ANIMAL BREEDING NOTES

CHAPTER 16M EQVE EQVA FXNA
MULTIBREED ANIMAL MODEL WITH EQUAL RESIIDUAL VARIANCES, EQUAL ADDITIVE GENETIC VARIANCES, AND NO RANDOM NONADDITIVE GENETIC

EFFECTS

Multibreed Animal Model with Equal Residual Variances, Equal Additive Genetic Variances, and no random nonadditive genetic effects (MAM_EQVE_EQVA_FXNA)

Objective: to predict additive genetic effects (AMBV), nonadditive genetic effects (NMBV), and total genetic effects (TMBV) of animals based on their own records and records of their relatives in a multibreed population.

Assumptions

1) Animals belong to a multibreed population, i.e., a population composed of purebred and crossbred animals that interbreed;
2) Animals may have 1 or more records;
3) Nonadditive genetic effects are explained in terms of intrabreed and interbreed interaction effects at 1 or more loci that are modeled as independent regression effects. Only fixed nonadditive genetic effects are accounted for in the model. Random nonadditive genetic effects are considered to be part of the residual.
4) Multibreed additive genetic variances and covariances among records are the same for all purebred and crossbred animals;
5) Multibreed environmental variances and covariances among records are the same for all purebred and crossbred animals; and

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
6) There is either no selection in the population, or:
a. if selection occurred based on records, selection was within fixed effects, and
b. if selection occurred based on $\mathbf{A M B V}$, the relationship matrix was complete.

The MAM_EQVE_EQVA_FXNA is:

$$
\begin{aligned}
y & =X b+Z_{a} Q_{a} g_{a}+Z_{n} Q_{n} g_{n}+Z_{a} a_{a}+\varepsilon \\
E[y] & =X b+Z_{a} Q_{a} g_{a}+Z_{n} Q_{n} g_{n} \\
\operatorname{var}\left[\begin{array}{c}
a_{a} \\
\varepsilon
\end{array}\right] & =\left[\begin{array}{cc}
G_{a} & 0 \\
0 & R_{\varepsilon}
\end{array}\right] \\
\Rightarrow \quad \operatorname{var}(y) \quad & =Z_{a} G_{a} Z_{a}+R_{\varepsilon},
\end{aligned}
$$

where
$\mathrm{y}=$ vector of animal records,
$\mathrm{b}=$ vector of unknown fixed effects (e.g., contemporary groups, sex of calf, age of dam),
$g_{a}=$ vector of unknown additive group genetic effects (e.g., breed, breed \times year of birth),
$\mathrm{g}_{\mathrm{n}}=$ vector of unknown nonadditive group genetic effects (e.g., heterosis at 1 locus, heterosis at 2 loci),
$\mathrm{a}_{\mathrm{a}}=$ vector of unknown random additive genetic effects (AMBV),
$\varepsilon=$ vector of unknown random residual effects; residual effects for the
MAM_EQVE_EQVA_FXNA model contain all nonadditive and environmental
effects, i.e., $\varepsilon=Z_{n} u_{n}+e=I_{n} u_{n}+e$, where Z_{n} is assumed to be equal to I_{n},
$\mathrm{X}=$ known incidence matrix relating records to fixed effects in vector b ,
$Z_{a}=$ known incidence matrix relating records to elements of vector a_{a},
$\mathrm{Z}_{\mathrm{n}}=$ known incidence matrix relating records to random nonadditive genetic effects in vector

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
$\mathrm{a}_{\mathrm{n}}\left(\mathrm{a}_{\mathrm{n}}\right.$ is assumed to be part of the residual by the MAM_EQVE_EQVA_FXNA),
$\mathrm{Q}_{\mathrm{a}}=$ known incidence matrix relating random additive genetic effects to additive genetic groups in vector g_{a},
$\mathrm{Q}_{\mathrm{n}}=$ known incidence matrix relating random nonadditive genetic effects to nonadditive genetic groups in vector g_{n},
$G_{a}=A * \sigma_{a}{ }^{2}$, where $A=$ matrix of additive relationships and $\sigma_{a}{ }^{2}=$ additive genetic variance common to all animals (purebred and crossbred) in the multibreed population,
$\mathrm{R}_{\varepsilon}=\mathrm{I}^{*} \sigma_{\varepsilon}^{2}$, where $\sigma_{\varepsilon}^{2}=$ residual variance common to all animals in the multibreed population $=I *\left(\sigma_{\mathrm{n}}{ }^{2}+\sigma_{\mathrm{e}}{ }^{2}\right)$, where $\sigma_{\mathrm{n}}{ }^{2}=$ common nonadditive genetic variance, and $\sigma_{\mathrm{e}}{ }^{2}=$ common environmental variance.

