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ANIMAL BREEDING NOTES 

CHAPTER 21M 

MULTIPLE TRAIT MULTIBREED ANIMAL MODEL 

 

Multiple Trait Multibreed Animal Model (MTMAM) 

Objective:  to predict multiple-trait additive genetic effects (MTAMBV), nonadditive genetic 

effects (MTNMBV), and total genetic effects (MTTMBV) in a multibreed population, based on 

animals’ own records and records from their relatives. 

Assumptions 

1) Animals belong to a multibreed population, i.e., a population composed of purebred and 

crossbred animals that interbreed; 

2)  Animals have 1 or more records from several traits; 

3) Nonadditive genetic effects are explained in terms of intrabreed and interbreed interaction 

effects at 1 or more loci that are modeled as independent regression effects; 

4) Multibreed additive genetic variances and covariances among records are linear 

combinations of  intrabreed and interbreed additive genetic variances and covariances; 

5) Multibreed nonadditive genetic variances and covariances among records are linear 

combinations of  intrabreed and interbreed nonadditive genetic variances and covariances; 

6) Multibreed environmental variances and covariances among records are linear combinations 

of  intrabreed and interbreed environmental variances and covariances; and  

7) There is either no selection in the population, or: 

a. if selection occurred based on records, selection was within fixed effects, and 

b. if selection occurred based on MTAMBV, the relationship matrix was complete. 
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The MTMAM is: 

    y = Xb + ZaQa ga + ZnQn gn + Za aa + Zn an + e 

   E[y] = Xb + ZaQa ga + ZnQn gn 
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  var(y)  = ZaGaZa
’
+ ZnGnZn

’
+ R, 

where 

y = vector of animal records ordered by trait within animal (e.g., birth weight, weaning 

weight), 

b = vector of unknown fixed effects (e.g., contemporary groups, sex of calf, age of dam) 

ordered by trait within effect, 

ga = vector of unknown additive group genetic effects (e.g., breed, breed × year of birth) 

ordered by trait within genetic group,   

gn = vector of unknown nonadditive group genetic effects (e.g., heterosis at 1 locus, heterosis 

at  2 loci) ordered by trait within genetic group, 

aa = vector of unknown random additive genetic effects (MTAMBV) ordered by trait within 

additive genetic effect,  

an = vector of unknown random nonadditive genetic effects (MTNMBV) ordered by trait 

within nonadditive genetic effect, 

 e = vector of unknown random residual effects ordered by trait within animal, 

 X = known incidence matrix relating records to fixed effects in vector b, 

 Za = known incidence matrix relating records to elements of vector aa,  
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 Zn = known incidence matrix relating records to elements of vector an, 

Qa = known incidence matrix relating random additive genetic effects to additive genetic 

groups in vector ga, 

Qn = known incidence matrix relating random nonadditive genetic effects to nonadditive 

genetic groups in vector gn, 

Ga = {Gij}, where Gij = matrix of multiple trait multibreed additive genetic covariances 

between animals i and j, ordered by traits within animal, 

Gn = diag{Am*V0nm, m = 1,..., Nm}, where Am is the matrix of probabilities that pairs of 

animals received the same alleles at m loci, and V0nm is the matrix of multiple trait 

variances and covariances due to interaction effects among alleles at m loci.  If m = 1, 

then Gn = A* V0n1, where A = matrix of additive relationships and V0n1 = matrix of 

multiple trait variances and covariances due to intralocus interaction effects (intrabreed 

and interbreed).  Further, if only interbreed intralocus effects are included in the model, 

then V0n1 = matrix of multiple trait variances and covariances due to intralocus 

interbreed interaction effects, 

R = diag {Vei}, where Vei = nt × nt matrix of multiple trait multibreed residual variances and 

covariances for animal i, where t = number of traits.  Residual covariance matrices are 

allowed to vary among animals of different breed composition due to environmental 

and nonadditive genetic effects not included in the multibreed model.  If animals of all 

breed compositions are assumed to be similarly affected by environmental effects, and 

residual nonadditive genetic effects are assumed to be equal across breed compositions, 

then R = I * Ve, where Ve = nt × nt matrix of multibreed residual variances and 

covariances common to all animals in a multibreed population. 
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The mixed model equations (MME) for the MTMAM are: 
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Example 1 of the MTMAM for a Non-inbred Multibreed Population 

Animal Breed 

Compsn 

Sex Birth 

weight 

(kg) 

Weaning 

weight 

(kg) 

