ANIMAL BREEDING NOTES

CHAPTER 2

LINEAR DEPENDENCE, MATRIX INVERSES, AND CONSISTENCY OF LINEAR EQUATIONS

Linear dependence

Let $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a set of $\mathrm{n} m \times 1$ vectors. This set of n vectors is linearly dependent if there is a set of scalars $\left\{\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right\}$ not all zero, such that

$$
\mathrm{c}_{1} \mathrm{y}_{1}+\mathrm{c}_{2} \mathrm{y}_{2}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{y}_{\mathrm{n}}=0
$$

Contrarily, if the only set of scalars for which the above sum is $\{0,0, \ldots, 0\}$, the set of vectors $\left\{y_{1}, \ldots, y_{n}\right\}$ is linearly independent.

Remarks:

1) Any set of vectors containing the zero vector is linearly dependent.
2) Any subset of a linearly independent set of vectors is linearly independent.
3) If a set contains more than $\mathrm{m} \mathrm{m} \times 1$ vectors, it is linearly dependent.

Examples:

1) $y_{1}=\left[\begin{array}{r}0 \\ -2 \\ 6\end{array}\right], \quad y_{2}=\left[\begin{array}{r}5 \\ 10 \\ 8\end{array}\right], \quad y_{3}=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$

$$
c_{1}\left[\begin{array}{r}
0 \\
-2 \\
6
\end{array}\right]+c_{2}\left[\begin{array}{r}
5 \\
10 \\
8
\end{array}\right]+c_{3}\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{r}
5 c_{2} \\
-2 c_{1}+10 c_{2}+3 c_{3} \\
6 c_{1}+8 c_{2}+c_{3}
\end{array}\right]
$$

The set $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right\}$ is linearly independent because $\sum_{i=1}^{3} \mathrm{c}_{1} \mathrm{y}_{\mathrm{i}}=0$ only if $\mathrm{c}_{1}=\mathrm{c}_{2}=\mathrm{c}_{3}=0$.
2) $\mathrm{x}_{1}=\left[\begin{array}{r}0 \\ -2 \\ 6\end{array}\right], \quad \mathrm{x}_{2}=\left[\begin{array}{r}5 \\ 10 \\ 8\end{array}\right], \quad \mathrm{x}_{3}=\left[\begin{array}{r}0 \\ 1 \\ -3\end{array}\right]$

The set $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ is linearly dependent because $\mathrm{x}_{1}+2 \mathrm{x}_{3}=0$.
Rank of a matrix: The columns of a matrix $\mathrm{A}_{\mathrm{m} \times \mathrm{n}}$ can be considered as a set of vectors (i.e., column vectors). Similarly, the rows of a matrix $\mathrm{A}_{\mathrm{m} \times \mathrm{n}}$ constitute a set of row vectors. The rank of a matrix $A_{m \times n}$ is the number of linearly independent column vectors (column rank) or row vectors (row rank). The row rank and the column rank of a matrix are equal.

Remarks:

1) The rank of $A_{m \times n}, m \neq n \leq \min (m, n)$.
[Note: $\operatorname{rank}(\mathrm{A})=\operatorname{rank}\left(\mathrm{A}^{\prime}\right)$]
2) The rank of $\mathrm{AB} \leq \min (\operatorname{rank} \mathrm{A}, \operatorname{rank} \mathrm{B})$.
3) The rank of a square matrix is equal to or less than its order.
4) The rank of $(A \oplus B)=\operatorname{rank}$ of $A+\operatorname{rank}$ of B.
5) The following statements are equivalent for a nonsingular (square) matrix A_{n} :
a) $\mathrm{Ax}=0 \Rightarrow \mathrm{x}=0$, and
b) $|\mathrm{A}| \neq 0$.
6) For $\mathrm{D}=$ diagonal matrix, rank $(\mathrm{D})=$ number of nonzero elements. In particular, rank $\left(\mathrm{I}_{\mathrm{n}}\right)=\mathrm{n}$.

Examples:

1) The matrix $A_{3}=\left[\begin{array}{rrr}0 & 5 & 0 \\ -2 & 10 & 3 \\ 6 & 8 & 1\end{array}\right]$ has rank $=3$ (i.e., it is nonsingular) because:
a) $\mathrm{Ax}=0 \Rightarrow \mathrm{x}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\prime}$
b) $|\mathrm{A}|=5\left|\begin{array}{rr}-2 & 3 \\ 6 & 1\end{array}\right|(-1)^{3}=100$
2) The matrix $B_{3}=\left[\begin{array}{rrr}0 & 5 & 0 \\ -2 & 10 & 1 \\ 6 & 8 & -3\end{array}\right]$ has rank $=2$ (i.e., it is singular) because:
a) $B x=0$ for $x=\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{\prime}$
b) $|\mathrm{B}|=5\left|\begin{array}{rr}-2 & 1 \\ 6 & -3\end{array}\right|(-1)^{3}=-5(0)=0$
c) If the first or the third columns are ignored the remaining columns are linearly independent.

Inverse of a matrix: The matrix B such that $A B=B A=I$ is called the inverse of A and it is denoted by A^{-1}. The inverse is defined only for square matrices.