The general mixed model equations (MME) for the multibreed animal model are:

$\mathrm{X}^{\prime} \mathrm{R}^{-1} \mathrm{X}$	$\mathrm{X}^{\prime} \mathrm{R}^{-1} \mathrm{Z}_{2} \mathrm{Q}$	Q	${ }^{1}$	Z	b		$X^{\prime} \mathrm{R}^{-1} \mathrm{y}$
$\mathrm{Q}_{\mathrm{a}}{ }^{\prime} \mathrm{Z}^{\prime}$	$\mathrm{Q}_{\mathrm{a}} \mathrm{Z}_{\mathrm{a}}{ }^{\prime} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}} \mathrm{Q}_{\mathrm{a}}$			$\mathrm{Qa}_{\mathrm{a}} \mathrm{Z}_{\mathrm{a}} \mathrm{R} \mathrm{Z}_{\mathrm{n}}$	g_{a}		$\mathrm{Q}_{\mathrm{a}}{ }^{\prime}$
$\mathrm{Q}_{\mathrm{n}}{ }^{\prime} \mathrm{Z}$	$\mathrm{Q}_{\mathrm{n}}{ }^{\prime} \mathrm{Z}_{\mathrm{n}}{ }^{\prime} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}} \mathrm{Q}^{\prime}$			Z_{n}	g_{n}		$\mathrm{Q}_{\mathrm{n}} \mathrm{Z}_{\mathrm{n}}{ }^{\prime} \mathrm{R}^{-1} \mathrm{y}$
			$\mathrm{Z}_{\mathrm{a}}{ }^{\prime} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}}+\mathrm{G}_{\mathrm{a}}^{-1}$		a_{a}		
$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{X}$	$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}} \mathrm{Q}_{\mathrm{a}}$	$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{n}} \mathrm{Q}_{\mathrm{n}}$	$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}}$	$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{n}}+\mathrm{G}_{\mathrm{n}}^{-1}$			$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{y}$

However, $G_{a}=A * \sigma_{a}^{2}, R=I^{*} \sigma_{\varepsilon}^{2}$, and there are no random nonadditive genetic effects in
MAM_EQVE_EQVA_FXNA. Thus, after deleting the equations for random nonadditive genetic effects, and multiplying both sides by $\sigma_{e}{ }^{2}$, the resulting MME_EQVE_EQVA_FXNA are:

where

$$
\mathrm{G}_{\mathrm{a}}^{-1} * \sigma_{\varepsilon}^{2}=\left(\mathrm{A}^{-1} * \sigma_{\mathrm{a}}^{-2}\right) * \sigma_{\varepsilon}^{2}=\mathrm{A}^{-1} * \frac{\sigma_{\varepsilon}^{2}}{\sigma_{\mathrm{a}}^{2}}
$$

Thus, an equivalent form of the MME_EQVE_EQVA_FXNA is:

Example 1 for the MAM_EQVE_EQVA_FXNA for a Non-inbred Multibreed Population

Animal	Breed Composn	Sex	Weaning weight (kg)	Sire	Breed Composn	Dam	Breed Composn
1	A	M	289	0	A	0	A
2	B	F	245	0	B	0	B
3	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	F	256	0	A	2	B
4	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	F	261	1	A	0	B
5	$1 / 2$ A $1 / 2 \mathrm{~B}$	M	292	1	A	2	B
6	$3 / 4 \mathrm{~A} 1 / 4 \mathrm{~B}$	M	286	1	A	3	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$

Assumptions for the Example

1) Additive genetic variances:

Intrabreed additive genetic variance for breed $A=\sigma_{\mathrm{aAA}}{ }^{2}=36 \mathrm{~kg}^{2}$
Intrabreed additive genetic variance for breed $B=\sigma_{a B B}{ }^{2}=9 \mathrm{~kg}^{2}$
Interbreed additive genetic variance for combination of breeds $\mathrm{AB}=\sigma_{\mathrm{aAB}}{ }^{2}=4 \mathrm{~kg}^{2}$

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
Simplifying assumption: additive genetic variances are the same for all animals (purebred and crossbred).

Common additive genetic variance $=\sigma_{\mathrm{a}}{ }^{2}=36 \mathrm{~kg}^{2}$
2) Nonadditive genetic variances due to sire \times breed group of dam interaction effects $=$ nonadditive genetic variances due to dam \times breed group of dam interaction effects.

Variation from nonadditive effects due to sire \times dam intra and interbreed interaction effects are assumed to be part of the residual variance.

Nonadditive genetic variances:

Intrabreed nonadditive genetic variance for breed $A=\sigma_{n A A}{ }^{2}=4 \mathrm{~kg}^{2}$
Intrabreed nonadditive genetic variance for breed $B=\sigma_{n B B}^{2}=9 \mathrm{~kg}^{2}$
Interbreed nonadditive genetic variance for combination of breeds $\mathrm{AB}=\sigma_{\mathrm{nAB}}{ }^{2}=16 \mathrm{~kg}^{2}$ Simplifying assumption: all nonadditive genetic effects are assumed to be part of the residual. The variance of nonadditive genetic effects is the same for all animals in the multibreed population.

