ANIMAL BREEDING NOTES

CHAPTER 21M

MULTIPLE TRAIT MULTIBREED ANIMAL MODEL

Multiple Trait Multibreed Animal Model (MTMAM)

Objective: to predict multiple-trait additive genetic effects (MTAMBV), nonadditive genetic effects (MTNMBV), and total genetic effects (MTTMBV) in a multibreed population, based on animals' own records and records from their relatives.

Assumptions

1) Animals belong to a multibreed population, i.e., a population composed of purebred and crossbred animals that interbreed;
2) Animals have 1 or more records from several traits;
3) Nonadditive genetic effects are explained in terms of intrabreed and interbreed interaction effects at 1 or more loci that are modeled as independent regression effects;
4) Multibreed additive genetic variances and covariances among records are linear combinations of intrabreed and interbreed additive genetic variances and covariances;
5) Multibreed nonadditive genetic variances and covariances among records are linear combinations of intrabreed and interbreed nonadditive genetic variances and covariances;
6) Multibreed environmental variances and covariances among records are linear combinations of intrabreed and interbreed environmental variances and covariances; and
7) There is either no selection in the population, or:
a. if selection occurred based on records, selection was within fixed effects, and
b. if selection occurred based on MTAMBV, the relationship matrix was complete.

The MTMAM is:

$$
\begin{aligned}
y & =X b+Z_{a} Q_{a} g_{a}+Z_{n} Q_{n} g_{n}+Z_{a} a_{a}+Z_{n} a_{n}+e \\
E[y] & =X b+Z_{a} Q_{a} g_{a}+Z_{n} Q_{n} g_{n} \\
\operatorname{var}\left[\begin{array}{c}
a_{a} \\
a_{n} \\
e
\end{array}\right] & =\left[\begin{array}{ccc}
G_{a} & 0 & 0 \\
0 & G_{n} & 0 \\
0 & 0 & R
\end{array}\right] \\
\Rightarrow \quad \operatorname{var}(y) & =Z_{a} G_{a} Z_{a}^{\prime}+Z_{n} G_{n} Z_{n}^{\prime}+R,
\end{aligned}
$$

where
$y=$ vector of animal records ordered by trait within animal (e.g., birth weight, weaning weight),
$b=$ vector of unknown fixed effects (e.g., contemporary groups, sex of calf, age of dam) ordered by trait within effect,
$g_{a}=\quad$ vector of unknown additive group genetic effects (e.g., breed, breed \times year of birth) ordered by trait within genetic group,
$\mathrm{g}_{\mathrm{n}}=$ vector of unknown nonadditive group genetic effects (e.g., heterosis at 1 locus, heterosis at 2 loci) ordered by trait within genetic group,
$a_{a}=$ vector of unknown random additive genetic effects (MTAMBV) ordered by trait within additive genetic effect,
$\mathrm{a}_{\mathrm{n}}=$ vector of unknown random nonadditive genetic effects (MTNMBV) ordered by trait within nonadditive genetic effect,
$\mathrm{e}=$ vector of unknown random residual effects ordered by trait within animal,
$\mathrm{X}=$ known incidence matrix relating records to fixed effects in vector b ,
$Z_{a}=$ known incidence matrix relating records to elements of vector a_{a},
$\mathrm{Z}_{\mathrm{n}}=$ known incidence matrix relating records to elements of vector a_{n},
$\mathrm{Q}_{\mathrm{a}}=$ known incidence matrix relating random additive genetic effects to additive genetic groups in vector g_{a},
$\mathrm{Q}_{\mathrm{n}}=$ known incidence matrix relating random nonadditive genetic effects to nonadditive genetic groups in vector g_{n},
$\mathrm{G}_{\mathrm{a}}=\left\{\mathrm{G}_{\mathrm{ij}}\right\}$, where $\mathrm{G}_{\mathrm{ij}}=$ matrix of multiple trait multibreed additive genetic covariances between animals i and j , ordered by traits within animal,
$\mathrm{G}_{\mathrm{n}}=\operatorname{diag}\left\{\mathrm{A}_{\mathrm{m}} * \mathrm{~V}_{0 n \mathrm{~m}}, \mathrm{~m}=1, \ldots, \mathrm{~N}_{\mathrm{m}}\right\}$, where A_{m} is the matrix of probabilities that pairs of animals received the same alleles at m loci, and $\mathrm{V}_{\text {Onm }}$ is the matrix of multiple trait variances and covariances due to interaction effects among alleles at m loci. If $\mathrm{m}=1$, then $G_{n}=A^{*} V_{0 n 1}$, where $A=$ matrix of additive relationships and $V_{0 n 1}=$ matrix of multiple trait variances and covariances due to intralocus interaction effects (intrabreed and interbreed). Further, if only interbreed intralocus effects are included in the model, then $\mathrm{V}_{\mathrm{0n} 1}=$ matrix of multiple trait variances and covariances due to intralocus interbreed interaction effects,
$\mathrm{R}=\operatorname{diag}\left\{\mathrm{V}_{\mathrm{ei}}\right\}$, where $\mathrm{V}_{\mathrm{ei}}=\mathrm{n}_{\mathrm{t}} \times \mathrm{n}_{\mathrm{t}}$ matrix of multiple trait multibreed residual variances and covariances for animal i, where $t=$ number of traits. Residual covariance matrices are allowed to vary among animals of different breed composition due to environmental and nonadditive genetic effects not included in the multibreed model. If animals of all breed compositions are assumed to be similarly affected by environmental effects, and residual nonadditive genetic effects are assumed to be equal across breed compositions, then $R=I * V_{e}$, where $V_{e}=n_{t} \times n_{t}$ matrix of multibreed residual variances and covariances common to all animals in a multibreed population.

Mauricio A. Elzo, University of Florida, 2010, 2014.
The mixed model equations (MME) for the MTMAM are:

$\mathrm{X}^{\prime} \mathrm{R}^{-1} \mathrm{X}$	$X^{\prime} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}} \mathrm{Q}_{\mathrm{a}}$	$\mathrm{Z}_{\mathrm{n}} \mathrm{Q}$	$\mathrm{X}^{\prime} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}}$	$\mathrm{R}^{-1} \mathrm{Z}_{\mathrm{n}}$			$\mathrm{X}^{\prime} \mathrm{R}^{-1} \mathrm{y}$
Qa'Z	Q	Q	${ }^{1} \mathrm{Z}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{a}}{ }^{\prime} \mathrm{Z}_{\mathrm{a}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{n}}$	g_{a}		Qa
Q_{n}				$\mathrm{Q}_{\mathrm{n}}{ }^{\prime} \mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{n}}$	n		$\mathrm{Q}_{\mathrm{n}}{ }^{\prime}$
,			$\mathrm{Z}_{\mathrm{a}}+\mathrm{G}_{\mathrm{a}}^{-1}$	$\mathrm{Z}_{\mathrm{a}}{ }^{\prime} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{n}}$	a_{3}		
$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{X}$	$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}} \mathrm{Q}_{\mathrm{a}}$	$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{n}} \mathrm{Q}_{\mathrm{n}}$	$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{a}}$	$\mathrm{Z}_{\mathrm{n}}{ }^{\prime} \mathrm{R}^{-1} \mathrm{Z}_{\mathrm{n}}+\mathrm{G}_{\mathrm{n}}^{-1}$	a_{n}		$\mathrm{Z}_{\mathrm{n}} \mathrm{R}^{-1} \mathrm{y}$

Example 1 of the MTMAM for a Non-inbred Multibreed Population

Animal	Breed Compsn	Sex	Birth weight (kg)	Weaning weight (kg)	Sire	Breed Compsn	Dam	Breed Compsn
1	A	M	33	289	0	A	0	A
2	B	F	29	245	0	B	0	B
3	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	F	32	256	0	A	2	B
4	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	F	30	261	1	A	0	B
5	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	M	38	292	1	A	2	B
6	$3 / 4 \mathrm{~A} 1 / 4 \mathrm{~B}$	M	35	286	1	A	3	$1 / 2$ A $1 / 2$ B

Assumptions for the Example

1) Matrices of multiple trait additive genetic variances and covariances:

Intrabreed multiple trait additive genetic covariance matrix for breed A:

$$
\mathrm{V}_{\mathrm{aAA}}=\left[\begin{array}{ll}
12 & 10 \\
10 & 36
\end{array}\right] \mathrm{kg}^{2}
$$

Intrabreed multiple trait additive genetic covariance matrix for breed B:

$$
\mathrm{V}_{\mathrm{aBB}}=\left[\begin{array}{cc}
9 & 12 \\
12 & 44
\end{array}\right] \mathrm{kg}^{2}
$$

Interbreed multiple trait additive genetic covariance matrix for combination of breeds AB :

Mauricio A. Elzo, University of Florida, 2010, 2014.

$$
\mathrm{V}_{\mathrm{aAB}}=\left[\begin{array}{cc}
4 & 1 \\
1 & 22
\end{array}\right] \mathrm{kg}^{2}
$$

2) Matrices of multiple trait nonadditive genetic variances and covariances due to sire \times breed group of dam interaction effects $=$ nonadditive genetic variances due to dam \times breed group of sire interaction effects. Variation from nonadditive effects due to sire \times dam intra and interbreed interaction effects are assumed to be part of the residual variance. Intrabreed multiple trait nonadditive genetic covariance matrix for breed A:

$$
\mathrm{V}_{\mathrm{nAA}}=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right] \mathrm{kg}^{2}
$$