Remarks:

1) The matrix A has an inverse if it is nonsingular, i.e.,

$$
\mathrm{A}^{-1} \text { exists } \Rightarrow\left\{\begin{array}{l}
\mathrm{Ax}=0 \Rightarrow \mathrm{x}=0 \\
|\mathrm{~A}| \neq 0
\end{array}\right.
$$

2) A^{-1} is unique.
3) $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$
4) $\left(\mathrm{A}^{\prime}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\prime}$
5) If A is symmetric (i.e., $\mathrm{A}^{\prime}=\mathrm{A}$), then A^{-1} is also symmetric (i.e., $\left.\left(\mathrm{A}^{-1}\right)^{\prime}=\mathrm{A}^{-1}\right)$.
6) If A and B are nonsingular, then $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
7) If $\mathrm{A}^{-1}=\mathrm{A}^{\prime}$ then $\mathrm{AA}^{\prime}=\mathrm{I} \Rightarrow \mathrm{A} \equiv$ orthogonal matrix.
8) $(\mathrm{A} \oplus \mathrm{B})^{-1}=\mathrm{A}^{-1} \oplus \mathrm{~B}^{-1}$
9) $(\mathrm{A} * \mathrm{~B})^{-1}=\mathrm{A}^{-1} * \mathrm{~B}^{-1}$
10) $\mathrm{D}=\operatorname{diag}\left\{\mathrm{d}_{\mathrm{ii}}\right\} \Rightarrow \mathrm{D}^{-1}=\left\{\frac{1}{d_{i i}}\right\}$.

Computation of the inverse of a matrix

$$
\mathrm{A}^{-1}=|\mathrm{A}|^{-1} \operatorname{adj}(\mathrm{~A})
$$

where

$$
\begin{aligned}
|\mathrm{A}| & =\text { Determinant of the matrix } \mathrm{A} \\
\operatorname{adj}(\mathrm{~A}) & =\text { Transposed matrix of cofactors of the elements of } \mathrm{A} \\
& =\text { adjugate or adjoint of } \mathrm{A}
\end{aligned}
$$

Example:

a) $\mathrm{A}_{2 \times 2}=\left[\begin{array}{ll}6 & 2 \\ 4 & 5\end{array}\right] \Rightarrow \mathrm{A}^{-1}=\frac{1}{22}\left[\begin{array}{rr}5 & -2 \\ -4 & 6\end{array}\right]$
b) $\mathrm{A}_{3 \times 3}=\left[\begin{array}{lll}3 & 2 & 1 \\ 2 & 4 & 0 \\ 1 & 0 & 6\end{array}\right]$
$|\mathrm{A}|=1\left|\begin{array}{ll}2 & 1 \\ 4 & 0\end{array}\right|(-1)^{3+1}+6\left|\begin{array}{ll}3 & 2 \\ 2 & 4\end{array}\right|(-1)^{3+3}=-4+48=44$

$$
\begin{aligned}
& \Rightarrow \mathrm{A}^{-1}=\frac{1}{44}\left[\begin{array}{c}
\left|\begin{array}{ll}
4 & 0 \\
0 & 6
\end{array}\right| \\
-\left|\begin{array}{ll}
2 & 0 \\
1 & 6
\end{array}\right| \\
-\left|\begin{array}{ll}
2 & 1 \\
0 & 6
\end{array}\right| \\
1
\end{array}\left|\begin{array}{ll}
2 & 4 \\
1
\end{array}\right|\right]\left[\begin{array}{ll}
3 & 1 \\
1 & 6
\end{array}\left|-\left|\begin{array}{ll}
3 & 2 \\
1 & 0
\end{array}\right|\right]\right. \\
& \Rightarrow \quad \mathrm{A}^{-1}=\frac{1}{44}\left[\begin{array}{rrr}
24 & -12 & -4 \\
-12 & 17 & 2 \\
-4 & 2 & 8
\end{array}\right] \\
& \Rightarrow \mathrm{AA}^{-1}=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 0 \\
1 & 0 & 6
\end{array}\right] \frac{1}{44}\left[\begin{array}{rrr}
24 & -12 & -4 \\
-12 & 17 & 2 \\
-4 & 2 & 8
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Inversion of a matrix by partitioning

If a nonsingular matrix A is too large to be directly inverted in a computer, its inverse (i.e., A^{-1}) could be obtained by partitioning A into four submatrices, i.e.,

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right] \text { where } \mathrm{A}_{11} \text { and } \mathrm{A}_{22} \text { are square matrices. }
$$

Let

$$
A^{-1}=\left[\begin{array}{ll}
A^{11} & A^{12} \\
A^{21} & A^{22}
\end{array}\right] .
$$

Note that:

$$
\begin{align*}
& {\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{A}^{11} & \mathrm{~A}^{12} \\
\mathrm{~A}^{21} & \mathrm{~A}^{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & \mathrm{I}
\end{array}\right] } \\
& \Rightarrow \quad \mathrm{A}_{11} \mathrm{~A}^{11}+\mathrm{A}_{12} \mathrm{~A}^{21}=\mathrm{I} \tag{1}\\
& \mathrm{~A}_{11} \mathrm{~A}^{12}+\mathrm{A}_{12} \mathrm{~A}^{22}=0 \tag{2}\\
& \mathrm{~A}_{21} \mathrm{~A}^{11}+\mathrm{A}_{22} \mathrm{~A}^{21}=0 \tag{3}\\
& \mathrm{~A}_{21} \mathrm{~A}^{12}+\mathrm{A}_{22} \mathrm{~A}^{22}=\mathrm{I} \tag{4}
\end{align*}
$$

Assuming that A_{11} and A_{22} are nonsingular, using [1], [2], [3], and [4], we get:

$$
\begin{align*}
& \text { from [2]: } \mathrm{A}^{12}=-\mathrm{A}_{11}^{-1} \mathrm{~A}_{12} \mathrm{~A}^{22} \tag{5}\\
& \text { from [3]: } \mathrm{A}^{21}=-\mathrm{A}_{22}^{-1} \mathrm{~A}_{21} \mathrm{~A}^{11} \tag{6}
\end{align*}
$$