Common nonadditive genetic variance $=\sigma_{\mathrm{n}}{ }^{2}=16 \mathrm{~kg}^{2}$
3) Environmental variances:

Common environmental variance $=\sigma_{\mathrm{e}}{ }^{2}=49 \mathrm{~kg}^{2}$
Residual Variance:
Common residual variance $=\sigma_{\varepsilon}{ }^{2}=\sigma_{\mathrm{n}}{ }^{2}+\sigma_{\mathrm{e}}{ }^{2}=16 \mathrm{~kg}^{2}+49 \mathrm{~kg}^{2}=65 \mathrm{~kg}^{2}$
4) Environmental covariances among records of different animals are zero.

Multibreed Animal Model
Wean wt $=$ overall mean + breed regression + heterosis regression + sex

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.

$$
+ \text { animal additive genetic }+ \text { residual }
$$

$\mathrm{E}[$ Wean wt$]=$ overall mean + breed regression + heterosis regression + sex
$\operatorname{Var}($ Wean $w t)=\operatorname{var}($ animal additive genetic $)+\operatorname{var}($ residual $)$
$\operatorname{cov}\left(\right.$ Wean wt_{i}, Wean $w \mathrm{t}_{\mathrm{i}^{\prime} \mathrm{k}^{\prime}}$) $=\operatorname{cov}$ (animal additive genetic c_{i}, animal additive genetic i_{i})
$+\operatorname{cov}\left(\right.$ residual $_{\mathrm{i}}$, residual $\left._{\mathrm{i}^{\prime} \mathrm{k}^{\prime}}\right)$
The vectors and matrices of the MAM_EQVE_EQVA_FXNA model are:

$\left[\begin{array}{l} 289 \\ 245 \end{array}\right]$	$\left[\begin{array}{c:cc:c:cc}1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\text { mean } \\ \hdashline---.\end{array}\right]$																
			0	0		1		-									animal $2_{\text {add }}$
6			$1 / 2$ 1/2	1		1		breed								0	animal $3_{\text {add }}$
261						1		heterosis ${ }_{\text {AB }}$									
2								sex									
				1/2										0			nimal 6

$+\left[\begin{array}{l}\text { residual }_{\text {anim1 }} \\ \text { residual }_{\text {anim } 2} \\ \hdashline \text { residual }_{\text {anim3 }} \\ \text { residual }_{\text {anim4 }} \\ \text { residual }_{\text {anim }} \\ \text { residual }_{\text {anim6 }}\end{array}\right]$

Multibreed Additive Genetic Variances

Multibreed additive genetic variances are the same for all purebred and crossbred animals. The common additive genetic variance $\left(\sigma_{\mathrm{a}}{ }^{2}\right)$ for all animals in the MAM_EQVE_EQVA_FXNA example is assumed to be equal to $36 \mathrm{~kg}^{2}$. Thus, the multibreed additive genetic variances for the 6 animals in the example are:

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.

	Animal		
	Number	Breed Group	Multibreed Additive Genetic Variance
Parents	1	A	36
	2	B	36
	3	$11 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	36
Non-parents	4	$1 ⁄ 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	36
	5	$11 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	36
	6	$3 / 4 \mathrm{~A} 1 / 4 \mathrm{~B}$	36

Inverse of the Multibreed Additive Genetic Covariance Matrix

The equation for the inverse of the covariance matrix of multibreed additive genetic effects, $\mathrm{G}_{\mathrm{a}}{ }^{-1}$, is:

$$
\mathrm{G}_{\mathrm{a}}^{-1}=\left(\mathrm{I}-1 / 2 \mathrm{P}^{\prime}\right) \mathrm{D}_{\mathrm{a}}^{-1}(\mathrm{I}-1 / 2 \mathrm{P})
$$

where

I = identity matrix,
$P=$ matrix that relates animals to their sires and dams; each row of P contains up to 2 nonzero elements: a 1 for the sire and a 1 for the dam of an animal,
$D_{a}=$ diagonal matrix of residual additive genetic variances.
The diagonal elements of the $\mathrm{D}_{\mathrm{a}}{ }^{-1}$ matrix are computed using the expression:

$$
\mathrm{d}_{\text {aii }}^{-1}=\left[\left(1-1 / 4 \delta_{\mathrm{s}}\left(1+\mathrm{F}_{\mathrm{s}}\right)-1 / 4 \delta_{\mathrm{d}}\left(1+\mathrm{F}_{\mathrm{d}}\right)\right) * \sigma_{\mathrm{a}}^{2}\right]^{-1}
$$

where F_{cs} and F_{cd} are the coefficients of inbreeding of common ancestors of the sire and the dam of animal i , and $\delta_{\mathrm{s}}=1$ if the sire is known, else $\delta_{\mathrm{s}}=0$, and $\delta_{\mathrm{d}}=1$ if the dam is known, else $\delta_{\mathrm{d}}=0$.