Intrabreed multiple trait nonadditive genetic covariance matrix for breed B:

$$
\mathrm{V}_{\mathrm{nBB}}=\left[\begin{array}{ll}
4 & 2 \\
2 & 9
\end{array}\right] \mathrm{kg}^{2}
$$

Interbreed multiple trait additive genetic covariance matrix for combination of breeds AB :

$$
\mathrm{V}_{\mathrm{nAB}}=\left[\begin{array}{cc}
8 & 6 \\
6 & 16
\end{array}\right] \mathrm{kg}^{2}
$$

Simplifying assumption: only intralocus interbreed sire \times breed group of dam and dam \times breed group of sire interaction effects (i.e., sire and dam random heterosis effects) are important. Intralocus intrabreed AA and BB nonadditive effects and interactions among alleles at 2 or more loci due to sire \times breed group of dam and dam \times breed group of sire interactions are assumed to be contained in the residual. Thus, only intralocus interbreed interactions will be fitted in the model for the example. Consequently, only

$$
\mathrm{V}_{\mathrm{nAB}}=\left[\begin{array}{cc}
8 & 6 \\
6 & 16
\end{array}\right] \mathrm{kg}^{2}
$$

will be needed.
3) Matrices of multiple trait environmental variances and covariances:

Environmental multiple trait covariance matrix for breed A:

Mauricio A. Elzo, University of Florida, 2010, 2014.

$$
\mathrm{V}_{\mathrm{eAA}}=\left[\begin{array}{ll}
12 & 10 \\
10 & 49
\end{array}\right] \mathrm{kg}^{2}
$$

Environmental multiple trait covariance for breed B:

$$
\mathrm{V}_{\mathrm{eBB}}=\left[\begin{array}{cc}
8 & 6 \\
6 & 16
\end{array}\right] \mathrm{kg}^{2}
$$

Environmental multiple trait covariance for combination of breeds AB :

$$
\mathrm{V}_{\mathrm{eAB}}=\left[\begin{array}{ll}
16 & 14 \\
14 & 25
\end{array}\right] \mathrm{kg}^{2}
$$

4) Environmental covariances among records from different animals are zero.

Multiple Trait Multibreed Animal Model for the Example

$$
\begin{aligned}
& \left\{\begin{array}{c}
B W \\
W W
\end{array}\right\}_{i}=\left\{\begin{array}{l}
\text { Mean }_{B W} \\
\text { Mean }_{W W}
\end{array}\right\}_{i}+\left\{\begin{array}{l}
\text { BreedReg }_{B W} \\
\text { BreedReg }_{W W}
\end{array}\right\}_{i}+\left\{\begin{array}{l}
\operatorname{DirectHet}_{B W} \\
\operatorname{DirectHet}_{W W}
\end{array}\right\}_{i}+\left\{\begin{array}{l}
\operatorname{Sex}_{B W} \\
\operatorname{Sex}_{W W}
\end{array}\right\}_{i} \\
& +\left\{\begin{array}{l}
\text { AnimDirectAdd }_{\text {BW }} \\
\text { AnimDirectAdd }_{\mathrm{WW}}
\end{array}\right\}_{\mathrm{i}}+\left\{\begin{array}{l}
\text { AnimDirectNonAdd }_{\mathrm{BW}} \\
\text { AnimDirectNonAdd }_{\mathrm{WW}}
\end{array}\right\}_{\mathrm{i}} \\
& +\left\{\begin{array}{l}
\text { Residual }_{\text {BW }} \\
\text { Residual }_{\mathrm{WW}}
\end{array}\right\}_{\mathrm{i}} \\
& E\left\{\begin{array}{c}
B W \\
W W
\end{array}\right\}_{i}=\left\{\begin{array}{l}
\text { Mean }_{B W} \\
\text { Mean }_{W W}
\end{array}\right\}_{i}+\left\{\begin{array}{l}
\text { BreedReg }_{B W} \\
\text { BreedReg }_{W W}
\end{array}\right\}_{i}+\left\{\begin{array}{l}
\text { DirectHet }_{B W} \\
\text { DirectHet }_{W W}
\end{array}\right\}_{i}+\left\{\begin{array}{l}
\text { Sex }_{B W} \\
\operatorname{Sex}_{W W}
\end{array}\right\}_{i} \\
& \operatorname{Var}\left\{\begin{array}{l}
\mathrm{BW} \\
\mathrm{WW}_{\mathrm{W}}
\end{array}\right\}_{\mathrm{i}}=\operatorname{Var}\left\{\begin{array}{l}
\text { AnimDirectAdd }_{\mathrm{BW}} \\
\text { AnimDirectAdd }_{\mathrm{WW}}
\end{array}\right\}_{\mathrm{i}}+\operatorname{Var}\left\{\begin{array}{l}
\text { AnimDirectNonAdd }_{\mathrm{BW}} \\
\text { AnimDirectNonAdd } \left._{\mathrm{WW}}\right\}_{\mathrm{i}}
\end{array}\right. \\
& +\operatorname{Var}\left\{\begin{array}{l}
\operatorname{Residual}_{\mathrm{BW}} \\
\operatorname{Residual}_{\mathrm{WW}}
\end{array}\right\}_{\mathrm{i}}
\end{aligned}
$$

Mauricio A. Elzo, University of Florida, 2010, 2014.

[33			0	1	0	0	0	0	0			$0 \quad 0$	-		mean $_{\text {bw }}$
289		0	1	0	1	0	0	0	0		0	10	0		mean $_{\text {ww }}$
29		1	0	0	0	1	0	0	0		0	01	0		breed $_{\text {Abw }}$
245		0	1	0	0	0	1	0	0		0	$0 \quad 0$	1		breed $_{\text {Aww }}$
32		1	0	1/2	0	1/2	0	1	0		0	01	0		breed $_{\text {Bbw }}$
256	0	0	1	0	1/2	0	1/2	0	1		0	$0 \quad 0$	1		$\operatorname{breed}_{\text {Bww }}$
30		1	0	1/2		1/2	0	1	0		0	$0 \quad 1$	0		heterosis ${ }_{\text {ABbw }}$
261		0	1	0	1/2	0	1/2	0	1		0	$0 \quad 0$	1		heterosis $_{\text {ABww }}$
38		1	0	1/2		1/2	0	1	0		1	$0 \quad 0$	0		$\operatorname{sex}_{\text {Mbw }}$
292		0	1	0	1/2	0	1/2	0	1		0	10	0		$\operatorname{sex}_{\text {Mww }}$
35		1	0	3/4		1/4	0	1/2	0		1	$0 \quad 0$	0		$\mathrm{Sex}_{\text {Fbw }}$
286		0	1	0	3/4	0	1/4	0	1/2		0	10	0		$\mathrm{sex}_{\text {Fww }}$

$$
+\left[\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 & 0 & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\text { animal } 1_{\mathrm{bwnd}} \\
\text { animal } 1_{\mathrm{wwnd}} \\
\text { animal } 2_{\mathrm{bwnd}} \\
\text { animal } 2_{\mathrm{wwnd}} \\
\text { animal } 3_{\mathrm{bwnd}} \\
\text { animal } 3_{\mathrm{wwnd}} \\
\text { animal } 4_{\mathrm{bwnd}} \\
\text { animal } 4_{\mathrm{wwnd}} \\
\text { animal } 5_{\mathrm{bwnd}} \\
\text { animal } 5_{\mathrm{wwnd}} \\
\text { animal } 6_{\mathrm{bwnd}} \\
\text { animal } 6_{\mathrm{wwnd}}
\end{array}\right]+\left[\begin{array}{l}
\text { residual } 1_{\mathrm{bw}} \\
\text { residual } 1_{\mathrm{ww}} \\
\text { residual } 2_{\mathrm{bw}} \\
\text { residual } 2_{\mathrm{ww}} \\
\text { residual } 3_{\mathrm{bw}} \\
\text { residual } 3_{\mathrm{ww}} \\
\text { residual } 4_{\mathrm{bw}} \\
\text { residual } 4_{\mathrm{ww}} \\
\text { residual } 5_{\mathrm{bw}} \\
\text { residuall } 5_{\mathrm{ww}} \\
\text { residual } 6_{\mathrm{bw}} \\
\text { residual } 6_{\mathrm{ww}}
\end{array}\right]
$$

Matrices of Multiple Trait Multibreed Additive Genetic Variances and Covariances

Matrices of multiple trait multibreed additive genetic variances and covariances are computed by conditioning them on the breed of origin of alleles using the expression:

$$
\begin{aligned}
& V_{a t}=E[\operatorname{var}(t \mid b]+\operatorname{var}(E[t \mid b]) \\
& V_{a t}=\sum_{b=1}^{n_{b}} p_{b}^{i}\left(V_{a t}\right)_{b}+\sum_{b=1}^{n_{b^{\prime}}-1} \sum_{b^{\prime}>b}^{n_{b}}\left(p_{b}^{s} p_{b^{\prime}}^{s}+p_{b}^{d} p_{b^{\prime}}^{d}\right)\left(V_{a t}\right)_{b b^{\prime}}
\end{aligned}
$$

where $\mathrm{a}=$ additive genetic, $\mathrm{t}=$ vector of traits, superscripts $\mathrm{i}=$ individual, $\mathrm{s}=$ sire, and $\mathrm{d}=$ dam, subscripts b and b^{\prime} represent two breeds, and

$$
\begin{aligned}
\mathrm{n}_{\mathrm{b}}= & \text { number of breeds, } \\
\mathrm{p}_{\mathrm{b}}^{\mathrm{x}}= & \text { expected fraction of breed } \mathrm{b} \text { in animal } \mathrm{x}, \mathrm{x}=\mathrm{i}, \mathrm{~s}, \mathrm{~d}, \\
\left(\mathrm{~V}_{\mathrm{at}}\right)_{\mathrm{b}}= & \text { matrix of multiple trait intrabreed additive genetic variances and covariances } \\
& \text { in breed } \mathrm{b}
\end{aligned}
$$

Mauricio A. Elzo, University of Florida, 2010, 2014.
$\left(\mathrm{V}_{\mathrm{at}}\right)_{\mathrm{bb}}=$ matrix of multiple trait interbreed additive genetic variances and covariances
in pair of breeds b and b^{\prime}.

