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ANIMAL BREEDING NOTES
CHAPTER 2
LINEAR DEPENDENCE, MATRIX INVERSES, AND CONSISTENCY OF LINEAR

EQUATIONS

Linear dependence
Let {y1, y2, ..., Yo} be a set of n m x 1 vectors. This set of n vectors is linearly dependent if
there is a set of scalars {cy, ..., ¢y} not all zero, such that
ciy1 tcaya+ ...+ cayn = 0.
Contrarily, if the only set of scalars for which the above sum is {0,0, ...,0}, the set of vectors
{V1, .., Yn} is linearly independent.
Remarks:
1) Any set of vectors containing the zero vector is linearly dependent.
2) Any subset of a linearly independent set of vectors is linearly independent.

3) If a set contains more than m m x 1 vectors, it is linearly dependent.

Examples:
0 5
Doy =|-2| v,=|10} y,=]3
6 8 1
0 5 0 S5¢,
Ci _2 + C2 10 + C3 3 = _201+10C2+3C3

6 8 1 6¢c+8cytcs
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3
The set {y1, y2, y3} is linearly independent because z ciyi = 0 onlyif ¢; = ¢, = ¢3 = 0.

i=1

0 5 0
2) X1 = -2 > X2 T 10 > X3 T 1
6 8 -3

The set {xi, X2, X3} is linearly dependent because x; + 2x3 = 0.
Rank of a matrix: The columns of a matrix A« can be considered as a set of vectors (i.e.,
column vectors). Similarly, the rows of a matrix A, constitute a set of row vectors. The rank
of a matrix Anx, is the number of linearly independent column vectors (column rank) or row
vectors (row rank). The row rank and the column rank of a matrix are equal.
Remarks:
1) The rank of Ayyxp, m # n < min (m, n).
[Note: rank (A)=rank (A’)]
2) The rank of AB < min (rank A, rank B).
3) The rank of a square matrix is equal to or less than its order.
4) The rank of (A ® B) = rank of A + rank of B.
5) The following statements are equivalent for a nonsingular (square) matrix Ay:
a) Ax=0 = x=0,and
b) |A| #0.
6) For D = diagonal matrix, rank (D) = number of nonzero elements. In particular, rank (I,) = n.

Examples:
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0 50
1) The matrix A3 = | —2 10 3 | hasrank =3 (i.e., it is nonsingular) because:
6 8 1
a)y Ax = 0 = x=[00 0]
-2 3 3
b) |[A] = 5 (-1y> = 100
6 1
0O 5 0
2) Thematrix B; = | =2 10 1 | hasrank =2 (i.e., it is singular) because:
6 8 -3
a) Bx = 0 forx=[1 0 2]
-2 1 3
b) [B] = 5 (-1 =-500) =0
6 -3

c) If the first or the third columns are ignored the remaining columns are linearly
independent.
Inverse of a matrix: The matrix B such that AB = BA =1 is called the inverse of A and it is
denoted by A™'. The inverse is defined only for square matrices.
Remarks:

1) The matrix A has an inverse if it is nonsingular, i.e.,

Ax = 0 = x =0
A7 exists =
Al = 0
2) A™is unique.
3) (AH'=A

4) (A = (AT



5) If A is symmetric (i.e., A’ = A), then A™' is also symmetric (i.e., (A™") = A™).

6) If A and B are nonsingular, then (AB)™' = B™'A™!

7) IfA™ = A’ then AA’ =1 = A = orthogonal matrix.

8) (AeB)'=A"oB"

9) (A*B)y'=A"*B"

10) D=diag {d;} = D‘lz{i}.