In non-inbred multibreed populations the F_{s} and F_{d} are equal to zero. Thus, the expression for $\mathrm{d}_{\text {aii }}$ i ${ }^{1}$ simplifies to:

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.

$$
\mathrm{d}_{\text {aii }}^{-1}=\left[\left(1-1 / 4 \delta_{\mathrm{s}}-1 / 4 \delta_{\mathrm{d}}\right) * \sigma_{\mathrm{a}}^{2}\right]^{-1}
$$

The $\mathrm{d}_{\text {aii }}{ }^{-1}$ for the six animals in the example, computed using the formula for a non-inbred multibreed population, are:

	Animal		
	Number	Breed Group	$\left(\mathbf{d}_{\text {aii }}\right)^{-1}$
Parents	1	A	$\left[(1)^{*}(36)\right]^{-1}=(36)^{-1}$
	2	B	$\left[(1)^{*}(36)\right]^{-1}=(36)^{-1}$
	3	$11 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$[(1-1 / 4)(36)]^{-1}=(27)^{-1}$
Non-parents	4	$11 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$[(1-1 / 4)(36)]^{-1}=(27)^{-1}$
	5	$11 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$[(1-1 / 4-1 / 4)(36)]^{-1}=(18)^{-1}$
	6	$3 / 4 \mathrm{~A} 1 / 4 \mathrm{~B}$	$[(1-1 / 4-1 / 4)(36)]^{-1}=(18)^{-1}$

The P matrix is:
$P=\left[\begin{array}{lllllll}0 & & & & & & \\ 0 & 0 & & & & & \\ 0 & 1 & 0 & \mid & & & \\ - & - & - & \mid & - & - & - \\ 1 & 0 & 0 & \mid & 0 & & \\ 1 & 1 & 0 & \mid & 0 & 0 & \\ 1 & 0 & 1 & \mid & 0 & 0 & 0\end{array}\right]$

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.

The inverse of the multibreed additive genetic covariance matrix, in terms of parental and nonparental terms, is :
$G_{a}{ }^{-1}=D_{a}{ }^{-1}-1 / 2 D_{a}^{-1} P-1 / 2 P^{\prime} D_{a}{ }^{-1}+1 / 4 P^{\prime} D_{a}{ }^{-1} P$
$\mathrm{G}_{\mathrm{a}}{ }^{-1}=\left[\begin{array}{ccccccc}\mathrm{g}_{\mathrm{a}}{ }^{11} & \mathrm{ga}^{12} & \mathrm{~g}_{\mathrm{a}}{ }^{13} & \mid & \mathrm{g}_{\mathrm{a}}{ }^{14} & \mathrm{~g}_{\mathrm{a}}{ }^{15} & \mathrm{~g}_{\mathrm{a}}{ }^{16} \\ \mathrm{~g}_{\mathrm{a}}{ }^{12} & \mathrm{~g}_{\mathrm{a}}{ }^{22} & \mathrm{~g}_{\mathrm{a}}{ }^{23} & \mid & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{25} & 0 \\ \mathrm{~g}_{\mathrm{a}}{ }^{13} & \mathrm{~g}_{\mathrm{a}}{ }^{23} & \mathrm{~g}_{\mathrm{a}}{ }^{33} & \mid & 0 & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{36} \\ - & - & - & - & - & - \\ \mathrm{g}_{\mathrm{a}}{ }^{14} & 0 & 0 & \mid & \mathrm{g}_{\mathrm{a}}{ }^{44} & 0 & 0 \\ \mathrm{~g}_{\mathrm{a}}{ }^{15} & \mathrm{ga}_{\mathrm{a}}{ }^{25} & 0 & \mid & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{55} & 0 \\ \mathrm{~g}_{\mathrm{a}}{ }^{16} & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{36} & \mid & 0 & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{66}\end{array}\right]$ parents

The rules used to compute the elements of $\mathrm{G}_{\mathrm{a}}{ }^{-1}$ are :

1) Add $d_{\text {aii }}{ }^{-1}$ to $\mathrm{i} \times \mathrm{i}$,
2) Add $-1 / 2 d_{\text {aii }}{ }^{-1}$ to $i \times s$ and $s \times i$ if the sire of animal i is identified,
3) Add $-1 / 2 \mathrm{~d}_{\text {aii }}{ }^{-1}$ to $\mathrm{i} \times \mathrm{d}$ and $\mathrm{d} \times \mathrm{i}$ if the dam of animal i is identified, and

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
4) Add $1 / 4 \mathrm{~d}_{\text {aii }}{ }^{-1}$ to $\mathrm{s} \times \mathrm{s}, \mathrm{s} \times \mathrm{d}, \mathrm{d} \times \mathrm{s}$, and $\mathrm{d} \times \mathrm{d}$ if the sire and dam of animal i are identified.

