal, 

  Dn  = diagonal matrix of residual nonadditive genetic variances. 

The diagonal elements of the Dn
-1

 matrix are computed using the expression: 

1

niid       12

nABdd4
1

ss4
1 *F1F11


  

where Fs and Fd are the coefficients of inbreeding of the sire and the dam of animal i, and δs = 1 if 

the sire is known, else δs = 0, and δd = 1 if the dam is known, else δd = 0.   

In non-inbred multibreed populations the Fs and Fd are equal to zero, thus the expression for dnii
-1

 

simplifies to: 

1

niid    12

nABd4
1

s4
1 *1


  

The diagonal elements of the Dn
-1

 matrix are: 

 

 Animal 

 Number Breed Group dnii
 -1

 

Parents 1 A [(1)*(16)]
-1

 = (16)
-1 

 2 B [(1)*(16)]
-1

 = (16)
-1

 

 3 ½ A ½ B [(1– ¼) (16)]
-1

 = (12)
-1 

Non-parents 4 ½ A ½ B [(1– ¼) (16)]
-1

 = (12)
-1

 

 5 ½ A ½ B [(1– ¼ – ¼) (16)]
-1

 = (8)
-1

 

 6 ¾ A ¼ B [(1– ¼ – ¼) (16)]
-1

 = (8)
-1

 

 

The P matrix is: 
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P = 
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The inverse of the multibreed nonadditive genetic covariance matrix is : 

Gn
B1

 = Dn
B1

 B 2 Dn
B1

 P B 2 P Dn
B1

 + 3 P Dn
B1

 P 

Gn
 B1

 = 

nonparents

parents

g00|g0g

0g0|0gg

00g|00g

|

g00|ggg

0g0|ggg

ggg|ggg

66

n

36

n

16

n

55

n

25

n

15

n

44

n

14

n
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n
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n
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n

13

n
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n

23

n

22

n

12

n

16

n

15

n

14

n

13

n

12

n

11

n



































  

     parents    non-parents 

The rules used to compute the elements of matrix Gn
-1 

for intralocus interaction effects are: 
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1) Add  dnii
-1

 to i × i, 

2) Add  –½ dnii
-1

 to i × s and s × i if the sire of animal i is identified, 

3) Add  –½ dnii
-1

 to i × d and d × i if the dam of animal i is identified, and  

4) Add  ¼ dnii
-1

 to s × s, s × d, d × s, and d × d if the sire and dam of animal i are identified. 

Thus, 

 gn
11

   = (16)
-1

 + ¼ (12)
-1

 + ¼ (8)
-1 

+ ¼ (8)
-1

 = 0.146 

 gn
 12

  = ¼ (8)
-1

 = 0.031 

 gn
 13

  = ¼ (8)
-1

 = 0.031 

 gn
 14

  = B ½ (12)
-1

 = -0.042 

 gn
 15

  = B ½ (8)
-1

 = -0.063
 

 gn
 16

  = B ½ (8)
-1

 = -0.063 

 gn
 22

  = (16)
-1

 + ¼ (12)
-1

 + ¼ (8)
-1 

 = 0.115 

 gn
 23

  = B ½ (12)
-1

 = -0.042 

 gn
 25

  = B ½ (8)
-1

 = -0.063
 

 gn
 33

  = (12)
-1

 + ¼ (8)
-1

 = 0.115 

 gn
 36

  = B ½ (8)
-1

 = -0.063 

 gn
 44

  = (12)
-1

 = 0.083 

 gn
 55

  = (8)
-1

 = 0.125
 

 gn
 66

  = (8)
-1

 = 0.125 

 

Thus, Gn
 B1

 is equal to : 
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Gn
 B1

 = 











































125.000063.00063.0

0125.000063.0063.0

00083.00042.0042.0

063.000115.0042.0031.0

0063.00042.0115.0031.0

063.0063.0042.0031.0031.0146.0

 

 

Multibreed Environmental Variances 

Multibreed environmental variances are also computed by conditioning them on breeds of origin.  