The matrices of multiple trait multibreed additive genetic variances and covariances for the 6 animals in the example are:

	Animal		
	Number	Breed Group	Multiple Trait Multibreed Additive Genetic Covariance Matrix
Parents	1	A	$\left[\begin{array}{ll}12 & 10 \\ 10 & 36\end{array}\right]$
	2	B	$\left[\begin{array}{cc}9 & 12 \\ 12 & 44\end{array}\right]$
	3	$1 / 2 \mathrm{~A}^{1 / 2} \mathrm{~B}$	$1 / 2\left[\begin{array}{ll}12 & 10 \\ 10 & 36\end{array}\right]+1 / 2\left[\begin{array}{cc}9 & 12 \\ 12 & 44\end{array}\right]=\left[\begin{array}{cc}10.5 & 11 \\ 11 & 40\end{array}\right]$
Non-parents	4	$1 / 2 \mathrm{~A}^{1 / 2} \mathrm{~B}$	$1 / 2\left[\begin{array}{ll}12 & 10 \\ 10 & 36\end{array}\right]+1 / 2\left[\begin{array}{cc}9 & 12 \\ 12 & 44\end{array}\right]=\left[\begin{array}{cc}10.5 & 11 \\ 11 & 40\end{array}\right]$
	5	$1 / 2$ A $1 / 2 \mathrm{~B}$	$1 / 2\left[\begin{array}{ll}12 & 10 \\ 10 & 36\end{array}\right]+1 / 2\left[\begin{array}{cc}9 & 12 \\ 12 & 44\end{array}\right]=\left[\begin{array}{cc}10.5 & 11 \\ 11 & 40\end{array}\right]$
	6	$3 / 4 \mathrm{~A}^{1 / 4} \mathrm{~B}$	$\begin{gathered} 3 / 4\left[\begin{array}{ll} 12 & 10 \\ 10 & 36 \end{array}\right]+1 / 4\left[\begin{array}{cc} 9 & 12 \\ 12 & 44 \end{array}\right]+[(1)(0)+ \\ (1 / 2)(1 / 2)]\left[\begin{array}{cc} 4 & 1 \\ 1 & 22 \end{array}\right]=\left[\begin{array}{cc} 12.25 & 10.75 \\ 10.75 & 43.5 \end{array}\right] \end{gathered}$

Inverse of the Multiple Trait Multibreed Additive Genetic Covariance Matrix
The equation for the inverse of the multiple trait covariance matrix of multibreed additive genetic effects, $\mathbf{G}_{\mathbf{a}}{ }^{-1}$, can be written as follows:

$$
\begin{aligned}
\mathbf{G}_{\mathrm{a}}^{-1} & =\left\{\mathrm{g}^{\mathrm{ij}}\right\} \\
& =\left\{\sum_{\mathrm{k}=1}^{\mathrm{K}} \mathrm{t}_{\mathrm{ik}} * \mathbf{d}_{\mathrm{ak}}^{-1} * \mathbf{t}_{\mathrm{kj}}\right\}
\end{aligned}
$$

where \mathbf{K} is the number of animals in the pedigree, $\mathbf{t}_{\text {ik }}$ are elements of $\mathbf{T}^{\prime}=\left(\mathbf{I}-1 / 2 \mathbf{P}^{\prime}\right), \mathbf{d}_{a k}{ }^{-1}$ are $n_{t} \times$
n_{t} multiple trait submatrices of block-diagonal matrix $\mathbf{D}_{\mathbf{a}}{ }^{-1}$, and \mathbf{t}_{kj} are elements of $\mathbf{T}=(\mathbf{I}-1 / 2 \mathbf{P})$, and

$$
\text { II }=\text { identity matrix, }
$$

$\mathbf{P}=$ matrix that relates animals to their sires and dams; each row of P contains up to 2 nonzero elements: a 1 for the sire and a 1 for the dam of an animal,
$\mathbf{D}_{\mathbf{a}}{ }^{-1}=$ inverse of block-diagonal matrix of residual multiple trait additive genetic variances and covariances. Because $\mathbf{D}_{\mathbf{a}}{ }^{-1}$ is block-diagonal, its inverse is equal to the inverse of its diagonal submatrices, i.e., $\mathbf{D}_{\mathrm{a}}{ }^{-1}=\left\{\mathbf{d}_{\mathrm{aii}}{ }^{-1}\right\}$.

The $n_{t} \times n_{t}$ multiple trait submatrices of block-diagonal matrix $\mathbf{D}_{a}{ }^{-1}$ are computed using the expression:

$$
\mathrm{d}_{\mathrm{aii}}^{-1}=\left[\left(\mathrm{V}_{\mathrm{at}}\right)_{\mathrm{i}}-1 / 4 \delta_{\mathrm{s}}\left(\left(\mathrm{~V}_{\mathrm{at}}\right)_{\mathrm{s}}+\sum_{\mathrm{c}=1}^{\mathrm{n}_{\mathrm{cs}}} \mathrm{~F}_{\mathrm{cs}}\left(\mathrm{~V}_{\mathrm{at}}\right)_{\mathrm{cs}}\right)-1 / 4 \delta_{\mathrm{d}}\left(\left(\mathrm{~V}_{\mathrm{at}}\right)_{\mathrm{d}}+\sum_{\mathrm{c}=1}^{\mathrm{n}_{\mathrm{cd}}} \mathrm{~F}_{\mathrm{cd}}\left(\mathrm{~V}_{\mathrm{at}}\right)_{\mathrm{cd}}\right)\right]^{-1}
$$

where F_{cs} and F_{cd} are the coefficients of inbreeding of common ancestors of the sire and the dam of animal i , and $\delta_{\mathrm{s}}=1$ if the sire is known, else $\delta_{\mathrm{s}}=0$, and $\delta_{\mathrm{d}}=1$ if the dam is known, else $\delta_{\mathrm{d}}=0$.

In non-inbred multibreed populations, the F_{cs} and F_{cd} are equal to zero. Thus, the expression for $\mathbf{d}_{\text {aii }}{ }^{-1}$ simplifies to:

$$
\mathrm{d}_{\mathrm{aii}}^{-1}=\left[\left(\mathrm{V}_{\mathrm{at}}\right)_{\mathrm{i}}-1 / 4 \delta_{\mathrm{s}}\left(\mathrm{~V}_{\mathrm{at}}\right)_{\mathrm{s}}-1 / 4 \delta_{\mathrm{d}}\left(\mathrm{~V}_{\mathrm{at}}\right)_{\mathrm{d}}\right]^{-1}
$$

The $\mathbf{d}_{\text {aii }}{ }^{-1}$ for the six animals in the example, computed using the formula for a non-inbred multibreed population, are:

Mauricio A. Elzo, University of Florida, 2010, 2014.

	Animal		
	Number	Breed Group	daii^{-1}
Parents	1	A	$\left[\begin{array}{ll}12 & 10 \\ 10 & 36\end{array}\right]^{-1}$
	2	B	$\left[\begin{array}{cc}9 & 12 \\ 12 & 44\end{array}\right]^{-1}$
	3	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$\left[\left[\begin{array}{cc}10.5 & 11 \\ 11 & 40\end{array}\right]-1 / 4\left[\begin{array}{cc}9 & 12 \\ 12 & 44\end{array}\right]\right]^{-1}=\left[\begin{array}{cc}8.25 & 8 \\ 8 & 29\end{array}\right]^{-1}$
Non-parents	4	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$\left[\left[\begin{array}{cc}10.5 & 11 \\ 11 & 40\end{array}\right]-1 / 4\left[\begin{array}{ll}12 & 10 \\ 10 & 36\end{array}\right]\right]^{-1}=\left[\begin{array}{ll}7.5 & 8.5 \\ 8.5 & 31\end{array}\right]^{-1}$
	5	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$\begin{gathered} {\left[\left[\begin{array}{cc} 10.5 & 11 \\ 11 & 40 \end{array}\right]-1 / 4\left[\begin{array}{cc} 12 & 10 \\ 10 & 36 \end{array}\right]-1 / 4\left[\begin{array}{cc} 9 & 12 \\ 12 & 44 \end{array}\right]\right]^{-1}=} \\ {\left[\begin{array}{cc} 5.25 & 5.5 \\ 5.5 & 20 \end{array}\right]^{-1}} \end{gathered}$
	6	$3 / 4 \mathrm{~A}^{1 / 4} \mathrm{~B}$	$\begin{gathered} {\left[\left[\begin{array}{cc} 12.25 & 10.75 \\ 10.75 & 43.5 \end{array}\right]-1 / 4\left[\begin{array}{cc} 12 & 10 \\ 10 & 36 \end{array}\right]-1 / 4\left[\begin{array}{cc} 10.5 & 11 \\ 11 & 40 \end{array}\right]\right]^{-1}} \\ =\left[\begin{array}{cc} 6.625 & 5.5 \\ 5.5 & 24.5 \end{array}\right] \end{gathered}$