Thus,

$$
\begin{array}{ll}
\mathrm{g}_{\mathrm{a}}{ }^{11} & =(36)^{-1}+1 / 4(27)^{-1}+1 / 4(18)^{-1}+1 / 4(18)^{-1}=0.065 \\
\mathrm{~g}_{\mathrm{a}}{ }^{12} & =1 / 4(18)^{-1}=0.014 \\
\mathrm{~g}_{\mathrm{a}}{ }^{13} & =1 / 4(18)^{-1}=0.014 \\
\mathrm{~g}_{\mathrm{a}}{ }^{14} & =-1 / 2(27)^{-1}=-0.019 \\
\mathrm{~g}_{\mathrm{a}}{ }^{15} & =-1 / 2(18)^{-1}=-0.028 \\
\mathrm{~g}_{\mathrm{a}}{ }^{16} & =-1 / 2(18)^{-1}=-0.028 \\
\mathrm{~g}_{\mathrm{a}}{ }^{22} & =(36)^{-1}+1 / 4(27)^{-1}+1 / 4(18)^{-1}=0.051 \\
\mathrm{~g}_{\mathrm{a}}{ }^{23} & =-1 / 2(27)^{-1}=-0.019 \\
\mathrm{~g}_{\mathrm{a}}{ }^{25} & =-1 / 2(18)^{-1}=-0.028 \\
\mathrm{~g}_{\mathrm{a}}{ }^{33} & =(27)^{-1}+1 / 4(18)^{-1}=0.051 \\
\mathrm{~g}_{\mathrm{a}}{ }^{36} & =-1 / 2(18)^{-1}=-0.028 \\
\mathrm{~g}_{a}{ }^{44} & =(27)^{-1}=0.037 \\
\mathrm{~g}_{a}{ }^{55} & =(18)^{-1}=0.056 \\
\mathrm{~g}_{a}{ }^{66} & =(18)^{-1}=0.056
\end{array}
$$

Thus, $\mathrm{G}_{\mathrm{a}}{ }^{-1}$ is equal to :

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
$\mathrm{G}_{\mathrm{a}}{ }^{-1}=\left[\begin{array}{ccc:ccc}0.065 & 0.014 & 0.014 & -0.019 & -0.028 & -0.028 \\ 0.014 & 0.051 & -0.019 & 0 & -0.028 & 0 \\ 0.014 & -0.019 & 0.051 & 0 & 0 & -0.028 \\ \hdashline-0.019 & 0 & 0 & 0.037 & 0 & 0 \\ -0.028 & -0.028 & 0 & 0 & 0.056 & 0 \\ -0.028 & 0 & -0.028 & 0 & 0 & 0.056\end{array}\right]$

Multibreed Residual Variances

Multibreed residual variances are assumed to be the sum of nonadditive genetic and environmental variances. Multibreed nonadditive genetic variances are assumed to be the same for all purebred and crossbred animals. Similarly, multibreed environmental variances and covariances among records are the same for all purebred and crossbred animals. The common residual variance is assumed to be the sum of the common nonadditive genetic variance $\left(\sigma_{\mathrm{n}}{ }^{2}=16\right.$ kg^{2}) and the common environmental variance $\left(\sigma_{\mathrm{e}}{ }^{2}=49 \mathrm{~kg}^{2}\right.$), i.e., $\sigma_{\varepsilon}{ }^{2}=\sigma_{\mathrm{n}}{ }^{2}+\sigma_{\mathrm{e}}{ }^{2}=16 \mathrm{~kg}^{2}+49 \mathrm{~kg}^{2}$ $=65 \mathrm{~kg}^{2}$.

The multibreed residual variances for the 6 animals in the example are:

	Animal		
	Number	Breed Group	Multibreed Residual Variance
Parents	1	A	65
	2	B	65
	3	$11 / 2$ A $1 / 2 \mathrm{~B}$	65
Non-parents	4	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	65
	5	$11 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	65
	6	$3 / 4 \mathrm{~A} 1 / 4 \mathrm{~B}$	65

The left hand side of the MME_MAM_EQVE_EQVA_FXNA for Example 1 is:

LHS											
6.000	3.250	2.750	3.500	3.000	3.000	1.000	1.000	1.000	1.000	1.000	1.000
3.250	2.313	0.938	1.875	2.250	1.000	1.000	0.000	0.500	0.500	0.500	0.750
2.750	0.938	1.813	1.625	0.750	2.000	0.000	1.000	0.500	0.500	0.500	0.250
3.500	1.875	1.625	3.250	1.500	2.000	0.000	0.000	1.000	1.000	1.000	0.500
3.000	2.250	0.750	1.500	3.000	0.000	1.000	0.000	0.000	0.000	1.000	1.000
3.000	1.000	2.000	2.000	0.000	3.000	0.000	1.000	1.000	1.000	0.000	0.000
1.000	1.000	0.000	0.000	1.000	0.000	5.213	0.903	0.903	-1.204	-1.806	-1.806
1.000	0.000	1.000	0.000	0.000	1.000	0.903	4.310	-1.204	0.000	-1.806	0.000
1.000	0.500	0.500	1.000	0.000	1.000	0.903	-1.204	4.310	0.000	0.000	-1.806
1.000	0.500	0.500	1.000	0.000	1.000	-1.204	0.000	0.000	3.407	0.000	0.000
1.000	0.500	0.500	1.000	1.000	0.000	-1.806	-1.806	0.000	0.000	4.611	0.000
1.000	0.750	0.250	0.500	1.000	0.000	-1.806	0.000	-1.806	0.000	0.000	4.611