Substituting [6] in [1] and [5] in [4] we get:

$$
\begin{align*}
\mathrm{A}_{11} \mathrm{~A}^{11}+\mathrm{A}_{12}\left(-\mathrm{A}_{22}^{-1} \mathrm{~A}_{21} \mathrm{~A}^{11}\right) & =\mathrm{I} \\
\left(\mathrm{~A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right) \mathrm{A}^{11} & =\mathrm{I} \\
\Rightarrow \quad \mathrm{~A}^{11} & =\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}{ }^{-1} \mathrm{~A}_{21}\right)^{-1} \tag{7}
\end{align*}
$$

and

$$
\begin{array}{rlrl}
\mathrm{A}_{21}\left(-\mathrm{A}_{11}{ }^{-1} \mathrm{~A}_{12} \mathrm{~A}^{22}\right)+\mathrm{A}_{22} \mathrm{~A}^{22} & =\mathrm{I} \\
\Rightarrow \quad & & \mathrm{~A}^{22} & =\left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}{ }^{-1} \mathrm{~A}_{12}\right)^{-1} \tag{8}
\end{array}
$$

This approach requires inverting four matrices: $\mathrm{A}_{11}, \mathrm{~A}_{22},\left(\mathrm{~A}_{11}-\mathrm{A}_{12} \mathrm{AA}_{21}\right)$ and $\left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{AA}_{12}\right)$. A procedure that requires inverting only two matrices is as follows. Recall that:

$$
\left[\begin{array}{ll}
\mathrm{A}^{11} & \mathrm{~A}^{12} \\
\mathrm{~A}^{21} & \mathrm{~A}^{22}
\end{array}\right]\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{I} & 0 \\
0 & \mathrm{I}
\end{array}\right]
$$

Thus,

$$
\begin{equation*}
\Rightarrow \quad \mathrm{A}^{11} \mathrm{~A}_{11}+\mathrm{A}^{12} \mathrm{~A}_{21} \quad=\mathrm{I} \tag{9}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{A}^{11} \mathrm{~A}_{12}+\mathrm{A}^{12} \mathrm{~A}_{22}=0 \tag{10}\\
& \mathrm{~A}^{21} \mathrm{~A}_{11}+\mathrm{A}^{22} \mathrm{~A}_{21}=0 \tag{11}\\
& \mathrm{~A}^{21} \mathrm{~A}_{12}+\mathrm{A}^{22} \mathrm{~A}_{22}=\mathrm{I}
\end{align*}
$$

From [10]:

$$
\begin{equation*}
\mathrm{A}^{12}=-\mathrm{A}^{11} \mathrm{~A}_{12} \mathrm{~A}_{22}^{-1} \tag{13}
\end{equation*}
$$

From [12]:

$$
\begin{align*}
\mathrm{A}^{22} & =\left(\mathrm{I}-\mathrm{A}^{21} \mathrm{~A}_{12}\right) \mathrm{A}_{22}{ }^{-1} \\
\mathrm{~A}^{22} & =\mathrm{A}_{22}-1-\mathrm{A}^{21} \mathrm{~A}_{12} \mathrm{~A}_{22}{ }^{-1} \tag{14}\\
\Rightarrow \quad\left[\begin{array}{ll}
\mathrm{A}^{11} & \mathrm{~A}^{12} \\
\mathrm{~A}^{21} & \mathrm{~A}^{22}
\end{array}\right] & =\left[\begin{array}{rr}
\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-1} \mathrm{~A}_{21}\right)^{-1} & -\mathrm{A}^{11} \mathrm{~A}_{12} \mathrm{~A}_{22}^{-1} \\
-\mathrm{A}_{22}^{-1} \mathrm{~A}_{21} \mathrm{~A}^{11} & \mathrm{~A}_{22}^{-1}-\mathrm{A}^{21} \mathrm{~A}_{12} \mathrm{~A}_{22}^{-1}
\end{array}\right] \tag{15}
\end{align*}
$$

Remark: Matrix [15] requires the existence of $\mathrm{A}_{22}{ }^{-1}$.
Similarly, from [11] and [9], we get:

$$
\begin{equation*}
\mathrm{A}^{21}=-\mathrm{A}^{22} \mathrm{~A}_{21} \mathrm{~A}_{11}{ }^{-1} \tag{16}
\end{equation*}
$$

and

$$
\begin{align*}
\mathrm{A}^{11} & =\left(\mathrm{I}-\mathrm{A}^{12} \mathrm{~A}_{21}\right) \mathrm{A}_{11}^{-1} \\
\mathrm{~A}^{11} & =\mathrm{A}_{11}^{-1}-\mathrm{A}^{12} \mathrm{~A}_{21} \mathrm{~A}_{11}^{-1} \tag{17}\\
\Rightarrow \quad\left[\begin{array}{ll}
\mathrm{A}^{11} & \mathrm{~A}^{12} \\
\mathrm{~A}^{21} & \mathrm{~A}^{22}
\end{array}\right] & =\left[\begin{array}{rr}
\mathrm{A}_{11}^{-1}-\mathrm{A}^{12} \mathrm{~A}_{21} \mathrm{~A}_{11}^{-1} & -\mathrm{A}_{11}^{-1} \mathrm{~A}_{12} \mathrm{~A}^{22} \\
-\mathrm{A}^{22} \mathrm{~A}_{21} \mathrm{~A}_{11}^{-1} & \left(\mathrm{~A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}\right)^{-1}
\end{array}\right] \tag{18}
\end{align*}
$$

Remark: Matrix $\mathrm{A}_{11}{ }^{-1}$ must exist if A^{-1} is to be computed using [18].
Expressions for obtaining the inverse of a symmetric matrix by partitioning are similar to [15] and [18], with $A_{12}{ }^{\prime}$ and $A^{12 \prime}$ substituted for A_{21} and A^{21}.