Computation of the inverse of a matrix

AT = |A] T adj (A)
where
| A | = Determinant of the matrix A
adj (A) = Transposed matrix of cofactors of the elements of A
= adjugate or adjoint of A
Example:
) A 6 2} A\ 1{5 —2}
a %2 = = = —
L4 5 22 —4 6
(3 2 1
b) A3><3 = 2 4 0
1.0 6
21 3+1 32 343
IA] = 1|7 |1+ 6|0 |1y = —4+48 = 44
40 24
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i 2 2 4]
0 6 1 0
:>A_1_12 3 3 2
44| 0 6 1 6 1 0
1 3 3 2
I 0 20 2 4
[ 24 —12 -4
:>A‘1=i—12 17 2
44
-4 2 8]
3 2 1] 24 —12 -4
= AATN = 240i—12 17 2
44
1.0 6| —4 2 8
1 0 0]
= 10 10
0 0 1]

Inversion of a matrix by partitioning
If a nonsingular matrix A is too large to be directly inverted in a computer, its inverse (i.e., A™)
could be obtained by partitioning A into four submatrices, i.e.,

A:

{Au A
A Axn

} where Aj; and A, are square matrices.

Let

A_l_ AI 1 AIZ
A21 A22 '

Note that:
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[An A121||:A11 Alz}_{l 0}
A Axn || AP A% 0 I

- ApA+ ApATT = 1 (1]
AnAZ+ ApAT” = 0 (2]
AnA+ ApATt = 0 (3]
AnAZ+ ApAT? =1 (4]

Assuming that A;; and Aj; are nonsingular, using [1], [2], [3], and [4], we get:
from [2]: AZ = -A; T ApAZ [5]
from [3]: A?' = -An! AyA" [6]
Substituting [6] in [1] and [5] in [4] we get:

AnA" + Ap(-An'AAT) = T

(A1 - ApAxnTAAT = 1
= A= (A - ApAn Ay [7]
and
Asi(-A1ARAY) + ARAT = T
= A” = (An-AnAnTAp)’! (8]

This approach requires inverting four matrices: Ajj, Az, (A1 - A12AA)) and (A - Ay1AA ).

A procedure that requires inverting only two matrices is as follows. Recall that:
Al A" |:A11 A12:| _{I 0:|
AT AT LA An 0 I

- A"AL+ APA, = 1 [9]

Thus,
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A"Ap+ APA, = 0 [10]
AMAL+ APA; = 0 [11]
AMAp+ APA, = 1 [12]
From [10]:
A = —ATAp AT [13]
From [12]:
AZ = (I-AYAp) Ay
A? = Ay -ATAR Ay [14]
~ {A“ A”} _ {(A“AIZAzéAN)‘ ~ A A A 03]
A A7 —ABALA" AB-AYALAYD

Remark: Matrix [15] requires the existence of Ay

Similarly, from [11] and [9], we get:

A = SAPALAT [16]
and
Al = 1-ARA)AT
A= AT -ARA AT [17]
Al AP A= A" A AT — A AnA” s
h { AY A”} ) “A”A3AT (An—AnAnAL) -

Remark: Matrix A, must exist if A™' is to be computed using [18].
Expressions for obtaining the inverse of a symmetric matrix by partitioning are similar to [15]
and [18], with A;»’ and A"’ substituted for Ay, and A*'.

Example:
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(3] 2 1]
__| —— -
Azy =
21 40
LT[0 6]
Let

2 4 0
A11:[3]5A12:[2 l]aA21:A12’:{l}andA22:{0 6}

By matrix formulae [15],

- - - -1

Al = — g _l l — i 1 = A2
112 6 11 11
Lol [ L
4 —11 4
A? = - [2 1]
o L 1 o L
L 6] L7711 L 6 |
Lol [ 271 6] [to] [2 2
4 11 11| 4 4 22 22
A? = + - +
L N U S I O B A DR R
L 6] LI11 111L 6.1 L 61 L22 66




71
44 22
A2 =
12
L 22 11 ]
61 3 1]
11 11 11
.
1
- A" = - =
A A Y
11 44 22
LI
11 22 11 ]

Elementary operators

Elementary operators are square matrices derived from the identity matrix. The rank of the

24

—-12

~12 -4
17 2
2 8
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matrix resulting from multiplying an elementary operator by a matrix Amxn is the same as the

rank of A.
The elementary operators are:
a) Ej is I with rows i and j interchanged, e.g.,

0 O
Es=|0 1
1 0

S O =

b) Rii(A) is I with A substituted for 1 in the i diagonal element, e.g.,

2 0 0
Ru2)=[0 1 0
0O 0 1
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C) P;; (%) 1s I with A replacing for O in the ijth location for 1 # j, e.g.,

1 2 0
P.2)=]0 1 0
0O 0 1

Effect of elementary operators on A yxn
Pre-multiplication of A by an elementary operator affects the rows of A. Post-multiplication of
A by an elementary operator affects the columns of A.