Sire Breed 

Compsn 

Dam Breed 

Compsn 

1 A M 33 289 0 A 0 A 

2 B F 29 245 0 B 0 B 

3 ½ A ½ B F 32 256 0 A 2 B 

4 ½ A ½ B F 30 261 1 A 0 B 

5 ½ A ½ B M 38 292 1 A 2 B 

6 ¾ A ¼ B M 35 286 1 A 3 ½ A ½ B 

 

Assumptions for the Example 

1) Matrices of multiple trait additive genetic variances and covariances: 

Intrabreed multiple trait additive genetic covariance matrix for breed A: 

VaAA = [
12 10
10 36

] kg
2 

Intrabreed multiple trait additive genetic covariance matrix for breed B: 

VaBB = [
9 12

12 44
] kg

2 

Interbreed multiple trait additive genetic covariance matrix for combination of breeds AB: 
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VaAB = [
4 1
1 22

] kg
2 

2) Matrices of multiple trait nonadditive genetic variances and covariances due to sire × 

breed group of dam interaction effects = nonadditive genetic variances due to dam × 

breed group of sire interaction effects.   Variation from nonadditive effects due to sire × 

dam intra and interbreed interaction effects are assumed to be part of the residual variance. 

Intrabreed multiple trait nonadditive genetic covariance matrix for breed A: 

VnAA = [
2 1
1 4

] kg
2 

Intrabreed multiple trait nonadditive genetic covariance matrix for breed B: 

VnBB = [
4 2
2 9

] kg
2 

Interbreed multiple trait additive genetic covariance matrix for combination of breeds AB: 

VnAB = [
8 6
6 16

] kg
2
 

Simplifying assumption: only intralocus interbreed sire × breed group of dam and dam × 

breed group of sire interaction effects (i.e., sire and dam random heterosis effects) are 

important.  Intralocus intrabreed AA and BB nonadditive effects and interactions among 

alleles at 2 or more loci due to sire × breed group of dam and dam × breed group of sire 

interactions are assumed to be contained in the residual. Thus, only intralocus interbreed 

interactions will be fitted in the model for the example.  Consequently, only  

VnAB = [
8 6
6 16

] kg
2
  

will be needed. 

3) Matrices of multiple trait environmental variances and covariances: 

Environmental multiple trait covariance matrix for breed A: 
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VeAA = [
12 10
10 49

] kg
2 

Environmental multiple trait covariance for breed B: 

VeBB = [
8 6
6 16

] kg
2 

Environmental multiple trait covariance for combination of breeds AB: 

VeAB = [
16 14
14 25

] kg
2 

4) Environmental covariances among records from different animals are zero. 

 

Multiple Trait Multibreed Animal Model for the Example 
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The vectors and matrices of the MTMAM model are: 
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Matrices of Multiple Trait Multibreed Additive Genetic Variances and Covariances 

Matrices of multiple trait multibreed additive genetic variances and covariances are computed by 

conditioning them on the breed of origin of alleles using the expression: 

 Vat = ])b|t[Evar(]b|t[var(E   

 Vat =    
'bbat

n

b'b

d

'b

d

b

s

'b

s

b

n

1b

1n

1b
bat

i

b V)pppp(Vp
bb b

 






  

where a = additive genetic, t = vector of traits, superscripts i = individual, s = sire, and d = dam, 

subscripts b and b represent two breeds, and 

  nb  = number of breeds, 

  pb
x
  = expected fraction of breed b in animal x, x = i, s, d, 

(Vat)b = matrix of multiple trait intrabreed additive genetic variances and covariances 

in breed b, 
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(Vat)bb = matrix of multiple trait interbreed additive genetic variances and covariances 

in pair of breeds b and b. 

 

The matrices of multiple trait multibreed additive genetic variances and covariances for the 6 

animals in the example are: 

 Animal 

 Number Breed Group Multiple Trait Multibreed Additive Genetic 

Covariance Matrix 

Parents 1 A [
12 10
10 36

] 

 2 B [
9 12

12 44
] 

 3 ½ A ½ B 
½ [

12 10
10 36

] + ½ [
9 12

12 44
] = [

10.5 11
11 40

] 

Non-parents 4 ½ A ½ B 
½ [

12 10
10 36

] + ½ [
9 12

12 44
]= [

10.5 11
11 40

] 

 5 ½ A ½ B 
½ [

12 10
10 36

] + ½ [
9 12

12 44
] = [

10.5 11
11 40

] 

 6 ¾ A ¼ B ¾ [
12 10
10 36

]+ ¼ [
9 12

12 44
] + [(1)(0) + 

(½)(½)][
4 1
1 22

]  = [
12.25 10.75
10.75 43.5

] 

 

Inverse of the Multiple Trait Multibreed Additive Genetic Covariance Matrix  

The equation for the inverse of the multiple trait covariance matrix of multibreed additive genetic 

effects, Ga
-1

, can be written as follows: 