Example:

$$
A_{3 \times 3}=\left[\begin{array}{cccc}
3 & \mid & 2 & 1 \\
-- & \mid & ---- \\
2 & \mid & 4 & 0 \\
1 & \mid & 0 & 6
\end{array}\right]
$$

Let

$$
\mathrm{A}_{11}=[3], \mathrm{A}_{12}=\left[\begin{array}{ll}
2 & 1
\end{array}\right], \mathrm{A}_{21}=\mathrm{A}_{12},=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \text {, and } \mathrm{A}_{22}=\left[\begin{array}{ll}
4 & 0 \\
0 & 6
\end{array}\right]
$$

By matrix formulae [15],

$$
\left.\left.\begin{array}{rl}
\mathrm{A}^{11} & =\left[[3]-\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
0 & \frac{1}{6}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]^{-1} \\
A^{11} & =\left[[3]-\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{6}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]^{-1}=\left[3-\frac{7}{6}\right]^{-1}=\left[\frac{6}{11}\right] \\
A^{12} & =-\left[\frac{6}{11}\right]\left[\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{6}
\end{array}\right]=-\left[\frac{3}{11}\right.\right. \\
\frac{1}{11}
\end{array}\right]=\mathrm{A}^{12 \prime}\right]\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
0 & \frac{1}{6}
\end{array}\right]-\left[\begin{array}{cc}
-\frac{3}{11} \\
-\frac{1}{11}
\end{array}\right]\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
0 & \frac{1}{6}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
A^{22} & =\left[\begin{array}{ll}
\frac{3}{11} & \frac{3}{11} \\
\frac{2}{11} & \frac{1}{11}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
0 & \frac{1}{6}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{4} & 0 \\
0 & \frac{1}{6}
\end{array}\right]+\left[\begin{array}{ll}
\frac{3}{22} & \frac{1}{22} \\
\frac{1}{22} & \frac{1}{66}
\end{array}\right]
\end{array}\right.
$$

$$
\begin{aligned}
\mathrm{A}^{22} & =\left[\begin{array}{cc}
\frac{17}{44} & \frac{1}{22} \\
\frac{1}{22} & \frac{2}{11}
\end{array}\right] \\
\Rightarrow \mathrm{A}^{-1} & =\left[\begin{array}{rrrr}
\frac{6}{11} & \mid & -\frac{3}{11} & -\frac{1}{11} \\
--- & \mid & --- & --- \\
-\frac{3}{11} & \mid & \frac{17}{44} & \frac{1}{22} \\
-\frac{1}{11} & \mid & \frac{1}{22} & \frac{2}{11}
\end{array}\right]=\frac{1}{44}\left[\begin{array}{r|rr}
24 & \mid & -12 \\
-\cdots & -4 \\
---12 & \mid & 17 \\
-\cdots-r^{2} \\
-4 & \mid & 2
\end{array}\right]
\end{aligned}
$$

Elementary operators

Elementary operators are square matrices derived from the identity matrix. The rank of the matrix resulting from multiplying an elementary operator by a matrix $A_{m \times n}$ is the same as the rank of A.

The elementary operators are:
a) $E_{i j}$ is I with rows i and j interchanged, e.g.,

$$
\mathrm{E}_{13}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

b) $\quad \mathrm{R}_{\mathrm{ii}}(\lambda)$ is I with λ substituted for 1 in the $\mathrm{i}^{\text {th }}$ diagonal element, e.g.,

$$
\mathrm{R}_{11}(2)=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

c) $\quad P_{i j}(\lambda)$ is I with λ replacing for 0 in the $i^{\text {th }}$ location for $i \neq j$, e.g.,

$$
\mathrm{P}_{12}(2)=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Effect of elementary operators on $\mathbf{A}_{\mathbf{m} \times \mathbf{n}}$

Pre-multiplication of A by an elementary operator affects the rows of A. Post-multiplication of A by an elementary operator affects the columns of A.

Pre-multiplication of A by:

a) $\quad E_{i j}$ interchanges the $i^{\text {th }}$ and $j^{\text {th }}$ rows, e.g.,

$$
\begin{gathered}
\mathrm{E}_{13} \\
{\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{E}_{13} \mathrm{~A} \\
{\left[\begin{array}{ccc}
7 & 8 & 9 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{array}\right]}
\end{array}\right.}
\end{gathered}
$$

b) $\quad \mathrm{R}_{\mathrm{ii}}(\lambda)$ multiples the $\mathrm{i}^{\text {th }}$ row by λ, e.g.,

$$
\begin{gathered}
\mathrm{R}_{11}(2) \\
{\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{ccc}
\mathrm{R}_{11}(2) \mathrm{A} \\
{\left[\begin{array}{lll}
2 & 4 & 6 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]}
\end{array}\right.}
\end{gathered}
$$

c) $\quad P_{i j}(\lambda)$ adds λ times the $j^{\text {th }}$ row to the $i^{\text {th }}$ row of A, e.g.,

$$
\begin{aligned}
& \mathrm{P}_{12} \text { (2) } \mathrm{A} \quad \mathrm{P}_{12}(2) \mathrm{A} \\
& {\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]=\left[\begin{array}{rrr}
9 & 12 & 15 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]}
\end{aligned}
$$