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
The vector of effects and the right hand side (RHS) of the MME_MAM_EQVE_EQVA_FXNA for Example 1 are:

Effect	RHS
Mean	1629
Breed $_{\mathrm{A}}$	908
Breed $_{\mathrm{B}}$	721
Heterosis $_{\mathrm{AB}}$	952
Sex $_{\mathrm{M}}$	867
Sex $_{\mathrm{F}}$	762
$\mathrm{a}_{\mathrm{a} 1}$	289
$\mathrm{a}_{\mathrm{a} 2}$	245
$\mathrm{a}_{\mathrm{a} 3}$	256
$\mathrm{a}_{\mathrm{a} 4}$	261
$\mathrm{a}_{\mathrm{a} 5}$	292
$\mathrm{a}_{\mathrm{a} 6}$	286

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.

Remarks:

1) The rank of the left hand side matrix of the MME_MAM_EQVE_EQVA_FXNA is 10 .
2) Differences between breed effects, heterosis, and differences between sex effects are estimable.
3) The set of MME_MAM_EQVE_EQVA_FXNA can be solved directly by:
a. Obtaining the generalized inverse of the left hand side (ginvlhs) and multiplying it by the right hand side (rhs), i.e.,

$$
\text { sol }=\text { ginvlhs } * \text { rhs }
$$

b. Imposing restrictions on the solutions. The number of equations in Example 1 is 12 and the rank of the left hand side of the $\mathbf{M M E}$ _MAM_EQVE_EQVA_FXNA is 10 , thus 2 restrictions need to be imposed to obtain solutions. These 2 restrictions could be:
i. Set the solution of the mean to zero, and
ii. Set the solution for breed B to zero. This restriction is useful because the expectation of the solution for breed A estimates the difference between the effects of breed A and breed B. Thus, breed B can be used as the genetic base of comparison for additive multibreed genetic effects.
4) Fixed heterosis effects here are an estimate of the difference between the interbreed (AB and BA) interaction effects relative to the average of intrabreed interaction effects (AA and BB). Thus, fixed heterosis effects can be used as the genetic base of comparison for nonadditive multibreed genetic effects.

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
The vector of solutions (SOL; obtained without imposing restrictions on the solutions), and the standard error of solutions (SESOL; computed as the square root of the diagonals of the generalized inverse of the left hand side of the MME_MAM_EQVE_EQVA_FXNA * $\sigma_{\boldsymbol{\varepsilon}}$) are:

Effect	SOL	SESOL
Mean $^{\circ}$	133.17	3.43
Breed $_{\mathrm{A}}{ }^{\circ}$	71.58	9.12
Breed $_{\mathrm{B}}{ }^{\circ}$	61.59	9.31
Heterosis $_{\mathrm{AB}}{ }^{\circ}$	8.25	8.12
Sex $_{\mathrm{M}}{ }^{\circ}$	82.53	5.61
Sex $_{\mathrm{F}}{ }^{\circ}$	50.64	5.58
$\hat{\mathrm{a}}_{\mathrm{a} 1}$	0.68	5.83
$\hat{\mathrm{a}}_{\mathrm{a} 2}$	-0.39	5.86
$\hat{\mathrm{a}}_{\mathrm{a} 3}$	-1.22	5.36
$\hat{\mathrm{a}}_{\mathrm{a} 4}$	0.93	5.44
$\hat{\mathrm{a}}_{\text {a }}$	0.43	5.88
$\hat{\mathrm{a}}_{\text {a } 6}$	-0.84	5.71

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.

Additive Multibreed Genetic Predictions

The AMBV computed as deviations from breed B (chosen as genetic base) are:

$$
\operatorname{AMBV}_{\mathrm{i}}=\hat{\mathrm{u}}_{\mathrm{ai}}=\operatorname{Prob}_{\text {Aanim }}{ }^{*}\left(\operatorname{Breed}_{\mathrm{A}}{ }^{\circ}-\operatorname{Breed}_{\mathrm{B}}{ }^{\circ}\right)+\hat{\mathrm{a}}_{\mathrm{ai}}
$$

where
$\operatorname{Prob}_{\text {Aanim }} \mathrm{i}=$ expected fraction of breed A in animal i,
Breed $_{\mathrm{A}}{ }^{\circ}=$ generalized least squares solution for breed A ,
$\operatorname{Breed}_{B}{ }^{\circ}=$ generalized least squares solution for breed B, and
$\hat{a}_{a i} \quad=\quad$ BLUP solution for $\mathrm{a}_{\mathrm{a} i}$.
The matrix of variances and covariances of errors of prediction (VEP) for the vector of AMBV is:

$$
\operatorname{VEP}(\operatorname{AMBV})=\operatorname{var}\left(\hat{u}_{\mathrm{a}}-\mathrm{u}_{\mathrm{a}}\right)=\mathrm{K}_{\mathrm{a}}^{*}(\text { ginvlhs }) * \mathrm{~K}_{\mathrm{a}}^{\prime} * \sigma_{\varepsilon}^{2}
$$