  Ga
B1

 = {ga
ij
} 

    = {∑ 𝐭𝐊
𝐤=𝟏 𝐢𝐤

 * 𝐝𝐚𝐤
−𝟏 * 𝐭𝐤𝐣} 

where  K is the number of animals in the pedigree, tik are elements of T’ = (I B 2 P), dak
-1

 are nt × 
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nt multiple trait submatrices of block-diagonal matrix Da
B1

, and tkj are elements of T = (I B 2 P), 

and  

  I = identity matrix, 

P = matrix that relates animals to their sires and dams; each row of P contains up to 2 

nonzero elements: a 1 for the sire and a 1 for the dam of an animal, 

Da
-1

 = inverse of block-diagonal matrix of residual multiple trait additive genetic variances 

and covariances.  Because Da
-1 

is block-diagonal, its inverse is equal to the inverse of 

its diagonal submatrices, i.e., Da
-1

 = { daii
-1

}. 

 

The nt × nt multiple trait submatrices of block-diagonal matrix Da
-1

 are computed using the 

expression: 

1
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where Fcs and Fcd are the coefficients of inbreeding of common ancestors of the sire and the dam of 

animal i, and δs = 1 if the sire is known, else δs = 0, and δd = 1 if the dam is known, else δd = 0.   

In non-inbred multibreed populations, the Fcs and Fcd are equal to zero.  Thus, the expression for 

daii
-1

 simplifies to: 

1

aiid        1

datd4
1

sats4
1

iat VVV

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The daii
-1

 for the six animals in the example, computed using the formula for a non-inbred 

multibreed population, are: 
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 Animal 

 Number Breed 

Group 

daii
-1 

Parents 1 A 
[
12 10
10 36

]
−1

 

 2 B 
[

9 12
12 44

]
−1

 

 3 ½ A ½ B 
[[

10.5 11
11 40

] –  ¼ [
9 12

12 44
]]

−1

= [
8.25 8

8 29
]

−1
 

Non-parents 4 ½ A ½ B 
[[

10.5 11
11 40

] –  ¼ [
12 10
10 36

]]

−1

= [
7.5 8.5
8.5 31

]
−1

 

 5 ½ A ½ B 
[[

10.5 11
11 40

] –  ¼ [
12 10
10 36

] –  ¼ [
9 12

12 44
]]

−1

 = 

[
5.25 5.5
5.5 20

]
−1

  

 6 ¾ A ¼ B 
[[

12.25 10.75
10.75 43.5

] –  ¼ [
12 10
10 36

] –  ¼ [
10.5 11
11 40

]]

−1

 

= [
6.625 5.5

5.5 24.5
]

−1

 

 

The lower-triangular matrix P is: 
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The inverse of the block-diagonal matrix Da is: 

  
Da

−1 = {daii
−1

} 

where  

 da11
−1 = [

12 10
10 36

]
−1

 

 da22
−1 = [

9 12
12 44

]
−1

 

 da33
−1 = [

8.25 8
8 29

]
−1

 

 da44
−1 = [

7.5 8.5
8.5 31

]
−1

 

 da55
−1 = [

5.25 5.5
5.5 20

]
−1

 

 da66
−1 = [

6.625 5.5
5.5 24.5

]
−1

 

The inverse of the multiple trait multibreed additive genetic covariance matrix is: 
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ggg|ggg

66

a

36

a

16

a

55

a

25

a

15

a

44

a

14

a

36

a

33

a

23

a

13

a

25

a

23

a

22

a

12

a

16

a

15

a

14

a

13

a

12

a

11

a



































  

             
    parents    non-parents 

The rules used to compute the elements of Ga
B1

 are : 

1) Add  daii
-1

 to i × i, 
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2) Add  –½ daii
-1

 to i × s and s × i if the sire of animal i is identified, 

3) Add  –½ daii
-1

 to i × d and d × i if the dam of animal i is identified, and  

4) Add  ¼ daii
-1

 to s × s, s × d, d × s, and d × d if the sire and dam of animal i are identified. 

Notice that the rules to compute Ga
B1

 for multiple traits effects are the same as those for single 

traits, except that the daii
-1

 are nt × nt submatrices multiple trait variances and covariances 

instead of scalars.  