Determinants, transposes and inverses of elementary operators

Determinant		Transpose	Inverse
$\left\|\mathrm{E}_{\mathrm{ij}}\right\|=-1$	$\left\|\mathrm{E}_{\mathrm{ij}} \mathrm{A}\right\|=-\|\mathrm{A}\|$	$\mathrm{E}_{\mathrm{ij}}{ }^{\prime}=\mathrm{E}_{\mathrm{ij}}$	$\mathrm{E}_{\mathrm{ij}}{ }^{-1}=\mathrm{E}_{\mathrm{ij}}$
$\left\|\mathrm{R}_{\mathrm{ij}}(\lambda)\right\|=\lambda$	$\left\|\mathrm{R}_{\mathrm{ii}}(\lambda) \mathrm{A}\right\|=\lambda\|\mathrm{A}\|$	$\mathrm{R}_{\mathrm{ij}}{ }^{\prime}(\lambda)=\mathrm{R}_{\mathrm{ii}}(\lambda)$	$\left[\mathrm{R}_{\mathrm{ii}}(\lambda)\right]^{-1}=\mathrm{R}_{\mathrm{ii}}\left(\frac{l}{\lambda}\right)$
$\left\|\mathrm{P}_{\mathrm{ij}}(\lambda)\right\|=1$	$\left\|\mathrm{P}_{\mathrm{ij}}(\lambda) \mathrm{A}\right\|=\|\mathrm{A}\|$	$\left[\mathrm{P}_{\mathrm{ij}}(\lambda)\right]=\mathrm{P}_{\mathrm{ij}}(\lambda)$	$\left[\mathrm{P}_{\mathrm{ij}}(\lambda)\right]^{-1}=\mathrm{P}_{\mathrm{ij}}(-\lambda)$

Reduction of a matrix to its equivalent diagonal form

Equivalence: two matrices are equivalent if one can be derived from the other by multiplying it by a series of elementary operators, i.e., a matrix $B_{m n}$ is equivalent to a matrix $A_{m n}$ if

$$
\mathrm{P}_{\mathrm{u}} \ldots \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{AQ}_{1} \mathrm{Q}_{2} \ldots \mathrm{Q}_{\mathrm{v}}=\mathrm{B}
$$

where the $P_{i}, i=1, \ldots, u$ and $Q_{j}, j=1, \ldots, v$ are elementary operators. Let

$$
\mathrm{P}=\mathrm{P}_{\mathrm{u}} \ldots \mathrm{P}_{2} \mathrm{P}_{1} \text { and } \mathrm{Q}=\mathrm{Q}_{1} \mathrm{Q}_{2} \ldots \mathrm{Q}_{\mathrm{v}}
$$

where
P and $\left\{\mathrm{P}_{\mathrm{i}}\right\}$ are $\mathrm{m} \times \mathrm{n}$ and Q and $\left\{\mathrm{Q}_{\mathrm{j}}\right\}$ are $\mathrm{n} \times \mathrm{m}$ nonsingular matrices. Thus,

$$
\mathrm{A}=\mathrm{P}^{-1} \mathrm{BQ}^{-1}
$$

where

$$
\begin{aligned}
& \mathrm{P}^{-1}=\mathrm{P}_{1}^{-1} \ldots \mathrm{P}_{\mathrm{u}-1}^{-1} \mathrm{P}_{\mathrm{u}}^{-1} \\
& \mathrm{Q}^{-1}=\mathrm{Q}_{\mathrm{v}}{ }^{-1} \ldots \mathrm{Q}_{2}^{-1} \mathrm{Q}_{1}^{-1}
\end{aligned}
$$

which are also elementary operators. Thus, B is equivalent to A and A is equivalent to B . In addition, because multiplication of matrices by elementary operators does not change their rank, $\operatorname{rank}(\mathrm{A})=\operatorname{rank}(\mathrm{B})$.

Equivalent diagonal form

$$
\mathrm{D}=\left[\begin{array}{rr}
\mathrm{D}_{\mathrm{r}} & 0 \\
0 & 0
\end{array}\right]
$$

Note: the rank of a matrix A_{mn} can be obtained by obtaining an equivalent matrix B whose subdiagonal elements are zero.

Examples:

1) Reduction of A_{33} to D

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
8 & 4 & 2 \\
4 & 6 & 1 \\
2 & 1 & 4
\end{array}\right] \\
& P_{2} P_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{4} & 0 & 1
\end{array}\right] \Rightarrow P_{2} P_{1} A=\left[\begin{array}{ccc}
8 & 4 & 2 \\
0 & 4 & 0 \\
0 & 0 & \frac{7}{2}
\end{array}\right] \Rightarrow \operatorname{rank}(A)=3
\end{aligned}
$$

2) Reduction of A_{33} to D

$$
A=\left[\begin{array}{lll}
6 & 4 & 2 \\
4 & 4 & 0 \\
2 & 0 & 2
\end{array}\right]
$$

$$
\begin{align*}
& P_{2} P_{1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{2}{3} & 1 & 0 \\
-\frac{1}{3} & 0 & 1
\end{array}\right] \Rightarrow P_{2} P_{1} A=\left[\begin{array}{ccc}
6 & 4 & 2 \\
0 & \frac{4}{3} & -\frac{4}{3} \\
0 & -\frac{4}{3} & \frac{4}{3}
\end{array}\right] \tag{2-13}\\
& \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{~A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
6 & 4 & 2 \\
0 & \frac{4}{3} & -\frac{4}{3} \\
0 & -\frac{4}{3} & \frac{4}{3}
\end{array}\right]=\left[\begin{array}{ccc}
6 & 4 & 2 \\
0 & \frac{4}{3} & -\frac{4}{3} \\
0 & 0 & 0
\end{array}\right]
\end{align*}
$$

Because A is symmetric $Q_{i}=P_{i}{ }^{\prime}$; thus, $\mathbf{Q}_{1} \mathbf{Q}_{2} \mathbf{Q}_{3}=P_{1}{ }^{\prime} \mathbf{P}_{\mathbf{2}}{ }^{\prime} \mathbf{P}_{3}{ }^{\prime}$,

$$
\left.\begin{array}{rl}
\Rightarrow \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{AP}_{1}^{\prime} \mathrm{P}_{2}^{\prime} \mathrm{P}_{3}^{\prime}= & {\left[\begin{array}{rrr}
6 & 4 & 2 \\
0 & \frac{4}{3} & \frac{4}{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & -\frac{2}{3} & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{lll}
6 & 0 & 0 \\
0 & \frac{4}{3} & 0 \\
& \mathrm{PA} & \\
0 & 0 & 0
\end{array}\right]
$$

In this example, the $\operatorname{rank}(A)=2$.