The lower-triangular matrix P is:
$P=\left[\begin{array}{lllllll}0 & & & \mid & & & \\ 0 & 0 & & \mid & & & \\ 0 & 1 & 0 & \mid & & & \\ - & - & - & \mid & - & - & - \\ 1 & 0 & 0 & \mid & 0 & & \\ 1 & 1 & 0 & \mid & 0 & 0 & \\ 1 & 0 & 1 & \mid & 0 & 0 & 0\end{array}\right]$

Mauricio A. Elzo, University of Florida, 2010, 2014.
The inverse of the block-diagonal matrix D_{a} is:

$$
\mathrm{D}_{\mathrm{a}}^{-1}=\left\{\mathrm{d}_{\mathrm{aii}}^{-1}\right\}
$$

where

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{a} 11}^{-1}=\left[\begin{array}{ll}
12 & 10 \\
10 & 36
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{a} 22}^{-1}=\left[\begin{array}{cc}
9 & 12 \\
12 & 44
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{a} 33}^{-1}=\left[\begin{array}{cc}
8.25 & 8 \\
8 & 29
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{a} 44}^{-1}=\left[\begin{array}{cc}
7.5 & 8.5 \\
8.5 & 31
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{a} 55}^{-1}=\left[\begin{array}{cc}
5.25 & 5.5 \\
5.5 & 20
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{a} 66}^{-1}=\left[\begin{array}{cc}
6.625 & 5.5 \\
5.5 & 24.5
\end{array}\right]^{-1}
\end{aligned}
$$

The inverse of the multiple trait multibreed additive genetic covariance matrix is:
$\mathbf{G}_{\mathrm{a}}{ }^{-1}=\left[\begin{array}{llll|ccc}\mathrm{g}_{\mathrm{a}}{ }^{11} & \mathrm{~g}_{\mathrm{a}}{ }^{12} & \mathrm{~g}_{\mathrm{a}}{ }^{13} & \mid & \mathrm{g}_{\mathrm{a}}{ }^{14} & \mathrm{~g}_{\mathrm{a}}{ }^{15} & \mathrm{~g}_{\mathrm{a}}{ }^{16} \\ \mathrm{~g}_{\mathrm{a}}{ }^{12} & \mathrm{~g}_{\mathrm{a}}{ }^{22} & \mathrm{~g}_{\mathrm{a}}{ }^{23} & \mid & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{25} & 0 \\ \mathrm{~g}_{\mathrm{a}}{ }^{13} & \mathrm{~g}_{\mathrm{a}}{ }^{23} & \mathrm{~g}_{\mathrm{a}}{ }^{33} & \mid & 0 & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{36} \\ - & - & - & \mid & - & - & - \\ \mathrm{g}_{\mathrm{a}}{ }^{14} & 0 & 0 & \mid & \mathrm{g}_{\mathrm{a}}{ }^{44} & 0 & 0 \\ \mathrm{~g}^{15} & \mathrm{~g}_{\mathrm{a}}{ }^{25} & 0 & \mid & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{55} & 0 \\ \mathrm{~g}_{\mathrm{a}}{ }^{16} & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{36} & \mid & 0 & 0 & \mathrm{~g}_{\mathrm{a}}{ }^{66}\end{array}\right]$ parents
The rules used to compute the elements of $\mathrm{G}_{\mathrm{a}}{ }^{-1}$ are :

1) Add $d_{\text {aii }}{ }^{-1}$ to $\mathrm{i} \times \mathrm{i}$,

Mauricio A. Elzo, University of Florida, 2010, 2014.
2) Add $-1 / 2 d_{\text {aii }}^{-1}$ to $i \times s$ and $s \times i$ if the sire of animal i is identified,
3) Add $-1 / 2 d_{\text {aii }}{ }^{-1}$ to $\mathrm{i} \times \mathrm{d}$ and $\mathrm{d} \times \mathrm{i}$ if the dam of animal i is identified, and
4) Add $1 / 4 \mathrm{~d}_{\text {aii }}{ }^{-1}$ to $\mathrm{s} \times \mathrm{s}, \mathrm{s} \times \mathrm{d}, \mathrm{d} \times \mathrm{s}$, and $\mathrm{d} \times \mathrm{d}$ if the sire and dam of animal i are identified.

Notice that the rules to compute $\mathbf{G}_{\mathbf{a}}{ }^{-1}$ for multiple traits effects are the same as those for single traits, except that the $\mathbf{d}_{\text {aii }}{ }^{-1}$ are $\mathbf{n}_{\mathfrak{t}} \times \mathbf{n}_{\mathfrak{t}}$ submatrices multiple trait variances and covariances instead of scalars.

Thus,

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{a}}{ }^{11}=\left[\begin{array}{ll}
12 & 10 \\
10 & 36
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{ll}
7.5 & 8.5 \\
8.5 & 31
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{cc}
5.25 & 5.5 \\
5.5 & 20
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{cc}
6.625 & 5.5 \\
5.5 & 24.5
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{12}={ }^{1 / 4}\left[\begin{array}{cc}
5.25 & 5.5 \\
5.5 & 20
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{13}={ }^{1 / 4}\left[\begin{array}{cc}
6.625 & 5.5 \\
5.5 & 24.5
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{14}=-1 / 2\left[\begin{array}{ll}
7.5 & 8.5 \\
8.5 & 31
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{15}=-1 / 2\left[\begin{array}{cc}
5.25 & 5.5 \\
5.5 & 20
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{16}=-1 / 2\left[\begin{array}{cc}
6.625 & 5.5 \\
5.5 & 24.5
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{22}=\left[\begin{array}{cc}
9 & 2 \\
2 & 4
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{cc}
20.25 & 4.5 \\
4.5 & 13
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{cc}
5.25 & 5.5 \\
5.5 & 20
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{23}=-1 / 2\left[\begin{array}{cc}
20.25 & 4.5 \\
4.5 & 13
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{25}=-1 / 2\left[\begin{array}{cc}
5.25 & 5.5 \\
5.5 & 20
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{33}=\left[\begin{array}{cc}
20.25 & 4.5 \\
4.5 & 13
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{cc}
5.25 & 5.5 \\
5.5 & 20
\end{array}\right]^{-1}
\end{aligned}
$$

Mauricio A. Elzo, University of Florida, 2010, 2014.

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{a}}{ }^{36}=-1 / 2\left[\begin{array}{cc}
6.625 & 5.5 \\
5.5 & 24.5
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{44}=\left[\begin{array}{ll}
7.5 & 8.5 \\
8.5 & 31
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{55}=\left[\begin{array}{cc}
5.25 & 5.5 \\
5.5 & 20
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{a}}{ }^{66}=\left[\begin{array}{cc}
6.625 & 5.5 \\
5.5 & 24.5
\end{array}\right]^{-1}
\end{aligned}
$$

The inverse of the multiple trait multibreed additive genetic covariance matrix is obtained by substituting submatrices $\left\{\mathrm{g}_{\mathrm{a}}^{\mathrm{ij}}\right\}, \mathrm{i}, \mathrm{j}=\mathbf{1}, \ldots, 6$, in matrix $\mathrm{G}_{\mathrm{a}}{ }^{-1}$.

Matrices of Multiple Trait Multibreed Nonadditive Genetic Variances and Covariances

 Matrices of multiple trait multibreed nonadditive genetic variances and covariances in a regression model that accounts for sire \times breed group of dam and dam \times breed group of sire interaction effects are equal to the intrabreed and interbreed matrices of multiple trait interaction variances and covariances at 1 or more loci. Nonadditive genetic regression effects are independent of each other. For example, if 2 nonadditive genetic effects (e.g., intrabreed AA and interbreed AB) were fitted in a model, the matrix of multiple trait multibreed nonadditive genetic variances and covariances would be block-diagonal with 2 blocks, i.e., $\mathrm{G}_{\mathrm{n}}=\operatorname{diag}\left\{\mathrm{G}_{\mathrm{nAA}}, \mathrm{G}_{\mathrm{nAB}}\right\}$. However, only a single random nonadditive genetic effect: intralocus interbreed interaction will be fitted here. Under this assumption, $\mathrm{G}_{\mathrm{n}}=\mathrm{G}_{\mathrm{nAB}}$, and the only nonadditive genetic matrix of multiple trait variances and covariances needed for the example is the multiple trait covariance matrix of intralocus interbreed interaction effects, i.e., $\mathrm{V}_{\mathrm{nAB}}=\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right] \mathrm{kg}^{2}$.The multiple trait multibreed nonadditive genetic covariance matrices for the 6 animals in the
example is:

	Animal		
	Number	Breed Group	Multiple Trait Multibreed Nonadditive Genetic Covariance Matrix
Parents	1	A	$\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
	2	B	$\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
	3	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
Non-parents	4	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
	5	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
	6	$3 / 4 \mathrm{~A} 1 / 4 \mathrm{~B}$	$\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$

Inverse of the Multiple Trait Multibreed Nonadditive Genetic Covariance Matrix
Multiple trait covariance matrices among sire \times breed group of dam and dam \times breed group of sire interaction effects are assumed to be caused by similarities among sires and(or) dams due to common ancestry. Thus, the equation for the inverse of the covariance matrix of multiple trait multibreed nonadditive genetic effects due to intralocus interbreed sire \times breed group of dam interaction and dam \times breed group of sire interaction effects, $\mathbf{G}_{\mathrm{n}}{ }^{-1}$, is:

$$
\begin{aligned}
\mathbf{G}_{\mathrm{n}}^{-1} & =\left\{\mathbf{g}_{\mathrm{n}}^{\mathrm{ij}}\right\} \\
& =\left\{\sum_{\mathrm{k}=1}^{\mathrm{K}} \mathbf{t}_{\mathrm{ik}} * \mathbf{d}_{\mathbf{n k}}^{-1} * \mathbf{t}_{\mathrm{kj}}\right\}
\end{aligned}
$$

where K is the number of animals in the pedigree, $t_{i k}$ are elements of $T^{\prime}=\left(\mathbf{I}-1 / 2 \mathbf{P}^{\prime}\right), \mathbf{d}_{n k}{ }^{-1}$ are $n_{t} \times$ n_{t} multiple trait submatrices of block-diagonal matrix $\mathbf{D}_{\mathbf{n}}{ }^{-1}$, and \mathbf{t}_{kj} are elements of $\mathbf{T}=(\mathbf{I}-1 / 2 \mathbf{P})$, and

$$
\begin{aligned}
\mathbf{I}= & \text { identity matrix, } \\
\mathbf{P}= & \text { matrix that relates animals to their sires and dams; each row of } \mathrm{P} \text { contains up to } 2 \\
& \text { nonzero elements: a } 1 \text { for the sire and a } 1 \text { for the dam of an animal, } \\
\mathbf{D}_{\mathrm{n}}{ }^{-1}= & \text { inverse of block-diagonal matrix of residual multiple trait nonadditive genetic } \\
& \text { variances and covariances, where } \mathbf{D}_{\mathrm{n}}{ }^{-1}=\left\{\mathrm{d}_{\text {nii }}{ }^{-1}\right\} .
\end{aligned}
$$

The $n_{t} \times n_{t}$ multiple trait submatrices of block-diagonal matrix $\mathbf{D}_{\mathbf{n}}{ }^{-1}$ are computed using the expression:

$$
\mathrm{d}_{\mathrm{nii}}^{-1}=\left[\left(1-1 / 4 \delta_{\mathrm{s}}\left(1+\mathrm{F}_{\mathrm{s}}\right)-1 / 4 \delta_{\mathrm{d}}\left(1+\mathrm{F}_{\mathrm{d}}\right)\right) * \mathrm{~V}_{\mathrm{nAB}}\right]^{-1}=\left[\left(1-1 / 4 \delta_{\mathrm{s}}\left(1+\mathrm{F}_{\mathrm{s}}\right)-1 / 4 \delta_{\mathrm{d}}\left(1+\mathrm{F}_{\mathrm{d}}\right)\right)\right]^{-1} * \mathrm{~V}_{\mathrm{nAB}}^{-1}
$$

because $V_{\text {nAB }}$ is the same for all sire \times breed group of dam combinations, and F_{s} and F_{d} are the coefficients of inbreeding of the sire and the dam of animal i, and $\delta_{s}=1$ if the sire is known, else δ_{s} $=0$, and $\delta_{\mathrm{d}}=1$ if the dam is known, else $\delta_{\mathrm{d}}=0$.

In non-inbred multibreed populations, the F_{s} and F_{d} are equal to zero. Thus, the expression for $\mathrm{d}_{\text {nii }}{ }^{-1}$ simplifies to:

$$
d_{n i i}^{-1}=\left[\left(1-1 / 4 \delta_{\mathrm{s}}-1 / 4 \delta_{\mathrm{d}}\right) * V_{\mathrm{nAB}}\right]^{-1}=\left[\left(1-1 / 4 \delta_{\mathrm{s}}-1 / 4 \delta_{\mathrm{d}}\right)\right]^{-1} * V_{\mathrm{nAB}}^{-1}
$$

The diagonal elements of the $\mathrm{D}_{\mathrm{n}}{ }^{-1}$ matrix are:

	Animal		
	Number	Breed Group	$\left(\mathbf{d}_{\mathbf{n i i}}\right)^{-\mathbf{1} *} \mathbf{V}_{\mathbf{n A B}}{ }^{-\mathbf{1}}$
Parents	1	A	$[(1)]^{-1} *\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]^{-1}=\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]^{-1}$
	2	B	$[(1)]^{-1} *\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]^{-1}=\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]^{-1}$

Mauricio A. Elzo, University of Florida, 2010, 2014.

	3	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$[(1-1 / 4)]^{-1} *\left[\begin{array}{ll}8 & 6 \\ 6 & 16\end{array}\right]^{-1}=\left[\begin{array}{cc}6 & 4.5 \\ 4.5 & 12\end{array}\right]^{-1}$
Non-parents	4	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$[(1-1 / 4)]^{-1} *\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]^{-1}=\left[\begin{array}{cc}6 & 4.5 \\ 4.5 & 12\end{array}\right]^{-1}$
	5	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$[(1-1 / 4-1 / 4)]^{-1} *\left[\begin{array}{ll}8 & 6 \\ 6 & 16\end{array}\right]^{-1}=\left[\begin{array}{ll}4 & 3 \\ 3 & 8\end{array}\right]^{-1}$
	6	$3 / 4 \mathrm{~A} 1 / 4 \mathrm{~B}$	$[(1-1 / 4-1 / 4)]^{-1} *\left[\begin{array}{ll}8 & 6 \\ 6 & 16\end{array}\right]^{-1}=\left[\begin{array}{ll}4 & 3 \\ 3 & 8\end{array}\right]^{-1}$

The P matrix is:
$P=\left[\begin{array}{ccccccc}0 & & & & & & \\ 0 & 0 & & \mid & & & \\ 0 & 1 & 0 & \mid & & & \\ - & - & - & \mid & - & - & - \\ 1 & 0 & 0 & \mid & 0 & & \\ 1 & 1 & 0 & \mid & 0 & 0 & \\ 1 & 0 & 1 & \mid & 0 & 0 & 0\end{array}\right]$
The inverse of the block-diagonal matrix D_{n} is:

$$
\mathrm{D}_{\mathrm{n}}^{-1}=\left\{\mathrm{d}_{\mathrm{nii}}^{-1}\right\}
$$

where

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{n} 11}^{-1}=\left[\begin{array}{cc}
8 & 6 \\
6 & 16
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{n} 22}^{-1}=\left[\begin{array}{cc}
8 & 6 \\
6 & 16
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{n} 33}^{-1}=\left[\begin{array}{cc}
6 & 4.5 \\
4.5 & 12
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{n} 44}^{-1}=\left[\begin{array}{cc}
6 & 4.5 \\
4.5 & 12
\end{array}\right]^{-1}
\end{aligned}
$$

Mauricio A. Elzo, University of Florida, 2010, 2014.

$$
\begin{aligned}
& d_{\mathrm{n} 55}^{-1}=\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~d}_{\mathrm{n} 66}^{-1}=\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1}
\end{aligned}
$$

The inverse of the multiple trait multibreed nonadditive genetic covariance matrix is :

$$
\begin{aligned}
\mathrm{G}_{\mathrm{n}}{ }^{-1}= & \left(\mathrm{D}_{\mathrm{n}}{ }^{-1}-1 / 2 \mathrm{D}_{\mathrm{n}}{ }^{-1} \mathrm{P}-1 / 2 \mathrm{P}^{\prime} \mathrm{D}_{\mathrm{n}}{ }^{-1}+1 / 4 \mathrm{P}^{\prime} \mathrm{D}_{\mathrm{n}}{ }^{-1} \mathrm{P}\right) * \mathrm{~V}_{\mathrm{nAB}}{ }^{-1} \\
\mathrm{G}_{\mathrm{n}}{ }^{-1}= & {\left[\begin{array}{llll|llc}
\mathrm{g}_{\mathrm{n}}{ }^{11} & \mathrm{~g}_{\mathrm{n}}{ }^{12} & \mathrm{~g}_{\mathrm{n}}{ }^{13} & \mid & \mathrm{g}_{\mathrm{n}}{ }^{14} & \mathrm{~g}_{\mathrm{n}}{ }^{15} & \mathrm{~g}_{\mathrm{n}}{ }^{16} \\
\mathrm{~g}_{\mathrm{n}}{ }^{12} & \mathrm{~g}_{\mathrm{n}}{ }^{22} & \mathrm{~g}_{\mathrm{n}}{ }^{23} & \mid & 0 & \mathrm{~g}_{\mathrm{n}}{ }^{25} & 0 \\
\mathrm{~g}_{\mathrm{n}}{ }^{13} & \mathrm{~g}_{\mathrm{n}}{ }^{23} & \mathrm{~g}_{\mathrm{n}}{ }^{33} & \mid & 0 & 0 & \mathrm{~g}_{\mathrm{n}}{ }^{36} \\
- & - & - & - & - & - \\
\mathrm{g}_{\mathrm{n}}{ }^{14} & 0 & 0 & \mid & \mathrm{g}_{\mathrm{n}}{ }^{44} & 0 & 0 \\
\mathrm{~g}_{\mathrm{n}}{ }^{15} & \mathrm{~g}_{\mathrm{n}}{ }^{25} & 0 & \mid & 0 & \mathrm{~g}_{\mathrm{n}}{ }^{55} & 0 \\
\mathrm{~g}_{\mathrm{n}}{ }^{16} & 0 & \mathrm{~g}_{\mathrm{n}}{ }^{36} & \mid & 0 & 0 & \mathrm{~g}_{\mathrm{n}}{ }^{66}
\end{array}\right] \text { parents } }
\end{aligned}
$$