Thus, 

 ga
11

  = [
12 10
10 36

]
−1

+ ¼ [
7.5 8.5
8.5 31

]
−1

+ ¼ [
5.25 5.5
5.5 20

]
−1

 
+ ¼ [

6.625 5.5
5.5 24.5

]
−1

 

 ga
 12

 = ¼ [
5.25 5.5
5.5 20

]
−1

 

 ga
 13

 = ¼ [
6.625 5.5

5.5 24.5
]

−1

 

 ga
 14

 = B ½ [
7.5 8.5
8.5 31

]
−1

 

 ga
 15

 = B ½ [
5.25 5.5
5.5 20

]
−1

 

 ga
 16

 = B ½ [
6.625 5.5

5.5 24.5
]

−1

 

 ga
 22

 = [
9 2
2 4

]
−1

 + ¼ [
20.25 4.5

4.5 13
]

−1

 + ¼ [
5.25 5.5
5.5 20

]
−1

 

ga
 23

 = B ½ [
20.25 4.5

4.5 13
]

−1

 

 ga
 25

 = B ½ [
5.25 5.5
5.5 20

]
−1

 

 ga
 33

 = [
20.25 4.5

4.5 13
]

−1

 + ¼ [
5.25 5.5
5.5 20

]
−1
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 ga
 36

 = B ½ [
6.625 5.5

5.5 24.5
]

−1

 

 ga
 44

 = [
7.5 8.5
8.5 31

]
−1

 

 ga
 55

 = [
5.25 5.5
5.5 20

]
−1

 

 ga
 66

 = [
6.625 5.5

5.5 24.5
]

−1

  

The inverse of the multiple trait multibreed additive genetic covariance matrix is obtained by 

substituting submatrices {ga
ij
}, i, j = 1, …, 6, in matrix Ga

-1
. 

 

Matrices of Multiple Trait Multibreed Nonadditive Genetic Variances and Covariances 

Matrices of multiple trait multibreed nonadditive genetic variances and covariances in a regression 

model that accounts for sire × breed group of dam and dam × breed group of sire interaction effects 

are equal to the intrabreed and interbreed matrices of multiple trait interaction variances and 

covariances at 1 or more loci.  Nonadditive genetic regression effects are independent of each 

other.  For example, if 2 nonadditive genetic effects (e.g., intrabreed AA and interbreed AB) were 

fitted in a model, the matrix of multiple trait multibreed nonadditive genetic variances and 

covariances would be block-diagonal with 2 blocks, i.e., Gn = diag{GnAA, GnAB}.   However, only a 

single random nonadditive genetic effect:  intralocus interbreed interaction will be fitted here.  

Under this assumption, Gn = GnAB, and the only nonadditive genetic matrix of multiple trait 

variances and covariances needed for the example is the multiple trait covariance matrix of 

intralocus interbreed interaction effects, i.e., VnAB = [
8 6
6 16

] kg
2
.   

The multiple trait multibreed nonadditive genetic covariance matrices for the 6 animals in the 
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example is: 

 

 Animal 

 Number Breed Group Multiple Trait Multibreed Nonadditive 

Genetic Covariance Matrix 

Parents 1 A [
8 6
6 16

] 

 2 B [
8 6
6 16

] 

 3 ½ A ½ B [
8 6
6 16

] 

Non-parents 4 ½ A ½ B [
8 6
6 16

] 

 5 ½ A ½ B [
8 6
6 16

] 

 6 ¾ A ¼ B [
8 6
6 16

] 

 

Inverse of the Multiple Trait Multibreed Nonadditive Genetic Covariance Matrix 

Multiple trait covariance matrices among sire × breed group of dam and dam × breed group of sire 

interaction effects are assumed to be caused by similarities among sires and(or) dams due to 

common ancestry.  Thus, the equation for the inverse of the covariance matrix of multiple trait 

multibreed nonadditive genetic effects due to intralocus interbreed sire × breed group of dam 

interaction and dam × breed group of sire interaction effects, Gn
-1

, is: 

Gn
B1

 = {gn
ij
} 

    = {∑ 𝐭𝐊
𝐤=𝟏 𝐢𝐤

 * 𝐝𝐧𝐤
−𝟏 * 𝐭𝐤𝐣} 

where  K is the number of animals in the pedigree, tik are elements of T’ = (I B 2 P),  dnk
-1

 are nt × 

nt multiple trait submatrices of block-diagonal matrix Dn
B1

, and tkj are elements of T = (I B 2 P), 

and   
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  I = identity matrix, 

P = matrix that relates animals to their sires and dams; each row of P contains up to 2 

nonzero elements: a 1 for the sire and a 1 for the dam of an animal, 

Dn
-1

  = inverse of block-diagonal matrix of residual multiple trait nonadditive genetic 

variances and covariances, where Dn
-1

 = { dnii
-1

}. 