Pre-multiplication of A by:

a)  Ej; interchanges the i™ and j" rows, e.g.,
Eis A EizA

0 0 1 1 2 3 7 8 9

0 1 0 4 5 6|(=14 5 6

1 0 O 7 8 9 1 2 3

b)  Ry(A) multiples the i row by A, e.g.,

Ri:1(2) A Ri1(2)A
2 0 0][1 2 3 2 4 6
0 1 0|4 5 6|=|4 56
0 0 1]]7 8 9 7 8 9

¢)  Pjy() adds A times the j™ row to the i row of A, e.g.,

Pix(2) A Pi(2)A
1 2 o1 2 3 9 12 15
0 1 0|4 5 6[=]4 5 6
0 0 1|7 8 9 7 8 9



[2-11]

Determinants, transposes and inverses of elementary operators

Determinant Transpose Inverse
|Ejj| =-1 |EsA| =-|A] Ej' = Ej Ej' = Ej
|
IR | =4 |RiMA| =1|A| Rii' () = Ri(V) [Ra(WI™ = Ral ~
[Py | =1 |PyMA| = A [P§()] = Pi(V) [PsW] ™ = Py(-3)

Reduction of a matrix to its equivalent diagonal form
Equivalence: two matrices are equivalent if one can be derived from the other by multiplying it
by a series of elementary operators, i.e., a matrix By, is equivalent to a matrix Ap, if
Py... P,P1AQIQ;...Qy = B
where the P, i=1, ..., uand Qj, j = 1, ..., v are elementary operators. Let
P = Py..PPyand Q = Q1Q2... Qy
where
P and {P;} are mxn and Q and {Q;} are nxm nonsingular matrices. Thus,

A = P'BQ™

P! =P Py B!

Q' = Q. Q'
which are also elementary operators. Thus, B is equivalent to A and A is equivalent to B. In
addition, because multiplication of matrices by elementary operators does not change their rank,

rank (A) = rank (B).
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Equivalent diagonal form
D =
0 O
Note: the rank of a matrix Ay, can be obtained by obtaining an equivalent matrix B whose

subdiagonal elements are zero.

Examples:
1) Reduction of As; to D
8 4 2
A=4 6 1
2 1 4
1 0 O
8 4 2
1 1 0
P,P, = 3 =PPA=]0 4 0| = rank(A) =3
1 0 1 007
N L 2_
L 4 i

2) Reduction of Aj3to D
6 4 2

A=|4 4 0

2 0 2



1 0 O
2 1 0
P2P1 = —E
1o
L 3 J
1 0 O
PPPA=|0 1 0
0 1 1
P

= PPA =

6 4

O —_—

3

0 _4

L 3
P,PA

3

N

o Wk

PA

Because A is symmetric Q; = P;’; thus, Q:Q:Q; = Py’P,’Py’,

6 4

=PP,PAPPP; = | 0 4
3

L0 O

PA

171
2

40l0
3900
O_ L

In this example, the rank(A) = 2.

Generalized inverse of a matrix (Searle, 1966)

A matrix G is said to be a generalized inverse of matrix A if AGA = A. Matrix G is not unique.

There is an infinite number of matrices G that satisfy the condition AGA = A.

6

0

(e

O o wis




Computing G (Searle, 1971)
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a) Consider D =PAQ, where P and Q are products of elementary operators. The matrix D is

|: :|
D_
0 O

Define

Then, a g-inverse of matrix A is G = QD P, because AGA = A.

Proof:
Note that
DDD= D and DDD” = D
Thus,
AGA = (P'DQ)QDP)(P'DQ™)
= P'DIDIDQ™
_ P—IDQ—I
= A
Also,

GAG = (QDP)(P"'DQ')(QDP)
= QDIDID P
= QDP

= G

b) Consider a matrix A of rank =r. If A can be partitioned in such a way that its leading

principal minor is nonsingular, i.e.,
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Al An
Amxn =
Az An

where A is rxrand r (A;;) =r. Then, a g-inverse of A is:

G = {Au }
0 O

because AGA = A.