The rules used to compute the elements of matrix $\mathrm{G}_{\mathrm{n}}{ }^{-1}$ for multiple trait interbreed intralocus interaction effects are:

1) Add $\mathrm{d}_{\mathrm{nii}}{ }^{-1}$ to $\mathrm{i} \times \mathrm{i}$,
2) Add $-1 / 2 \mathrm{~d}_{\text {nii }}^{-1}$ to $\mathrm{i} \times \mathrm{s}$ and $\mathrm{s} \times \mathrm{i}$ if the sire of animal i is identified,
3) Add $-1 / 2 d_{n i i}^{-1}$ to $i \times d$ and $d \times i$ if the dam of animal i is identified, and
4) Add $1 / 4 \mathrm{~d}_{\text {nii }}{ }^{-1}$ to $\mathrm{s} \times \mathrm{s}, \mathrm{s} \times \mathrm{d}, \mathrm{d} \times \mathrm{s}$, and $\mathrm{d} \times \mathrm{d}$ if the sire and dam of animal i are identified.
where the $d_{\text {nii }}{ }^{-1}$ are $n_{t} \times n_{t}$ submatrices of multiple trait interbreed nonadditive genetic variances and covariances.

Thus,

$$
\mathrm{g}_{\mathrm{n}}^{11}=\left[\begin{array}{cc}
8 & 6 \\
6 & 16
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{cc}
6 & 4.5 \\
4.5 & 12
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1}
$$

Mauricio A. Elzo, University of Florida, 2010, 2014.

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{n}}{ }^{12}=1 / 4\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{13}=1 / 4\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{14}=-1 / 2\left[\begin{array}{cc}
6 & 4.5 \\
4.5 & 12
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{15}=-1 / 2\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{16}=-1 / 2\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{22}=\left[\begin{array}{cc}
8 & 6 \\
6 & 16
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{cc}
6 & 4.5 \\
4.5 & 12
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{23}=-1 / 2\left[\begin{array}{cc}
6 & 4.5 \\
4.5 & 12
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{25}=-1 / 2\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{33}=\left[\begin{array}{cc}
6 & 4.5 \\
4.5 & 12
\end{array}\right]^{-1}+1 / 4\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{36}=-1 / 2\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{44}=\left[\begin{array}{cc}
6 & 4.5 \\
4.5 & 12
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{55}=\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1} \\
& \mathrm{~g}_{\mathrm{n}}{ }^{66}=\left[\begin{array}{ll}
4 & 3 \\
3 & 8
\end{array}\right]^{-1}
\end{aligned}
$$

The inverse of the multiple trait multibreed nonadditive genetic covariance matrix is obtained by substituting submatrices $\left\{\mathrm{g}_{\mathrm{n}}{ }^{\mathrm{ij}}\right\}, \mathrm{i}, \mathrm{j}=1, \ldots, 6$, in matrix $\mathrm{G}_{\mathrm{n}}{ }^{-1}$.

Multiple Trait Multibreed Environmental Variances

Multibreed environmental variances are also computed by conditioning them on breeds of origin.
Thus, they are obtained using the expression:

$$
\mathrm{V}_{\mathrm{et}}=\sum_{\mathrm{b}=1}^{\mathrm{n}_{\mathrm{b}}} \mathrm{p}_{\mathrm{b}}^{\mathrm{i}}\left(\mathrm{~V}_{\mathrm{et}}\right)_{\mathrm{b}}+\sum_{\mathrm{b}=1}^{\mathrm{n}_{\mathrm{b}}-1} \sum_{\mathrm{b}^{\prime}>\mathrm{b}}^{\mathrm{n}_{\mathrm{b}}}\left(\mathrm{p}_{\mathrm{b}}^{\mathrm{s}} \mathrm{p}_{\mathrm{b}^{\prime}}^{\mathrm{s}}+\mathrm{p}_{\mathrm{b}}^{\mathrm{d}} \mathrm{p}_{\mathrm{b}^{\prime}}^{\mathrm{d}}\right)\left(\mathrm{V}_{\mathrm{et}}\right)_{\mathrm{bb}}
$$

where $\mathrm{e}=$ environmental, $\mathrm{t}=$ vector of traits, superscripts $\mathrm{i}=$ individual, $\mathrm{s}=$ sire, and $\mathrm{d}=\operatorname{dam}$, subscripts b and b^{\prime} represent two breeds, and

$$
\begin{aligned}
\mathrm{n}_{\mathrm{b}}= & \text { number of breeds, } \\
\mathrm{p}_{\mathrm{b}}{ }^{\mathrm{x}}= & \text { expected fraction of breed } \mathrm{b} \text { in animal } \mathrm{x}, \mathrm{x}=\mathrm{i}, \mathrm{~s}, \mathrm{~d}, \\
\left(\mathrm{~V}_{\mathrm{et}}\right)_{\mathrm{b}}= & \text { matrix of multiple trait intrabreed environmental variances and covariances in } \\
& \text { breed } \mathrm{b}, \\
\left(\mathrm{~V}_{\mathrm{et}}\right)_{\mathrm{b} \mathrm{~b}^{\prime}}= & \text { matrix of multiple trait interbreed environmental variances and covariances in } \\
& \text { pair of breeds } \mathrm{b} \text { and } \mathrm{b}^{\prime} .
\end{aligned}
$$

The matrices of multiple trait multibreed environmental variances and covariances for the 6 animals in the example are:

	Animal		
	Numbe \mathbf{r}	Breed Group	Multiple Trait Multibreed Environmental Variance
Parents	1	A	$\left[\begin{array}{ll}12 & 10 \\ 10 & 49\end{array}\right]$
	2	B	$\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]$
	3	$11 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$1 / 2\left[\begin{array}{ll}12 & 10 \\ 10 & 49\end{array}\right]+1 / 2\left[\begin{array}{lc}8 & 6 \\ 6 & 16\end{array}\right]=\left[\begin{array}{cc}10 & 8 \\ 8 & 32.5\end{array}\right]$
Non-parents	4	$1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$	$1 / 2\left[\begin{array}{ll}12 & 10 \\ 10 & 49\end{array}\right]+1 / 2\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]=\left[\begin{array}{cc}10 & 8 \\ 8 & 32.5\end{array}\right]$

Mauricio A. Elzo, University of Florida, 2010, 2014.

| 5 | $1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$ | $1 / 2\left[\begin{array}{ll}12 & 10 \\ 10 & 49\end{array}\right]+1 / 2\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]=\left[\begin{array}{cc}10 & 8 \\ 8 & 32.5\end{array}\right]$ | |
| :---: | :---: | :---: | :---: | :---: |
| | 6 | $3 / 4 \mathrm{~A} 1 / 4 \mathrm{~B}$ | $3 / 4$$\left[\begin{array}{cc}12 & 10 \\ 10 & 49\end{array}\right]+1 / 4\left[\begin{array}{cc}8 & 6 \\ 6 & 16\end{array}\right]+[(1)(0)+(1 / 2)(1 / 2)]\left[\begin{array}{ll}16 & 14 \\ 14 & 25\end{array}\right]$ |
| $=\left[\begin{array}{cc}15 & 12.5 \\ 12.5 & 47\end{array}\right]$ | | | |

The left hand side of the MME_MTMAM for Example 1 is shown in the output of the SAS IML program.

The vector of effects and the right hand side (RHS) of the MME_MTMAM for Example 1 are:

Effect	RHS
Mean $_{\text {bw }}$	-29.405
Mean $_{\text {ww }}$	60.7949
Breed $_{\text {Abw }}$	-11.419
Breed $_{\text {Aww }}$	25.6612
Breed $_{\text {Bbw }}$	-17.986
Breed $_{\text {Bww }}$	35.1337
Heterosis $_{\text {ABbw }}$	-14.103
Heterosis $_{\mathrm{ABww}}$	31.4413
Sex $_{\text {Mbw }}$	-10.344
Sex $_{\text {Mww }}$	23.4738
Sex $_{\text {Fbw }}$	-19.061
Sex $_{\text {Fww }}$	37.3211
$\mathrm{a}_{\mathrm{abw} 1}$	-2.6086
$\mathrm{a}_{\text {aww1 }}$	6.43033

Mauricio A. Elzo, University of Florida, 2010, 2014.