Generalized inverse of a matrix (Searle, 1966)

A matrix G is said to be a generalized inverse of matrix A if $A G A=A$. Matrix G is not unique. There is an infinite number of matrices G that satisfy the condition AGA $=\mathrm{A}$.

Computing G (Searle, 1971)

a) Consider $\mathrm{D}=\mathrm{PAQ}$, where P and Q are products of elementary operators. The matrix D is

$$
\mathrm{D}=\left[\begin{array}{rr}
\mathrm{D}_{\mathrm{r}} & 0 \\
0 & 0
\end{array}\right]
$$

Define

$$
\mathrm{D}^{-}=\left[\begin{array}{cc}
\mathrm{D}_{\mathrm{r}}^{-1} & 0 \\
0 & 0
\end{array}\right]
$$

Then, a g-inverse of matrix A is $\mathrm{G}=\mathrm{QD}^{-} \mathrm{P}$, because $\mathrm{AGA}=\mathrm{A}$.
Proof:
Note that

$$
\mathrm{DD}^{-} \mathrm{D}=\mathrm{D} \quad \text { and } \quad \mathrm{D}^{-} \mathrm{DD}^{-} \quad=\mathrm{D}^{-}
$$

Thus,

$$
\begin{aligned}
\mathrm{AGA} & =\left(\mathrm{P}^{-1} \mathrm{DQ}^{-1}\right)\left(\mathrm{QD}^{-} \mathrm{P}\right)\left(\mathrm{P}^{-1} \mathrm{DQ}^{-1}\right) \\
& =\mathrm{P}^{-1} \mathrm{DID}^{-} \mathrm{IDQ}^{-1} \\
& =\mathrm{P}^{-1} \mathrm{DQ}^{-1} \\
& =\mathrm{A}
\end{aligned}
$$

Also,

$$
\begin{aligned}
\mathrm{GAG} & =\left(\mathrm{QD}^{-} \mathrm{P}\right)\left(\mathrm{P}^{-1} \mathrm{DQ}^{-1}\right)\left(\mathrm{QD}^{-} \mathrm{P}\right) \\
& =\mathrm{QD}^{-} \mathrm{IDID}^{-} \mathrm{P} \\
& =\mathrm{QD}^{-} \mathrm{P} \\
& =\mathrm{G}
\end{aligned}
$$

b) Consider a matrix A of rank $=r$. If A can be partitioned in such a way that its leading principal minor is nonsingular, i.e.,

$$
\mathrm{A}_{\mathrm{m} \times \mathrm{n}}=\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \tag{2-15}\\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right]
$$

where A_{11} is $r \times r$ and $r\left(A_{11}\right)=r$. Then, a g-inverse of A is:

$$
\mathrm{G}=\left[\begin{array}{rr}
\mathrm{A}_{11}^{-1} & 0 \\
0 & 0
\end{array}\right]
$$

because $\mathrm{AGA}=\mathrm{A}$.
Proof:

$$
\begin{aligned}
\text { AGA } & =\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right]\left[\begin{array}{rr}
\mathrm{A}_{11}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right] \\
& =\left[\begin{array}{rr}
\mathrm{I} & 0 \\
\mathrm{~A}_{21} \mathrm{~A}_{11}^{-1} & 0
\end{array}\right]\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\mathrm{A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{21} & \mathrm{~A}_{21} \mathrm{~A}_{11}^{-1} \mathrm{~A}_{12}
\end{array}\right]
\end{aligned}
$$

Note that A can be factored as follows: first, partition $A=\left[\begin{array}{c}F \\ K F\end{array}\right]$ where $F_{r \times n}$ are r independent rows and KF are $\mathrm{m}-\mathrm{r}$ linear combinations of the first r rows. If A has r independent rows, it also has r independent columns, where $\mathrm{r} \leq \mathrm{m} \leq \mathrm{n}$. Assuming the set of r independent columns are the first ones, A can be further partitioned as follows: $A=\left[\begin{array}{cc}A_{11} & B \\ K A_{11} & K B\end{array}\right]$ where A_{11} is an $r \times r$ matrix and B is an $r \times(n-r)$ matrix, where the columns of $\left[\begin{array}{c}B \\ K B\end{array}\right]$ are linear combinations of the r independent columns $\left[\begin{array}{c}\mathrm{A}_{11} \\ \mathrm{KA}_{11}\end{array}\right]$, i.e.,

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{B} \\
\mathrm{~KB}
\end{array}\right]=\left[\begin{array}{r}
\mathrm{A}_{11} \\
\mathrm{KA}_{11} \mathrm{~L}
\end{array}\right] . } \\
\Rightarrow & \mathrm{A}=\left[\begin{array}{cc}
\mathrm{A}_{11} & \mathrm{~A}_{11} \mathrm{~L} \\
\mathrm{KA}_{11} & \mathrm{KA}_{11} \mathrm{~L}
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow \mathrm{AGA}=\left[\begin{array}{rr}
\mathrm{A}_{11} & \mathrm{~A}_{11} \mathrm{~L} \\
\mathrm{KA}_{11} & \mathrm{KA}_{11} \mathrm{~L}
\end{array}\right]\left[\begin{array}{rr}
\mathrm{A}_{11}^{-1} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
\mathrm{A}_{11} & \mathrm{~A}_{11} \mathrm{~L} \\
\mathrm{KA}_{11} & \mathrm{KA}_{11} \mathrm{~L}
\end{array}\right]
$$