Proof:
AGA [ A A12:|{A111 0:||:A11 A12:|
| A2 Ax 0 O0JL Az Ax
B - I 0 “: A An :|
L AnAn 0] Asr A
B - A A12i|
L Asi AnAT A

Note that A can be factored as follows: first, partition A =[ } where F,, are r independent

KF
rows and KF are m-r linear combinations of the first r rows. If A has r independent rows, it also

has r independent columns, where r < m < n. Assuming the set of r independent columns are the

A, B
first ones, A can be further partitioned as follows: A ={ } where Aj; is an rxr matrix

KA, KB

and B is an rx(n-r) matrix, where the columns of [ } are linear combinations of the r

KB

) Al .
independent columns ,1.e.,
KA
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B Ay
{KB}_ KA, L |

|: Al] AllL :l
= A =

KA, KA, L

I Ay AL Afll 0 Ay AL
= AGA =

| KA, KA L 0 0J][KA, KAL

1 0 Ay AL
= AGA =

LK 0 KA,, KA, L

I Ay AL A An
= AGA = = A =

| KA, KA L Ax Axn

or, by substituting A;;L for A}, in A21A11'1A12 we get
AyAnTAn = KARALTA L

- KA]]L

A

Also, GAG = G. Thus,
GAG:_Al_ll 0} Ay AL {Aﬁl 0}
L 0 O KA, KA L 0 O

1 L a0
GAG — }{An }
LO 0JL o o

S
GAG = | A }:G
0 0

or,



GAG =

GAG =

GAG =

c) Sym
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_Al_ll O:|[A11 A12j|{A1_11 0}
L 0 O A Axn 0 O
T OALAL AT 0

0 0 0O o

[ Al 0}

L 0 O

metric matrices. A computational algorithm for a symmetric matrix A, of rank = r is:

1) Find any nonsingular principal minor of order r, e.g., Ai.
2) Invert Ay, i.e., obtain A 1'1.
3) Replace each element of A;; in A by the corresponding element of All'l.
4) Substitute zeroes for all the other elements of A.
5) The resulting matrix is a g-inverse of A.
Examples:

a) Method 1:G=QDP

10 0
6 4 2
Aws=|4 4 0| P= —% P Olg=p
? ? -1 1 1
2 _1_'% 0 0] _é _% 0]
3
QD =|0 1 1|0 3 0|=[{0 3 0
0 0 1 4 4
I 1o o o 0 0 0




1 1 0.

6 2 Lo
QDP=|0 3 0 —% !
4

0 0 0 __1 !

Thus, AGA = A and GAG =G.

b)Method 2: Principal minor.

6
Note that if A3z = ‘ 1s used, then
4

4

-1 O
G = {AB } = QDP above. Thus,

0 0

- |1
-1 0 -
o 4 L
A =114 4 0=
0 0 0]
L1 0]
2 2
1 30 §
== = = QD P
A 5 2 Q
0 0 0

The easiest to obtain G is the one based on A;;, where A|; = ‘

N | —

o W
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0 0 0
G= |0 1 0
4
0 0 1
L 2 |
642000011
AG = |4 4 0|0 1 O0|=[0 1 0
2 4 0 0 1
0 0 1
L 2
o 1 1][6 4 2 6 4 2
AGA = |0 1 01|l4 4 ol|=|4 4 0]|=A
0 0 1]|2 0 2 2 0 2
000642 0 0 0
GA = [0 1 0[|4 4 0]=1 1 0
4 2 2 1 0 1
0 0 1
L 2
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0o o o110 0 o0 0 0 0
GAG = |1 1 0f[0 1 o0|=/0 1 0[=G
1 0 1 4 4
0 0 1 0 0 1
. 2] L 2 ]

Thus, AGA = A and GAG = G also.