Thus, they are obtained using the expression:  

 σet
2
 =    

'bb

2

et

n

b'b

d

'b

d

b

s

'b

s

b

n

1b

1n

1b
b

2

et

i

b

bb b

)pppp(p   






 

where e = environmental, t = trait, superscripts i = individual, s = sire, and d = dam, subscripts b 

and b represent two breeds, and 

  nb  = number of breeds, 

  pb
x
  = expected fraction of breed b in animal x, x = i, s, d, 

 (σet
2
)b  = intrabreed environmental variance for trait t for breed b, 

(σet
2
)bb = interbreed environmental variance for trait t for the pair of breeds b and b 

(non-zero only when one or both parents are crossbreds). 

 

  



Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014. [16M - 16] 
 

The multibreed environmental variances for the 6 animals in the example are: 

 Animal 

 Number Breed Group Multibreed Environmental Variance 

Parents 1 A 49 

 2 B 16 

 3 ½ A ½ B ½ (49) + ½ (16) = 32.5 

Non-parents 4 ½ A ½ B ½ (49) + ½ (16) = 32.5 

 5 ½ A ½ B ½ (49) + ½ (16) = 32.5 

 6 ¾ A ¼ B ¾ (49) + ¼ (16) + [(1)(0) + (½)(½)](25) = 47.0 

 

The mixed model equations are now constructed with the contributions of each animal to the effects 

in the model.  The resulting left-hand side and right-hand side of the mixed model equations, as well 

as the vector of unknowns for the MAM in Example 1 are as follows.  
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The left hand side of the MME_MAM for Example 1 is: 

lhs 

0.196 0.083 0.114 0.103 0.072 0.124 0.020 0.063 0.031 0.031 0.031 0.021 0.072 0.062 0.011 0.000 0.000 0.000 

0.083 0.055 0.027 0.054 0.052 0.031 0.020 0.000 0.015 0.015 0.015 0.016 0.039 0.031 0.008 0.000 0.000 0.000 

0.114 0.027 0.087 0.049 0.021 0.093 0.000 0.063 0.015 0.015 0.015 0.005 0.033 0.031 0.003 0.000 0.000 0.000 

0.103 0.054 0.049 0.098 0.041 0.062 0.000 0.000 0.031 0.031 0.031 0.011 0.067 0.062 0.005 0.000 0.000 0.000 

0.072 0.052 0.021 0.041 0.072 0.000 0.020 0.000 0.000 0.000 0.031 0.021 0.041 0.031 0.011 0.000 0.000 0.000 

0.124 0.031 0.093 0.062 0.000 0.124 0.000 0.063 0.031 0.031 0.000 0.000 0.031 0.031 0.000 0.000 0.000 0.000 

0.020 0.020 0.000 0.000 0.020 0.000 0.104 0.022 0.015 -0.037 -0.044 -0.031 0.000 0.000 0.000 0.000 0.000 0.000 

0.063 0.000 0.063 0.000 0.000 0.063 0.022 0.208 -0.025 0.000 -0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.031 0.015 0.015 0.031 0.000 0.031 0.015 -0.025 0.096 0.000 0.000 -0.031 0.000 0.031 0.000 0.000 0.000 0.000 

0.031 0.015 0.015 0.031 0.000 0.031 -0.037 0.000 0.000 0.105 0.000 0.000 0.031 0.000 0.000 0.000 0.000 0.000 

0.031 0.015 0.015 0.031 0.031 0.000 -0.044 -0.044 0.000 0.000 0.120 0.000 0.031 0.031 0.000 0.000 0.000 0.000 

0.021 0.016 0.005 0.011 0.021 0.000 -0.031 0.000 -0.031 0.000 0.000 0.083 0.011 0.000 0.011 0.000 0.000 0.000 

0.072 0.039 0.033 0.067 0.041 0.031 0.000 0.000 0.000 0.031 0.031 0.011 0.213 0.062 0.037 -0.042 -0.063 -0.063 

0.062 0.031 0.031 0.062 0.031 0.031 0.000 0.000 0.031 0.000 0.031 0.000 0.062 0.176 -0.042 0.000 -0.063 0.000 