where

$\mathrm{K}_{\mathrm{a}}=$	$\mathrm{n}_{\text {anim }} \times \mathrm{n}_{\mathrm{eq}}$ matrix specifying the factors multiplying the components of the		
	AMBV, where $\mathrm{n}_{\text {anim }}=$ number of animals, and $\mathrm{n}_{\mathrm{eq}}=$ number of equations,		
	and		
ginvlhs $=$	$\mathrm{n}_{\mathrm{eq}} \times \mathrm{n}_{\mathrm{eq}}$ generalized inverse matrix of the left hand side of the	\quad	MME_MAM_EQVE_EQVA_FXNA,
:---			

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
Matrix K_{a} for MAM_EQVE_EQVA_FXNA Example 1 is:

Ka											
0.00	1.00	-1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
0.00	0.50	-0.50	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
0.00	0.50	-0.50	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
0.00	0.50	-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00	0.75	-0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00

The standard errors of prediction (SEP) of the AMBV are computed as the square roots of the diagonal elements of the $\operatorname{VEP}(\mathbf{A M B V})$ matrix.

The AMBV and their SEP for the 6 animals in Example 1 are:

Animal	Prob $_{\text {Aanim }}$	Breed $_{\mathbf{A}}{ }^{\circ}{ }^{-}$ Breed $_{\mathbf{B}}{ }^{\circ}$	$\hat{\mathrm{a}}_{\text {add }}$	AMBV	SEP AMBV
1	1	9.99	0.68	10.68	17.69
2	0	9.99	-0.39	-0.39	5.86
3	0.5	9.99	-1.22	3.78	10.69
4	0.5	9.99	0.93	5.93	9.53
5	0.5	9.99	0.43	5.43	11.93
6	0.75	9.99	-0.84	6.66	14.28

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
[16M-18]
Nonadditive Multibreed Genetic Predictions
The NMBV computed assuming that males are mated to $1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$ females, and vice versa, are:

$$
\operatorname{NMBV}_{\mathrm{i}}=\hat{\mathrm{u}}_{\mathrm{ni}}=\left(\operatorname{Prob}_{\text {Aanim i }} * \operatorname{Prob}_{\text {Bmate }}+\operatorname{Prob}_{\text {Banim } \mathrm{i}} * \operatorname{Prob}_{\mathrm{Amate}}\right)\left(\operatorname{Heterosis}_{\mathrm{AB}}{ }^{\circ}+\hat{\mathrm{a}}_{\mathrm{ni}}\right)
$$

where
Prob $_{\text {Aanim } i}=$ expected fraction of breed A in animal i ,
Prob $_{\text {Banim } i}=$ expected fraction of breed B in animal i ,
Prob $_{\text {Amate }}=$ expected fraction of breed A in the mate of animal i ,
Prob $_{\text {Bmate }}=$ expected fraction of breed B in the mate of animal i ,
Heterosis $_{\mathrm{AB}}{ }^{\circ}=$ generalized least squares solution for the heterosis due to interaction between alleles of breeds A and B in 1 locus,
$\hat{\mathrm{a}}_{\mathrm{ni}}=\quad=$ BLUP solution for a_{n}, included in the residual of the
MAM_EQVE_EQVA_FXNA, and assumed to be zero for the computation of the NMBV.
The matrix of variances and covariances of errors of prediction (VEP) for the vector of NMBV is:

$$
\operatorname{VEP}(\mathbf{N M B V})=\operatorname{var}\left(\hat{u}_{\mathrm{n}}-\mathrm{u}_{\mathrm{n}}\right)=\mathrm{K}_{\mathrm{n}}{ }^{*}(\text { ginvlhs }) * \mathrm{~K}_{\mathrm{n}}{ }^{*} * \sigma_{\varepsilon}^{2}
$$

where
$\mathrm{K}_{\mathrm{n}}=\mathrm{n}_{\text {anim }} \times \mathrm{n}_{\mathrm{eq}}$ matrix specifying the factors multiplying the components of the NMBV, where $\mathrm{n}_{\text {anim }}=$ number of animals, and $\mathrm{n}_{\mathrm{eq}}=$ number of equations, and ginvlhs $=n_{\text {eq }} \times n_{\text {eq }}$ generalized inverse matrix of the left hand side of the MME_MAM_EQVE_EQVA_FXNA,

$$
\sigma_{\varepsilon}^{2}=\text { common residual variance. }
$$

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
Matrix K_{n} for MAM_EQVE_EQVA_FXNA Example 1 is:

Kn											
0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

The standard errors of prediction (SEP) of the NMBV are computed as the square roots of the diagonal elements of the $\operatorname{VEP}(\mathbf{N M B V})$ matrix.