 

The nt × nt multiple trait submatrices of block-diagonal matrix Dn
-1

 are computed using the 

expression: 

1

niid             1

nAB

1

dd4
1

ss4
1

1

nABdd4
1

ss4
1 V*F1F11V*F1F11 


 

because VnAB is the same for all sire × breed group of dam combinations, and Fs and Fd are the 

coefficients of inbreeding of the sire and the dam of animal i, and δs = 1 if the sire is known, else δs 

= 0, and δd = 1 if the dam is known, else δd = 0.   

In non-inbred multibreed populations, the Fs and Fd are equal to zero.  Thus, the expression for 

dnii
-1

 simplifies to: 

1

niid       1

nAB

1

d4
1

s4
1

1

nABd4
1

s4
1 V*1V*1 

  

 

The diagonal elements of the Dn
-1

 matrix are: 

 Animal 

 Number Breed Group (dnii)
-1

* VnAB
-1

 

Parents 1 A 
[(1)]

-1
 *[

8 6
6 16

]
−1

 = [
8 6
6 16

]
−1

 

 2 B 
[(1)]

-1
 * [

8 6
6 16

]
−1

 = [
8 6
6 16

]
−1
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 3 ½ A ½ B 
[(1– ¼)]

-1
 * [

8 6
6 16

]
−1

 = [
6 4.5

4.5 12
]

−1
 

Non-parents 4 ½ A ½ B 
[(1– ¼)]

-1
 * [

8 6
6 16

]
−1

  =  [
6 4.5

4.5 12
]

−1

 

 5 ½ A ½ B 
[(1– ¼ – ¼)]

-1
 * [

8 6
6 16

]
−1

 = [
4 3
3 8

]
−1

 

 6 ¾ A ¼ B 
[(1– ¼ – ¼)]

-1
 * [

8 6
6 16

]
−1

 = [
4 3
3 8

]
−1

 

 

The P matrix is: 

P = 

































 000|101 

 00|011 

  0|001 

---|---

   |010 

   | 00 

   |  0 

 

The inverse of the block-diagonal matrix Dn is: 

  
Dn

−1 = {dnii
−1

} 

where  

 dn11
−1 = [

8 6
6 16

]
−1

 

 dn22
−1 = [

8 6
6 16

]
−1

 

 dn33
−1 = [

6 4.5
4.5 12

]
−1

 

 dn44
−1 = [

6 4.5
4.5 12

]
−1
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 dn55
−1 = [

4 3
3 8

]
−1

 

 dn66
−1 = [

4 3
3 8

]
−1

 

The inverse of the multiple trait multibreed nonadditive genetic covariance matrix is : 

Gn
B1

 = (Dn
B1

 B 2 Dn
B1

 P B 2 P Dn
B1

 + 3 P Dn
B1

 P) * VnAB
-1

 

Gn
 B1

 = 

nonparents

parents

g00|g0g

0g0|0gg

00g|00g

|

g00|ggg

0g0|ggg

ggg|ggg

66

n

36

n

16

n

55

n

25

n

15

n

44

n

14

n

36

n

33

n

23

n

13

n

25

n

23

n

22

n

12

n

16

n

15

n

14

n

13

n

12

n

11

n



































  

     parents    non-parents 

The rules used to compute the elements of matrix Gn
-1 

for multiple trait interbreed intralocus 

interaction effects are: 

1) Add  dnii
-1

 to i × i, 

2) Add  –½ dnii
-1

 to i × s and s × i if the sire of animal i is identified, 

3) Add  –½ dnii
-1

 to i × d and d × i if the dam of animal i is identified, and  

4) Add  ¼ dnii
-1

 to s × s, s × d, d × s, and d × d if the sire and dam of animal i are identified. 

where the dnii
-1

 are nt × nt submatrices of multiple trait interbreed nonadditive genetic variances and 

covariances. 

Thus, 

 gn
11

  = [
8 6
6 16

]
−1

+ ¼ [
6 4.5

4.5 12
]

−1

 + ¼ [
4 3
3 8

]
−1

 
+ ¼ [

4 3
3 8

]
−1
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 gn
 12

 = ¼ [
4 3
3 8

]
−1

 

 gn
 13

 = ¼ [
4 3
3 8

]
−1

 

 gn
 14

 = B ½ [
6 4.5

4.5 12
]

−1

  

 gn
 15

 = B ½ [
4 3
3 8

]
−1

 
 

 gn
 16

 = B ½ [
4 3
3 8

]
−1

 

 gn
 22

 = [
8 6
6 16

]
−1

 + ¼ [
6 4.5

4.5 12
]

−1

 + ¼ [
4 3
3 8

]
−1

  

 gn
 23

 = B ½ [
6 4.5

4.5 12
]