0.011 0.008 0.003 0.005 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.037 -0.042 0.120 0.000 0.000 -0.063 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.042 0.000 0.000 0.083 0.000 0.000 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.063 -0.063 0.000 0.000 0.125 0.000 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.063 0.000 -0.063 0.000 0.000 0.125 
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The vector of effects and the right hand side (RHS) of the MME_MAM for Example 1 are: 

 Effect RHS 

Mean 52.19 

BreedA 22.91 

BreedB 29.28 

HeterosisAB 27.93 

SexM 20.97 

SexF 31.22 

aa1 5.90 

aa2 15.31 

aa3 7.88 

aa4 8.03 

aa5 8.98 

aa6 6.09 

an1 20.06 

an2 16.86 

an3 3.04 

an4 0.00 

an5 0.00 

an6 0.00 
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Remarks: 

1) The rank of the left hand side matrix of the MME  is 16. 

2) Differences between breed effects, heterosis, and differences between sex effects are 

estimable. 

3) The set of MME_MAM can be solved directly by: 

a. Obtaining the generalized inverse of the left hand side (ginvlhs) and multiplying it by 

the right hand side (rhs), i.e., 

sol  = ginvlhs * rhs 

b. Imposing restrictions on the solutions.  The number of equations in Example 1 is 18 and 

the rank of the left hand side of the MME_MAM is 16, thus 2 restrictions need to be 

imposed to obtain solutions.  These 2 restrictions could be: 

i. Set the solution of the mean to zero, and 

ii. Set the solution for breed B to zero.  This restriction is useful because the 

expectation of the solution for breed A estimates the difference between the effects 

of breed A and breed B.  Thus, breed B can be used as the genetic base of 

comparison for additive multibreed genetic effects. 

4) Fixed heterosis effects here are an estimate of the difference between the interbreed (AB and 

BA) interaction effects relative to the average of intrabreed interaction effects (AA and BB).  

Thus, fixed heterosis effects can be used as the genetic base of comparison for nonadditive 

multibreed genetic effects. 
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The vector of solutions (SOL; obtained without imposing restrictions on the solutions), and the 

standard error of solutions (SESOL; computed as the square root of the diagonals of the 

generalized inverse of the left hand side of the MME_MAM) are: 

Effect SOL SESOL 

Mean° 133.04 2.47 

BreedA° 71.47 7.13 

BreedB° 61.57 6.26 

HeterosisAB° 8.44 7.21 

SexM° 82.50 4.34 

SexF° 50.54 4.33 

âa1 0.96 5.75 

âa2 -0.14 2.98 

âa3 -1.15 4.27 

âa4 0.91 4.34 

âa5 0.65 4.61 

âa6 -0.79 5.29 

ân1 0.51 3.77 

ân2 -0.34 3.73 

ân3 -0.43 3.93 

ân4 0.26 3.94 

ân5 0.09 3.99 

ân6 0.04 3.98 



Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014. [16M - 21] 
 

Additive Multibreed Genetic Predictions 

The AMBV computed as deviations from breed B (chosen as genetic base) are: 

AMBVi  =  ûai  =  ProbAanim i*(BreedA° - BreedB°) + âai 

where 

  ProbAanim i = expected fraction of breed A in animal i, 

  BreedA° = generalized least squares solution for breed A, 

  BreedB° = generalized least squares solution for breed B, and 

  âai   = BLUP solution for aai. 

The matrix of variances and covariances of errors of prediction (VEP) for the vector of AMBV 

is: 

VEP(AMBV)  =  var(ûa - ua)  =  Ka*(ginvlhs)*Ka’ 

where 

Ka = nanim × neq  matrix specifying the factors multiplying the components of the AMBV, 

where nanim = number of animals, and neq = number of equations, and 

ginvlhs  = neq × neq generalized inverse matrix of the left hand side of the MME. 

Matrix Ka for MAM Example 1 is: 

 

KA 

0.00 1.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.50 -0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.50 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.50 -0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.75 -0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
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The standard errors of prediction (SEP) of the AMBV are computed as the square roots of the 

diagonal elements of the VEP(AMBV) matrix. 