The NMIBV and their SEP for the 6 animals in MAM_EQVE_EQVA_FXNA Example 1 are:

Animal	Prob $_{\text {Aanim }} *$ Prob $_{\text {Bmate }}$ + Prob $_{\text {Banim }} *$ Prob $_{\text {Amate }}$	Heterosis $_{\text {AB }}{ }^{\circ}$	$\hat{\mathbf{a}}_{\text {nadd }}$	$\mathbf{N M B V}$	SEP NMBV
1	$1 * 0.5+0 * 0.5$	8.25	0	4.12	4.06
2	$0 * 0.5+1 * 0.5$	8.25	0	4.12	4.06
3	$0.5 * 0.5+0.5 * 0.5$	8.25	0	4.12	4.06
4	$0.5 * 0.5+0.5 * 0.5$	8.25	0	4.12	4.06
5	$0.5 * 0.5+0.5 * 0.5$	8.25	0	4.12	4.06
6	$0.75 * 0.5+0.25 * 0.5$	8.25	0	4.12	4.06

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.

Total Multibreed Genetic Predictions

The TMBV are the sum of AMBV and NMBV, i.e.,

$$
\mathrm{TMBV}_{\mathrm{i}}=\mathrm{AMBV}_{\mathrm{i}}+\mathrm{NMBV}_{\mathrm{i}}=\hat{\mathrm{u}}_{\mathrm{ai}}+\hat{\mathrm{u}}_{\mathrm{ni}}
$$

The matrix of variances and covariances of errors of prediction (VEP) for the vector of TMBV is:

$$
\operatorname{VEP}(\mathbf{T M B V})=\operatorname{var}\left(\hat{u}_{\mathrm{t}}-\mathrm{u}_{\mathrm{t}}\right)=\mathrm{K}_{\mathrm{t}} *(\text { ginvlhs }) * \mathrm{~K}_{\mathrm{t}}{ }^{*} * \sigma_{\varepsilon}^{2}
$$

where

$$
\begin{aligned}
\mathrm{K}_{\mathrm{t}}= & \mathrm{n}_{\mathrm{anim}} \times \mathrm{n}_{\mathrm{eq}} \text { matrix specifying the factors multiplying the components of the } \\
& \mathrm{TMBV} \text {, where } \mathrm{n}_{\text {anim }}=\text { number of animals, and } \mathrm{n}_{\mathrm{eq}}=\text { number of equations, and } \\
\text { ginvlhs }= & \mathrm{n}_{\mathrm{eq}} \times \mathrm{n}_{\mathrm{eq}} \text { generalized inverse matrix of the left hand side of the } \\
& \text { MME_MAM_EQVE_EQVA_FXNA, }^{\text {MIE }}= \\
\sigma_{\varepsilon}{ }^{2}= & \text { common residual variance. }
\end{aligned}
$$

Matrix K_{t} for MAM_EQVE_EQVA_FXNA Example 1 is:

Kt											
0.00	1.00	-1.00	0.50	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.50	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
0.00	0.50	-0.50	0.50	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
0.00	0.50	-0.50	0.50	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
0.00	0.50	-0.50	0.50	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
0.00	0.75	-0.75	0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00

The standard errors of prediction (SEP) of the TMBV are computed as the square roots of the diagonal elements of the $\operatorname{VEP}(\mathbf{T M B V})$ matrix.

The TMBV and their SEP for the 6 animals in MAM_EQVE_EQVA_FXNA Example 1 are:

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.

Animal	AMBV	NMBV	TMBV	SEP TMBV
1	10.68	4.12	14.80	17.82
2	-0.39	4.12	3.73	7.44
3	3.78	4.12	7.91	10.87
4	5.93	4.12	10.06	9.73
5	5.43	4.12	9.55	12.09
6	6.66	4.12	10.78	14.43

References

Henderson, C. R. 1976. A simple method for computing the inverse of a large numerator relationship matrix used in prediction of breeding values. Biometrics 32:69-83.

Elzo, M. A. 1990a. Recursive procedures to compute the inverse of the multiple trait additive genetic covariance matrix in inbred and noninbred multibreed populations. J. Anim. Sci. 68:1215-1228.

Elzo, M. A. 1990b. Covariances among sire \times breed group of dam interaction effects in multibreed sire evaluation procedures. J. Anim. Sci. 68:4079-4099.

Elzo, M. A. 1994. Restricted maximum likelihood estimation of additive and nonadditive genetic variances and covariances in multibreed populations. J. Anim. Sci. 72:3055-3065.

Elzo, M. A. 1996. Animal Breeding Notes. University of Florida, Gainesville, Florida, USA.
Elzo, M. A. 2006. Animal Breeding Notes. Breeding value of animal for a single trait in a multibreed population. http://www.animal.ufl.edu/elzo/Publications/Animal\ Breeding\ Notes/Multibreed/M ABN_14M/MABN_14M_Part\%202_2007_a.pdf. Accessed December 16, 2007.

Mauricio A. Elzo, University of Florida, 2005, 2006, 2007, 2010, 2014.
Quaas, R. L. 1975. From Mendel's laws to the A inverse. Mimeograph, Cornell University, p 116.

Quaas, R. L. 1976. Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics 32:949-953.