−1

 

 gn
 25

 = B ½ [
4 3
3 8

]
−1

 
 

 gn
 33

 = [
6 4.5

4.5 12
]

−1

 + ¼ [
4 3
3 8

]
−1

  

 gn
 36

 = B ½ [
4 3
3 8

]
−1

 

 gn
 44

 = [
6 4.5

4.5 12
]

−1

 

 gn
 55

 = [
4 3
3 8

]
−1

 

 gn
 66

 = [
4 3
3 8

]
−1

 

 

The inverse of the multiple trait multibreed nonadditive genetic covariance matrix is obtained 

by substituting submatrices {gn
ij
}, i, j = 1, …, 6, in matrix Gn

-1
. 
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Multiple Trait Multibreed Environmental Variances 

Multibreed environmental variances are also computed by conditioning them on breeds of origin.  

Thus, they are obtained using the expression:  

 Vet =    
'bbet

n

b'b

d

'b

d

b

s

'b

s

b

n

1b

1n

1b
bet

i

b V)pppp(Vp
bb b

 






  

where e = environmental, t = vector of traits, superscripts i = individual, s = sire, and d = dam, 

subscripts b and b represent two breeds, and 

  nb  = number of breeds, 

  pb
x
  = expected fraction of breed b in animal x, x = i, s, d, 

(Vet)b = matrix of multiple trait intrabreed environmental variances and covariances in 

breed b, 

(Vet)bb = matrix of multiple trait interbreed environmental variances and covariances in 

pair of breeds b and b. 

The matrices of multiple trait multibreed environmental variances and covariances for the 6 animals 

in the example are: 

 Animal 

 Numbe

r 

Breed 

Group 

Multiple Trait Multibreed Environmental Variance 

Parents 1 A [
12 10
10 49

] 

 2 B [
8 6
6 16

] 

 3 ½ A ½ B ½ [
12 10
10 49

] + ½ [
8 6
6 16

]  = [
10 8
8 32.5

]   

Non-parents 4 ½ A ½ B ½ [
12 10
10 49

] + ½ [
8 6
6 16

]  = [
10 8
8 32.5

]   
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 5 ½ A ½ B ½ [
12 10
10 49

] + ½ [
8 6
6 16

]  = [
10 8
8 32.5

]   

 6 ¾ A ¼ B ¾ [
12 10
10 49

] + ¼ [
8 6
6 16

] + [(1)(0) + (½)(½)] [
16 14
14 25

] 

= [
15 12.5

12.5 47
]   

 

The left hand side of the MME_MTMAM for Example 1 is shown in the output of the SAS IML 

program. 

The vector of effects and the right hand side (RHS) of the MME_MTMAM  for Example 1 are: 

 Effect RHS 

Meanbw -29.405 

Meanww 60.7949 

BreedAbw -11.419 

BreedAww 25.6612 

BreedBbw -17.986 

BreedBww 35.1337 

HeterosisABbw -14.103 

HeterosisABww 31.4413 

SexMbw -10.344 

SexMww 23.4738 

SexFbw -19.061 

SexFww 37.3211 

aabw1 -2.6086 

aaww1 6.43033 
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aabw2 -10.935 

aaww2 19.413 

aabw3 -3.8621 

aam3 8.82759 

aabw4 -4.2644 

aaww4 9.08046 

aabw5 -4.2184 

aaww5 10.023 

aabw6 -3.5171 

aaww6 7.0205 

anbw1 -10.241 

anww1 22.6137 

anbw2 -8.0805 

anww2 18.8506 

anbw3 -1.7585 

anww3 3.51025 

anbw4 0 

anww4 0 

anbw5 0 

anww5 0 

anbw6 0 

anww6 0 
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Remarks: 

1) The rank of the left hand side matrix of the MME  is (36 – 4) = 32. 

2) Differences between breed effects, heterosis, and differences between sex effects are 

estimable. 

3) The set of MME_MTMAM can be solved directly by: 

a. Obtaining the generalized inverse of the left hand side (ginvlhs) and multiplying it by 

the right hand side (rhs), i.e., 

sol  = ginvlhs * rhs 

b. Imposing restrictions on the solutions.  The number of equations in Example 1 is 36 and 

the rank of the left hand side of the MME_MTMAM is 32, thus  restrictions need to be 

imposed to obtain solutions.  These 4 restrictions could be: 

i. Set the solution for the mean for each trait to zero, and 

ii. Set the solution for breed B for each trait to zero.  These restrictions are useful 

because the expectation of the multiple trait solutions for breed A estimate the 

difference between breeds A and B for these effects.  Thus, breed B can be used as 

the genetic base of comparison for multiple trait additive multibreed genetic effects. 