The AMBV and their SEP for the 6 animals in Example 1 are: 

Animal ProbAanim 

BreedA° - 

BreedB° 

âadd AMBV 
SEP 

AMBV 

1 1 9.99 0.96 10.86 12.54 

2 0 9.99 -0.14 -0.14 2.98 

3 0.5 9.99 -1.15 3.80 7.39 

4 0.5 9.99 0.91 5.86 6.68 

5 0.5 9.99 0.65 5.60 8.30 

6 0.75 9.99 -0.79 6.64 10.08 

 

 

Nonadditive Multibreed Genetic Predictions 

The NMBV computed assuming that males are  mated to ½ A ½ B females, and vice versa, are: 

NMBVi  =  ûni =  (ProbAanim i*ProbBmate + ProbBanim i*ProbAmate)(HeterosisAB° + âni) 

where 

  ProbAanim i  = expected fraction of breed A in animal i, 

  ProbBanim i  = expected fraction of breed B in animal i, 

  ProbAmate  = expected fraction of breed A in the mate of animal i, 

  ProbBmate  = expected fraction of breed B in the mate of animal i, 

HeterosisAB °    = generalized least squares solution for the heterosis due to interaction 

between alleles of breeds A and B in 1 locus, 
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  âni    = BLUP solution for ani. 

The matrix of variances and covariances of errors of prediction (VEP) for the vector of NMBV is: 

VEP(NMBV) = var(ûn – un)  = Kn*(ginvlhs)*Kn’ 

where 

Kn = nanim × neq  matrix specifying the factors multiplying the components of the 

NMBV, where nanim = number of animals, and neq = number of equations, and 

 ginvlhs  = neq × neq generalized inverse matrix of the left hand side of the MME_MAM. 

 

Matrix Kn for MAM Example 1 is: 

KN 

0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 

0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 

0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 

0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 

 

The standard errors of prediction (SEP) of the NMBV are computed as the square roots of the 

diagonal elements of the VEP(NMBV) matrix. 
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The NMBV and their SEP for the 6 animals in MAM Example 1 are: 

Animal 

ProbAanim*ProbBmate 

+ 

ProbBanim*ProbAmate 

HeterosisAB° ânadd NMBV 
SEP 

NMBV 

1 1*0.5 + 0*0.5 8.44 0.51 4.48 3.22 

2 0*0.5 + 1*0.5 8.44 -0.34 4.05 3.26 

3 0.5*0.5 + 0.5*0.5 8.44 -0.43 4.01 3.74 

4 0.5*0.5 + 0.5*0.5 8.44 0.26 4.35 3.71 

5 0.5*0.5 + 0.5*0.5 8.44 0.09 4.26 3.31 

6 0.75*0.5 + 0.25*0.5 8.44 0.04 4.24 3.52 

 

Total Multibreed Genetic Predictions 

The TMBV are the sum of AMBV and NMBV, i.e.,  

  TMBVi  = AMBVi + NMBVi  =  ûai + ûni  

The matrix of variances and covariances of errors of prediction (VEP) for the vector of TMBV is: 

VEP(TMBV)  = var(ût – ut) = Kt*(ginvlhs)*Kt’ 

where 

Kt = nanim × neq  matrix specifying the factors multiplying the components of the 

TMBV, where nanim = number of animals, and neq = number of equations, and 

 ginvlhs  = neq × neq generalized inverse matrix of the left hand side of the MME. 
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Matrix Kt for MAM Example 1 is: 

KT 

0.00 1.00 -1.00 0.50 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.50 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 

0.00 0.50 -0.50 0.50 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 

0.00 0.50 -0.50 0.50 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 

0.00 0.50 -0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 

0.00 0.75 -0.75 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.50 

 

The standard errors of prediction (SEP) of the TMBV are computed as the square roots of the 

diagonal elements of the VEP(TMBV) matrix. 

The TMBV and their SEP for the 6 animals in MAM Example 1 are: 

Animal AMBV NMBV TMBV 
SEP 

TMBV 

1 10.86 4.48 15.33 11.82 

2 -0.14 4.05 3.91 4.49 

3 3.80 4.01 7.80 6.70 

4 5.86 4.35 10.21 6.17 

5 5.60 4.26 9.86 7.80 

6 6.64 4.24 10.88 9.44 
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