$\mathrm{a}_{\text {abw2 }}$	-10.935
$\mathrm{a}_{\text {aww2 }}$	19.413
$\mathrm{a}_{\text {abw3 }}$	-3.8621
$\mathrm{a}_{\text {am3 }}$	8.82759
$\mathrm{a}_{\text {abw4 }}$	-4.2644
$\mathrm{a}_{\text {aww4 }}$	9.08046
$\mathrm{a}_{\text {abw5 }}$	-4.2184
$\mathrm{a}_{\text {aww5 }}$	10.023
$\mathrm{a}_{\text {abw6 }}$	-3.5171
$\mathrm{a}_{\text {aww6 }}$	7.0205
$\mathrm{a}_{\text {nbw1 }}$	-10.241
$\mathrm{a}_{\text {nww1 }}$	22.6137
$\mathrm{a}_{\text {nbw2 }}$	-8.0805
$\mathrm{a}_{\text {nww2 }}$	18.8506
$\mathrm{a}_{\text {nbw3 }}$	-1.7585
$\mathrm{a}_{\text {nww3 }}$	3.51025
$\mathrm{a}_{\text {nbw4 }}$	0
$\mathrm{a}_{\text {nww4 }}$	0
$\mathrm{a}_{\text {nbw }}$	0
$\mathrm{a}_{\text {nww }}$	0
$\mathrm{a}_{\text {nbw6 }}$	0
$\mathrm{a}_{\text {nww6 }}$	0

Mauricio A. Elzo, University of Florida, 2010, 2014.

Remarks:

1) The rank of the left hand side matrix of the MME is $(36-4)=32$.
2) Differences between breed effects, heterosis, and differences between sex effects are estimable.
3) The set of MME_MTMAM can be solved directly by:
a. Obtaining the generalized inverse of the left hand side (ginvlhs) and multiplying it by the right hand side (rhs), i.e.,

$$
\text { sol }=\text { ginvlhs * rhs }
$$

b. Imposing restrictions on the solutions. The number of equations in Example 1 is 36 and the rank of the left hand side of the MME_MTMAM is 32, thus restrictions need to be imposed to obtain solutions. These 4 restrictions could be:
i. Set the solution for the mean for each trait to zero, and
ii. Set the solution for breed B for each trait to zero. These restrictions are useful because the expectation of the multiple trait solutions for breed A estimate the difference between breeds A and B for these effects. Thus, breed B can be used as the genetic base of comparison for multiple trait additive multibreed genetic effects.
4) Fixed heterosis effects here are estimates of the difference between multiple trait interbreed (AB and $B A$) interaction effects relative to the average of multiple trait intrabreed interaction effects (AA and BB). Thus, multiple trait fixed heterosis effects can be used as the genetic base for comparison of nonadditive multibreed genetic effects.

Mauricio A. Elzo, University of Florida, 2010, 2014.
The vector of solutions (SOL; obtained without imposing restrictions on the solutions), and the standard error of solutions (SESOL; computed as the square root of the diagonals of the generalized inverse of the left hand side of the MME_MTMAM) are:

Effect	SOL	SESOL
$\mathrm{Mean}_{\text {bw }}{ }^{\text { }}$	15.5	1.55
Mean ww ${ }^{\circ}$	133.21	2.9
Breed ${ }_{\text {Abw }}{ }^{\circ}$	6.39	4.2
Breed $_{\text {Aww }}{ }^{\circ}$	71.38	7.87
Breed ${ }_{\text {Bbw }}{ }^{\circ}$	9.11	4.13
Breed $_{\text {Bww }}{ }^{\circ}$	61.83	7.74
Heterosis ${ }_{\text {ABbw }}{ }^{\circ}$	3.45	4.51
Heterosis ${ }_{\text {ABww }}{ }^{\circ}$	8.27	7.51
$\operatorname{Sex}_{\text {Mbw }}{ }^{\circ}$	11.18	2.69
$\operatorname{Sex}_{\text {Mww }}{ }^{\circ}$	82.69	4.9
$\operatorname{Sex}_{\text {Fbw }}{ }^{\circ}$	4.32	2.59
Sex ${ }_{\text {Fww }}{ }^{\circ}$	50.52	4.69
$\hat{\mathrm{a}}_{\text {abw1 }}$	-0.18	3.34
$\hat{a}_{\text {aww1 }}$	0.79	5.8
$\hat{a}_{\text {abw2 }}$	0.07	2.93
$\hat{a}_{\text {aww2 }}$	-0.57	6.42
$\hat{a}_{\text {abw3 }}$	0.2	2.86
$\hat{a}_{\text {aww3 }}$	-1.56	5.46

Mauricio A. Elzo, University of Florida, 2010, 2014.

$\hat{\mathrm{a}}_{\text {abw } 4}$	-0.27	2.92
$\hat{\mathrm{a}}_{\text {aww4 }}$	1.19	5.56
$\hat{\mathrm{a}}_{\text {abw5 }}$	0.01	3.16
$\hat{\mathrm{a}}_{\text {aww5 }}$	0.48	6.16
$\hat{\mathrm{a}}_{\text {abw6 }}$	-0.1	3.26
$\hat{\mathrm{a}}_{\text {aww6 }}$	-1.3	6.04
$\hat{\mathrm{a}}_{\text {nbw1 }}$	-0.34	2.62
$\hat{\mathrm{a}}_{\text {nww1 }}$	0.29	3.81
$\hat{\mathrm{a}}_{\text {nbw2 }}$	0.37	2.58
$\hat{\mathrm{a}}_{\text {nww2 }}$	-0.15	3.77
$\hat{\mathrm{a}}_{\text {nbw3 }}$	0.14	2.76
$\hat{\mathrm{a}}_{\text {nww3 }}$	-0.28	3.94
$\hat{\mathrm{a}}_{\text {nbw4 }}$	-0.17	2.78
$\hat{\mathrm{a}}_{\text {nww4 }}$	0.14	3.95
$\hat{\mathrm{a}}_{\text {nbw5 }}$	0.01	2.82
$\hat{\mathrm{a}}_{\text {nww5 }}$	0.07	4
$\hat{\mathrm{a}}_{\text {nbw6 }}$	-0.1	2.81
$\hat{\mathrm{a}}_{\text {nww6 }}$	0	3.98

Mauricio A. Elzo, University of Florida, 2010, 2014.
Multiple Trait Additive Multibreed Genetic Predictions
The vector of MTAMBV for animal i, computed as deviations from breed B (chosen as the genetic base), is:

$$
\text { MTAMBV }_{\mathrm{i}}=\hat{\mathrm{u}}_{\mathrm{ai}}=\operatorname{Prob}_{\text {Aanim }} \mathrm{i}^{*}\left(\operatorname{Breed}_{\mathrm{A}}{ }^{\circ}-\operatorname{Breed}_{\mathrm{B}}{ }^{\circ}\right)+\hat{\mathrm{a}}_{\mathrm{ai}}
$$

where

Prob $_{\text {Aanim } i}=$ expected fraction of breed A in animal i ,
Breed $_{\mathrm{A}}{ }^{\circ}=$ vector of multiple trait generalized least squares solutions for breed A ,
$\operatorname{Breed}_{\mathrm{B}}{ }^{\circ}=$ vector of multiple trait generalized least squares solutions for breed B,
$\hat{a}_{\mathrm{ai}} \quad=$ vector of multiple trait additive genetic BLUP for animal i.
The matrix of variances and covariances of errors of prediction (VEP) for vector MTAMBV is:

$$
\operatorname{VEP}(\mathrm{MTAMBV})=\operatorname{var}\left(\hat{\mathrm{u}}_{\mathrm{a}}-\mathrm{u}_{\mathrm{a}}\right)=\mathrm{K}_{\mathrm{a}}{ }^{*}(\text { ginvlhs }) * \mathrm{~K}_{\mathrm{a}}{ }^{\prime}
$$

where
$\mathrm{K}_{\mathrm{a}} \quad=\mathrm{n}_{\text {anim }} \times \mathrm{n}_{\mathrm{eq}}$ matrix specifying the factors multiplying vector MTAMBV, where $\mathrm{n}_{\text {anim }}$ $=$ number of animals, and $\mathrm{n}_{\mathrm{eq}}=$ number of equations, and
ginvlhs $=\mathrm{n}_{\mathrm{eq}} \times \mathrm{n}_{\mathrm{eq}}$ generalized inverse matrix of the left hand side of the MME.

Matrix K_{a} for MTMAM Example 1 is shown in the output of the SAS IML program.
The standard errors of prediction (SEP) of the elements of vector MTAMBV are computed as the square root of the diagonal elements of the VEP(MTAMBV) matrix.