4) Fixed heterosis effects here are estimates of the difference between multiple trait interbreed 

(AB and BA) interaction effects relative to the average of multiple trait intrabreed 

interaction effects (AA and BB).  Thus, multiple trait fixed heterosis effects can be used as 

the genetic base for comparison of nonadditive multibreed genetic effects. 
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The vector of solutions (SOL; obtained without imposing restrictions on the solutions), and the 

standard error of solutions (SESOL; computed as the square root of the diagonals of the 

generalized inverse of the left hand side of the MME_MTMAM) are: 

Effect SOL SESOL 

Meanbw 15.5 1.55 

Meanww 133.21 2.9 

BreedAbw 6.39 4.2 

BreedAww 71.38 7.87 

BreedBbw 9.11 4.13 

BreedBww 61.83 7.74 

HeterosisABbw 3.45 4.51 

HeterosisABww 8.27 7.51 

SexMbw 11.18 2.69 

SexMww 82.69 4.9 

SexFbw 4.32 2.59 

SexFww 50.52 4.69 

âabw1 -0.18 3.34 

âaww1 0.79 5.8 

âabw2 0.07 2.93 

âaww2 -0.57 6.42 

âabw3 0.2 2.86 

âaww3 -1.56 5.46 
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âabw4 -0.27 2.92 

âaww4 1.19 5.56 

âabw5 0.01 3.16 

âaww5 0.48 6.16 

âabw6 -0.1 3.26 

âaww6 -1.3 6.04 

ânbw1 -0.34 2.62 

ânww1 0.29 3.81 

ânbw2 0.37 2.58 

ânww2 -0.15 3.77 

ânbw3 0.14 2.76 

ânww3 -0.28 3.94 

ânbw4 -0.17 2.78 

ânww4 0.14 3.95 

ânbw5 0.01 2.82 

ânww5 0.07 4 

ânbw6 -0.1 2.81 

ânww6 0 3.98 

 

  



Mauricio A. Elzo, University of Florida, 2010, 2014. [21M - 26] 
 

Multiple Trait Additive Multibreed Genetic Predictions 

The vector of MTAMBV for animal i, computed as deviations from breed B (chosen as the genetic 

base), is: 

MTAMBVi  =  ûai  =  ProbAanim i*(BreedA° - BreedB°) + âai 

where 

 ProbAanim i = expected fraction of breed A in animal i, 

BreedA° = vector of multiple trait generalized least squares solutions for breed A, 

BreedB° = vector of multiple trait generalized least squares solutions for breed B,  

 âai   = vector of multiple trait additive genetic BLUP for animal i. 

The matrix of variances and covariances of errors of prediction (VEP) for vector MTAMBV is: 

VEP(MTAMBV)  =  var(ûa - ua) =  Ka*(ginvlhs)*Ka’ 

where 

Ka = nanim × neq  matrix specifying the factors multiplying vector MTAMBV, where nanim 

= number of animals, and neq = number of equations, and 

ginvlhs  = neq × neq generalized inverse matrix of the left hand side of the MME. 

 

Matrix Ka for MTMAM Example 1 is shown in the output of the SAS IML program. 

The standard errors of prediction (SEP) of the elements of vector MTAMBV are computed as the 

square root of the diagonal elements of the VEP(MTAMBV) matrix. 
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The vector of MTAMBV and their SEP for the 6 animals in Example 1 are: 

Animal Trait ProbAi 

BreedA° - 

BreedB° 

âai MTAMBV 
SEP 

MTAMBV 

1 BW 1 -2.72 -0.18 -2.89 7.85 

1 WW 1 9.55 0.79 10.34 14.91 

2 BW 0 -2.72 0.07 0.07 2.93 

2 WW 0 9.55 -0.57 -0.57 6.42 

3 BW 0.5 -2.72 0.2 -1.15 4.99 

3 WW 0.5 9.55 -1.56 3.22 9.64 

4 BW 0.5 -2.72 -0.27 -1.63 4.33 

4 WW 0.5 9.55 1.19 5.97 8.37 

5 BW 0.5 -2.72 0.01 -1.34 5.73 

5 WW 0.5 9.55 0.48 5.25 11.37 

6 BW 0.75 -2.72 -0.1 -2.14 6.56 

6 WW 0.75 9.55 -1.3 5.86 12.53 

 

Multiple Trait Nonadditive Multibreed Genetic Predictions 

The vector of MTNMBV for animal i, computed assuming that males are  mated to ½ A ½ B 

females, and vice versa, is: 

MTNMBVi  =  ûni =  (ProbAanim i*ProbBmate + ProbBanim i*ProbAmate)(HeterosisAB° + âni) 

where 

 ProbAanim i  = expected fraction of breed A in animal i, 

 ProbBanim i  = expected fraction of breed B in animal i, 
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 ProbAmate  = expected fraction of breed A in the mate of animal i, 

 ProbBmate  = expected fraction of breed B in the mate of animal i, 

HeterosisAB °    = vector of multiple trait generalized least squares solutions heterosis effects 

due to interaction between alleles of breeds A and B in 1 locus, 

âni = vector of multiple trait nonadditive genetic BLUP for animal i. 