$$
\Rightarrow \mathrm{AGA}=\left[\begin{array}{rr}
\mathrm{I} & 0 \\
\mathrm{~K} & 0
\end{array}\right]\left[\begin{array}{rr}
\mathrm{A}_{11} & \mathrm{~A}_{11} \mathrm{~L} \\
\mathrm{KA}_{11} & \mathrm{KA}_{11} \mathrm{~L}
\end{array}\right]
$$

$$
\Rightarrow A G A=\left[\begin{array}{rr}
A_{11} & A_{11} L \\
K A_{11} & K A_{11} L
\end{array}\right]=A \equiv\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

or, by substituting $A_{11} L$ for A_{12} in $A_{21} A_{11}^{-1} A_{12}$ we get

$$
\begin{aligned}
\mathrm{A}_{21} \mathrm{~A}_{11}{ }^{-1} \mathrm{~A}_{12} & =\mathrm{KA}_{11} \mathrm{~A}_{11}{ }^{-1} \mathrm{~A}_{11} \mathrm{~L} \\
& =\mathrm{KA}_{11} \mathrm{~L} \\
& \equiv \mathrm{~A}_{22}
\end{aligned}
$$

Also, $\mathrm{GAG}=\mathrm{G}$. Thus,
$G A G=\left[\begin{array}{rr}\mathrm{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{rr}\mathrm{A}_{11} & \mathrm{~A}_{11} \mathrm{~L} \\ \mathrm{KA}_{11} & \mathrm{KA}_{11} \mathrm{~L}\end{array}\right]\left[\begin{array}{rr}\mathrm{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]$
$\mathrm{GAG}=\left[\begin{array}{cc}\mathrm{I} & \mathrm{L} \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}\mathrm{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]$
$\mathrm{GAG}=\left[\begin{array}{rr}\mathrm{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]=\mathrm{G}$
or,
$\mathrm{GAG}=\left[\begin{array}{rr}\mathrm{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}\mathrm{A}_{11} & \mathrm{~A}_{12} \\ \mathrm{~A}_{21} & \mathrm{~A}_{22}\end{array}\right]\left[\begin{array}{rr}\mathrm{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]$
$\mathrm{GAG}=\left[\begin{array}{cc}\mathrm{I} & \mathrm{A}_{11}^{-1} \mathrm{~A}_{12} \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}\mathrm{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]$
$\mathrm{GAG}=\left[\begin{array}{rr}\mathrm{A}_{11}^{-1} & 0 \\ 0 & 0\end{array}\right]$
c) Symmetric matrices. A computational algorithm for a symmetric matrix $A_{m n}$ of rank $=r$ is:

1) Find any nonsingular principal minor of order r, e.g., $A_{i i}$.
2) Invert $A_{i i}$, i.e., obtain $A_{11}{ }^{-1}$.
3) Replace each element of $A_{i i}$ in A by the corresponding element of $A_{11}{ }^{-1}$.
4) Substitute zeroes for all the other elements of A.
5) The resulting matrix is a g-inverse of A.

Examples:

a) Method 1: $\mathrm{G}=\mathrm{QD}^{-} \mathrm{P}$

$$
\begin{aligned}
& \mathrm{A}_{3 \times 3}=\left[\begin{array}{lll}
6 & 4 & 2 \\
4 & 4 & 0 \\
2 & 0 & 2
\end{array}\right], \mathrm{P}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{2}{3} & 1 & 0 \\
-1 & 1 & 1
\end{array}\right], \mathrm{Q}=\mathrm{P}^{\prime} \\
& \mathrm{QD}^{-}=\left[\begin{array}{ccc}
1 & -\frac{2}{3} & -1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{6} & 0 & 0 \\
0 & \frac{3}{4} & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{6} & -\frac{1}{2} & 0 \\
0 & \frac{3}{4} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{QD}^{-} \mathrm{P}=\left[\begin{array}{rrr}
\frac{1}{6} & -\frac{1}{2} & 0 \\
0 & \frac{3}{4} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-\frac{2}{3} & 1 & 0 \\
-1 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{3}{4} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, $\mathrm{AGA}=\mathrm{A}$ and $\mathrm{GAG}=\mathrm{G}$.
b)Method 2: Principal minor.

Note that if $\mathrm{A}_{33}=\left|\begin{array}{ll}6 & 4 \\ 4 & 4\end{array}\right|$ is used, then

$$
\begin{aligned}
& \mathrm{G}=\left[\begin{array}{rr}
\mathrm{A}_{33}^{-1} & 0 \\
0 & 0
\end{array}\right]=\mathrm{QD}^{-} \mathrm{P} \text { above. Thus, } \\
& \mathrm{A}^{-}=\left[\begin{array}{lll}
{\left[\begin{array}{ll}
6 & 4 \\
4 & 4
\end{array}\right]} & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{8}\left[\begin{array}{rr}
4 & -4 \\
-4 & 6
\end{array}\right] & \begin{array}{l}
0 \\
0 \\
0
\end{array} \\
0 & 0
\end{array}\right] \\
& \mathrm{A}^{-}=\left[\begin{array}{rrr}
\frac{1}{2} & -\frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{3}{4} & 0 \\
0 & 0 & 0
\end{array}\right]=\mathrm{QD}^{-} \mathrm{P}
\end{aligned}
$$

The easiest to obtain G is the one based on A_{11}, where $A_{11}=\left|\begin{array}{ll}4 & 0 \\ 0 & 2\end{array}\right|$. Here,

$$
\left.\begin{array}{rl}
\mathrm{G} & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right] \\
\mathrm{AG} & =\left[\begin{array}{lll}
6 & 4 & 2 \\
4 & 4 & 0 \\
2 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
6 & 4 & 2 \\
4 & 4 & 0 \\
2 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
6 & 4 & 2 \\
4 & 4 & 0 \\
2 & 0 & 2
\end{array}\right]=\mathrm{A} \\
\mathrm{GA} & =\left[\begin{array}{lll}
0 & 0 & \frac{1}{2}
\end{array}\right] \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{lll}
6 & 4 & 2 \\
4 & 4 & 0 \\
2 & 0 & 2
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0
\end{array}\right]
$$

$$
\text { GAG }=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{2-20}\\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]=\mathrm{G}
$$

Thus, $\mathrm{AGA}=\mathrm{A}$ and $\mathrm{GAG}=\mathrm{G}$ also.