Mauricio A. Elzo, University of Florida, 2010, 2014.
The vector of MTAMBV and their SEP for the 6 animals in Example 1 are:

Animal	Trait	Prob $_{\text {Ai }}$	Breed $_{\mathbf{A}}{ }^{\circ}-$ Breed $_{\mathbf{B}}{ }^{\circ}$	$\hat{\mathbf{a}}_{\mathbf{a i}}$	MTAMBV	SEP MTAMBV
1	BW	1	-2.72	-0.18	-2.89	7.85
1	WW	1	9.55	0.79	10.34	14.91
2	BW	0	-2.72	0.07	0.07	2.93
2	WW	0	9.55	-0.57	-0.57	6.42
3	BW	0.5	-2.72	0.2	-1.15	4.99
3	WW	0.5	9.55	-1.56	3.22	9.64
4	BW	0.5	-2.72	-0.27	-1.63	4.33
4	WW	0.5	9.55	1.19	5.97	8.37
5	BW	0.5	-2.72	0.01	-1.34	5.73
5	WW	0.5	9.55	0.48	5.25	11.37
6	BW	0.75	-2.72	-0.1	-2.14	6.56
6	WW	0.75	9.55	-1.3	5.86	12.53

Multiple Trait Nonadditive Multibreed Genetic Predictions
The vector of MTNMBV for animal i, computed assuming that males are mated to $1 / 2 \mathrm{~A} 1 / 2 \mathrm{~B}$
females, and vice versa, is:

$$
\text { MTNMBV }_{\mathrm{i}}=\hat{\mathrm{u}}_{\text {ni }}=\left(\operatorname{Prob}_{\text {Aanim } \mathrm{i}} * \operatorname{Prob}_{\text {Bmate }}+\operatorname{Prob}_{\text {Banim i }} * \operatorname{Prob}_{\text {Amate }}\right)\left(\operatorname{Heterosis~}_{\mathrm{AB}}{ }^{\circ}+\hat{\mathrm{a}}_{\text {ni }}\right)
$$

where
Prob $_{\text {Aanim }} \mathrm{F}=$ expected fraction of breed A in animal i ,
Prob $_{\text {Banimi }}=$ expected fraction of breed B in animal i ,

Mauricio A. Elzo, University of Florida, 2010, 2014.

Prob $_{\mathrm{Amate}}=$	expected fraction of breed A in the mate of animal i,
Prob $_{\mathrm{Bmate}}=$	expected fraction of breed B in the mate of animal i,
Heterosis $_{\mathrm{AB}}{ }^{\circ}=$	vector of multiple trait generalized least squares solutions heterosis effects
	due to interaction between alleles of breeds A and B in 1 locus,
$\hat{\mathrm{a}}_{\mathrm{ni}}$	$=$
$=$	vector of multiple trait nonadditive genetic BLUP for animal i.

The matrix of variances and covariances of errors of prediction (VEP) for vector MTNMBV is:

$$
\operatorname{VEP}(\mathbf{M T N M B V})=\operatorname{var}\left(\hat{u}_{\mathrm{n}}-\mathrm{u}_{\mathrm{n}}\right)=\mathrm{K}_{\mathrm{n}} *(\text { ginvlhs }) * \mathrm{~K}_{\mathrm{n}}
$$

where

$$
\begin{aligned}
\mathrm{K}_{\mathrm{n}}= & \mathrm{n}_{\mathrm{anim}} \times \mathrm{n}_{\mathrm{eq}} \text { matrix specifying the factors multiplying vector MTNMBV, where } \\
& \mathrm{n}_{\mathrm{anim}}=\text { number of animals, and } \mathrm{n}_{\mathrm{eq}}=\text { number of equations, and } \\
\text { ginvlhs }= & \mathrm{n}_{\mathrm{eq}} \times \mathrm{n}_{\mathrm{eq}} \text { generalized inverse matrix of the left hand side of MME_MTMAM. }
\end{aligned}
$$

Matrix K_{n} for MTMAM Example 1 is shown in the output of the SAS IML program.
The standard errors of prediction (SEP) of the elements of vector MTNMBV are computed as the square roots of the diagonal elements of the VEP(MTNMBV) matrix.

The vector of MTNMBV and their SEP for the 6 animals in MTMAM Example 1 are:

Animal	Trait	Prob $_{\mathbf{A i}}{ }^{*}$ Prob $_{\text {Bmate }}+$ Prob $_{\text {Bi }}{ }^{*}$ Prob $_{\text {Amate }}$	Heterosis $_{\text {AB }}{ }^{\circ}$	$\hat{\mathbf{a}}_{\mathbf{n i}}$	MTNMBV	SEP MTNMBV
1	BW	$1 * 0.5+0 * 0.5$	3.45	-0.34	1.55	1.94
1	WW	$1 * 0.5+0 * 0.5$	8.27	0.29	4.28	3.43
2	BW	$0 * 0.5+1 * 0.5$	3.45	0.37	1.91	1.95
2	WW	$0 * 0.5+1 * 0.5$	8.27	-0.15	4.06	3.41

Mauricio A. Elzo, University of Florida, 2010, 2014.

3	BW	$0.5 * 0.5+0.5 * 0.5$	3.45	0.14	1.79	2.34
3	WW	$0.5 * 0.5+0.5 * 0.5$	8.27	-0.28	3.99	3.87
4	BW	$0.5 * 0.5+0.5 * 0.5$	3.45	-0.17	1.64	2.34
4	WW	$0.5 * 0.5+0.5 * 0.5$	8.27	0.14	4.21	3.88
5	BW	$0.5 * 0.5+0.5 * 0.5$	3.45	0.01	1.73	2.02
5	WW	$0.5 * 0.5+0.5 * 0.5$	8.27	0.07	4.17	3.48
6	BW	$0.75 * 0.5+0.25 * 0.5$	3.45	-0.1	1.67	2.19
6	WW	$0.75 * 0.5+0.25 * 0.5$	8.27	0	4.14	3.68

Multiple Trait Total Multibreed Genetic Predictions

The vector of MTTMBV for animal i is equal to the sum of its vectors of predicted multiple trait multibreed additive (MTAMBV) and nonadditive (MTNMBV) genetic effects, i.e.,

$$
\text { MTTMBV }_{\mathrm{i}}=\mathrm{MTAMBV}_{\mathrm{i}}+\text { MTNMBV }_{\mathrm{i}}=\hat{\mathrm{u}}_{\mathrm{ai}}+\hat{\mathrm{u}}_{\mathrm{ni}}
$$

The matrix of variances and covariances of errors of prediction (VEP) for vector MTTMBV is:

$$
\operatorname{VEP}(\text { MTTMBV })=\operatorname{var}\left(\hat{u}_{\mathrm{t}}-\mathrm{u}_{\mathrm{t}}\right)=\mathrm{K}_{\mathrm{t}}{ }^{*}(\text { ginvlhs }) * \mathrm{~K}_{\mathrm{t}}^{\prime}
$$

where

$$
\begin{aligned}
\mathrm{K}_{\mathrm{t}}= & \mathrm{n}_{\mathrm{anim}} \times \mathrm{n}_{\mathrm{eq}} \text { matrix specifying the factors multiplying vector MTTMBV, where } \\
& \mathrm{n}_{\text {anim }}=\text { number of animals, and } \mathrm{n}_{\mathrm{eq}}=\text { number of equations, and }
\end{aligned}
$$

ginvlhs $=\mathrm{n}_{\mathrm{eq}} \times \mathrm{n}_{\mathrm{eq}}$ generalized inverse matrix of the left hand side of the MME.

Matrix K_{t} for MTMAM Example 1 is shown in the output of the SAS IML program.
The standard errors of prediction (SEP) of the elements of vector MTTMBV are computed as the square roots of the diagonal elements of the VEP(MTTMBV) matrix.

Mauricio A. Elzo, University of Florida, 2010, 2014.
The vector of MTTMBV and their SEP for the 6 animals in MTMAM Example 1 are:

Animal	Trait	MTAMBV	MTNMBV	MTTMBV	SEP MTTMBV
1	BW	-2.89	1.55	-1.34	7.8
1	WW	10.34	4.28	14.61	14.6
2	BW	0.07	1.91	1.98	3.6
2	WW	-0.57	4.06	3.49	7.49
3	BW	-1.15	1.79	0.64	4.83
3	WW	3.22	3.99	7.21	9.18
4	BW	-1.63	1.64	0.01	4.29
4	WW	5.97	4.21	10.17	7.94
5	BW	-1.34	1.73	0.39	5.67
5	WW	5.25	4.17	9.42	11.04
6	BW	-2.14	1.67	-0.47	6.48
6	WW	5.86	4.14	9.99	12.21

References

Henderson, C. R. 1976. A simple method for computing the inverse of a large numerator relationship matrix used in prediction of breeding values. Biometrics 32:69-83.

Elzo, M. A. 1990a. Recursive procedures to compute the inverse of the multiple trait additive genetic covariance matrix in inbred and noninbred multibreed populations. J. Anim. Sci. 68:1215-1228.

Elzo, M. A. 1990b. Covariances among sire \times breed group of dam interaction effects in

Mauricio A. Elzo, University of Florida, 2010, 2014. multibreed sire evaluation procedures. J. Anim. Sci. 68:4079-4099.

Elzo, M. A. 1994. Restricted maximum likelihood estimation of additive and nonadditive genetic variances and covariances in multibreed populations. J. Anim. Sci. 72:3055-3065.

Elzo, M. A. 1996. Animal Breeding Notes. University of Florida, Gainesville, Florida, USA.
Elzo, M. A. 2006. Animal Breeding Notes. Breeding value of animal for a single trait in a multibreed population. http://www.animal.ufl.edu/elzo/Publications/Animal\ Breeding\ Notes/Multibreed/M ABN_14M/MABN_14M_Part\%202_2007_a.pdf. Accessed December 16, 2007.

Quaas, R. L. 1975. From Mendel's laws to the A inverse. Mimeograph, Cornell University, p 116.

Quaas, R. L. 1976. Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics 32:949-953.