The matrix of variances and covariances of errors of prediction (VEP) for vector MTNMBV is: 

VEP(MTNMBV) = var(ûn – un)  = Kn*(ginvlhs)*Kn’ 

where 

Kn = nanim × neq  matrix specifying the factors multiplying vector MTNMBV, where 

nanim = number of animals, and neq = number of equations, and 

ginvlhs = neq × neq generalized inverse matrix of the left hand side of MME_MTMAM. 

Matrix Kn for MTMAM Example 1 is shown in the output of the SAS IML program.  

The standard errors of prediction (SEP) of the elements of vector MTNMBV are computed as the 

square roots of the diagonal elements of the VEP(MTNMBV) matrix. 

 

 

The vector of MTNMBV and their SEP for the 6 animals in MTMAM Example 1 are: 

 

Animal Trait 
ProbAi*ProbBmate + 

ProbBi*ProbAmate 
HeterosisAB° âni MTNMBV 

SEP 

MTNMBV 

1 BW 1*0.5 + 0*0.5 3.45 -0.34 1.55 1.94 

1 WW 1*0.5 + 0*0.5 8.27 0.29 4.28 3.43 

2 BW 0*0.5 + 1*0.5 3.45 0.37 1.91 1.95 

2 WW 0*0.5 + 1*0.5 8.27 -0.15 4.06 3.41 
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3 BW 0.5*0.5 + 0.5*0.5 3.45 0.14 1.79 2.34 

3 WW 0.5*0.5 + 0.5*0.5 8.27 -0.28 3.99 3.87 

4 BW 0.5*0.5 + 0.5*0.5 3.45 -0.17 1.64 2.34 

4 WW 0.5*0.5 + 0.5*0.5 8.27 0.14 4.21 3.88 

5 BW 0.5*0.5 + 0.5*0.5 3.45 0.01 1.73 2.02 

5 WW 0.5*0.5 + 0.5*0.5 8.27 0.07 4.17 3.48 

6 BW 0.75*0.5 + 0.25*0.5 3.45 -0.1 1.67 2.19 

6 WW 0.75*0.5 + 0.25*0.5 8.27 0 4.14 3.68 

 

 

Multiple Trait Total Multibreed Genetic Predictions 

The vector of MTTMBV for animal i is equal to the sum of its vectors of predicted multiple trait 

multibreed additive (MTAMBV) and nonadditive (MTNMBV) genetic effects, i.e.,  

  MTTMBVi  = MTAMBVi + MTNMBVi  =  ûai + ûni  

The matrix of variances and covariances of errors of prediction (VEP) for vector MTTMBV is: 

VEP(MTTMBV)  = var(ût – ut) = Kt*(ginvlhs)*Kt’ 

where 

Kt = nanim × neq  matrix specifying the factors multiplying vector MTTMBV, where 

nanim = number of animals, and neq = number of equations, and 

 ginvlhs  = neq × neq generalized inverse matrix of the left hand side of the MME. 

 

Matrix Kt for MTMAM Example 1 is shown in the output of the SAS IML program.  

The standard errors of prediction (SEP) of the elements of vector MTTMBV are computed as the 

square roots of the diagonal elements of the VEP(MTTMBV) matrix. 
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The vector of MTTMBV and their SEP for the 6 animals in MTMAM Example 1 are: 

 

Animal Trait MTAMBV MTNMBV MTTMBV 
SEP 

MTTMBV 

1 BW -2.89 1.55 -1.34 7.8 

1 WW 10.34 4.28 14.61 14.6 

2 BW 0.07 1.91 1.98 3.6 

2 WW -0.57 4.06 3.49 7.49 

3 BW -1.15 1.79 0.64 4.83 

3 WW 3.22 3.99 7.21 9.18 

4 BW -1.63 1.64 0.01 4.29 

4 WW 5.97 4.21 10.17 7.94 

5 BW -1.34 1.73 0.39 5.67 

5 WW 5.25 4.17 9.42 11.04 

6 BW -2.14 1.67 -0.47 6.48 

6 WW 5.86 4.14 9.99 12.21 
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