Generalized inverses for partitioned matrices (Searle, 1971, pp 16-28)

Substitute -'s for —1's in the superscripts of formulas [15] and [18] for partitioned matrices that
have a unique inverse. Thus,

from equation [15],

l: A" Alz} B { (All_AleEZAZI)_ —A"AAn

A AP —ALAQA"  An—AMARAL

and from equation [18],

l: Al AlZil Al— A% AL AL —AnALA”Y
AT AY —A” Ax A (A22 —AxAn Alz)_

Linear Equations

Consistency: a set of linear equations Ax =y is consistent if, and only if, the linear relationships
that exist among rows of the matrix A also exist among the elements of vector y.

Theorems:

1) The equations Ax =y are consistent if, and only if, the rank of the augmented matrix [A y] is



equal to the rank of A.
Proof:
. . Ay Y ]
= If Ax =y is consistent, then [Ay] = = the same number of linearly
LAI LY1

independent rows exists for A and [A y] = rank (A) =rank ([A y]).

Al Al Y1
< Ifrank (A) =rank ([A y]), then rank = rank for some K.
LA:

LA] Ly1

Clearly this is true only if K = L, which implies that Ax =y is a consistent set of equations.
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2) If amatrix A has p rows and rank r, p > 1, and if D = PAQ is an equivalent diagonal form of

A, then the equations Ax =y are consistent if, and only if, the last p-r elements of Py are zero.

Proof:
= @Given: AX =y consistent.
D=PAQ
Show: last p-r elements of Py = 0.
Ax =y
PAx =Py

But
A x
PAx = = Py = last p-r elements of Py = 0.
0

= Given: last p-r elements of Py = 0.
Show: Ax =y is consistent.

If Py = 0 for the last p-r elements, then the set of equations
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A:
x = Py
0
is consistent. Because P is a matrix of elementary operators P~ exists, so

Ar i : M . .
P_l[ 0 }( = Ax =P"P y=y= Ax = y Is also a set of consistent equations. This is so

because:

A . . .
a) { ' } x = Py is a set of consistent equations, and
0

A:
b) the same set of linear relationships (i.e., P™") were applied to the rows of [ } x and
0

to the elements of Py.

3) A solution to the consistent set of equations Ax =y is given by x = Gy if, and only if, AGA =

A.

Proof:

= @Given x = Gy, show that AGA = A.

x =Gy = Ax=AGy

But y = Ax,

= Ax = AGAX

= A = AGA

= Given AGA = A, show that x = Gy.
AGAx = Ax

But
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= AQGy

I
<

or
A(Gy) = y = x =Gy is a solution of the system of equations Ax =y.

Note: If A is square and full rank x is the vector of solutions to Ax =y.

4) Let A be a matrix of n columns, z be any nx1 vector and define H= GA. Then, if A = AGA,

x° is a solution to the consistent set of equations Ax =y, where

x° Gy+H-1)z

Proof:
x° = Gy+ H-I)z

Ax° = AGy+ A(GA-I)z

Ax°® = AGy+(AGA-A)z
But,

AGA = A,
= Ax° = AGy
= Ax° = 'y, bytheorem 3) above.

5) Given a set of consistent equations Ax =y and a matrix G such that AGA = A, define H =
GA. Then, a linear combination of the elements of any solution x°, e.g., k'x°, is unique if, and
only if, K'H=k’.
Proof: from theorem 4), x° = Gy + (H - I)z. Thus,

k'x° =k'Gy + k'(H-1)z
which is independent of the arbitrary vector z if k'H = k’. If so, the value of k'x° is k'Gy for

any x°. To see that this statement is true, consider any two solution vectors, i.e., X; and X;, thus
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xi = Gy

= X; = GjAx, becausey= Ax.

Similarly,
Xj = GjAx
But
Ax; = AGAxX = AXx =y
Ax; = AGAx = Ax =y
= m’'Ax; = m’Ax = m'y
m'Ax; = m’'Ax = m'y

for some vector m. Thus, letting k” =m’A, we have that
k'xi = k'x; = k'x = m'y
= no matter which matrix G we use to obtain a solution vector x°, a linear combination of the
elements of x° satisfying the relationship k'H =k’ is unique.
Also, note that
kH = mAGA = m'A
= anecessary and sufficient condition for k’x° to be unique is for k' to be a linear combination

of the rows of A.
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