Generalized inverses for partitioned matrices (Searle, 1971, pp 16-28)
Substitute -'s for -1's in the superscripts of formulas [15] and [18] for partitioned matrices that have a unique inverse. Thus,
from equation [15],

$$
\left[\begin{array}{ll}
\mathrm{A}^{11} & \mathrm{~A}^{12} \\
\mathrm{~A}^{21} & \mathrm{~A}^{22}
\end{array}\right]=\left[\begin{array}{cc}
\left(\mathrm{A}_{11}-\mathrm{A}_{12} \mathrm{~A}_{22}^{-} \mathrm{A}_{21}\right)^{-} & -\mathrm{A}^{11} \mathrm{~A}_{12} \mathrm{~A}_{22}^{-} \\
-\mathrm{A}_{22}^{-} \mathrm{A}_{21} \mathrm{~A}^{11} & \mathrm{~A}_{22}-\mathrm{A}^{21} \mathrm{~A}_{12} \mathrm{~A}_{22}^{-}
\end{array}\right]
$$

and from equation [18],

$$
\left[\begin{array}{ll}
A^{11} & A^{12} \\
A^{21} & A^{22}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{A}_{11}^{-}-A^{12} \mathrm{~A}_{21} \mathrm{~A}_{11}^{-} & -\mathrm{A}_{11}^{-} \mathrm{A}_{12} \mathrm{~A}^{22} \\
-\mathrm{A}^{22} \mathrm{~A}_{21} \mathrm{~A}_{11}^{-} & \left(\mathrm{A}_{22}-\mathrm{A}_{21} \mathrm{~A}_{11}^{-} \mathrm{A}_{12}\right)^{-}
\end{array}\right] .
$$

Linear Equations

Consistency: a set of linear equations $\mathrm{Ax}=\mathrm{y}$ is consistent if, and only if, the linear relationships that exist among rows of the matrix A also exist among the elements of vector y .

Theorems:

1) The equations $A x=y$ are consistent if, and only if, the rank of the augmented matrix [A y] is
equal to the rank of A .
Proof:
\Rightarrow If $A x=y$ is consistent, then $[A y]=\left[\begin{array}{rr}A_{1} & y_{1} \\ L A_{1} & L y_{1}\end{array}\right] \Rightarrow$ the same number of linearly
independent rows exists for A and $[A y] \Rightarrow \operatorname{rank}(A)=\operatorname{rank}([A y])$.
$\Leftarrow \operatorname{If} \operatorname{rank}(A)=\operatorname{rank}([A y])$, then $\operatorname{rank}\left[\begin{array}{c}\mathrm{A}_{1} \\ \mathrm{LA}_{1}\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}\mathrm{A}_{1} & \mathrm{y}_{1} \\ \mathrm{LA}_{1} & \mathrm{Ly}_{1}\end{array}\right]$ for some K .
Clearly this is true only if $K=L$, which implies that $A x=y$ is a consistent set of equations.
2) If a matrix A has p rows and rank $r, p>r$, and if $D=P A Q$ is an equivalent diagonal form of
A, then the equations $A x=y$ are consistent if, and only if, the last p-r elements of Py are zero.
Proof:
\Rightarrow Given: $\mathrm{Ax}=\mathrm{y}$ consistent.

$$
\mathrm{D}=\mathrm{PAQ}
$$

Show: last p-r elements of $\mathrm{Py}=0$.

$$
\begin{aligned}
& A x=y \\
& \text { PAx }=P y
\end{aligned}
$$

But

$$
\text { PAx }=\left[\begin{array}{c}
A_{r} \mathrm{x} \\
0
\end{array}\right]=\text { Py } \Rightarrow \text { last } p-r \text { elements of Py }=0
$$

\Leftarrow Given: last p-r elements of $\mathrm{Py}=0$.
Show: $\mathrm{Ax}=\mathrm{y}$ is consistent.
If $\mathrm{Py}=0$ for the last $\mathrm{p}-\mathrm{r}$ elements, then the set of equations

$$
\left[\begin{array}{c}
\mathrm{A}_{\mathrm{r}} \\
0
\end{array}\right] \mathrm{x}=\mathrm{Py}
$$

is consistent. Because P is a matrix of elementary operators P^{-1} exists, so
$P^{-1}\left[\begin{array}{l}A_{r} \\ 0\end{array}\right] x=A x=P^{-1} P y=y=A x=y$ is also a set of consistent equations. This is so
because:
a) $\left[\begin{array}{l}A_{r} \\ 0\end{array}\right] x=$ Py is a set of consistent equations, and
b) the same set of linear relationships (i.e., P^{-1}) were applied to the rows of $\left[\begin{array}{l}A_{r} \\ 0\end{array}\right] x$ and to the elements of Py.
3) A solution to the consistent set of equations $A x=y$ is given by $x=$ Gy if, and only if, AGA =
A.

Proof:
\Rightarrow Given $\mathrm{x}=\mathrm{Gy}$, show that $\mathrm{AGA}=\mathrm{A}$.

$$
x=\mathrm{Gy} \Rightarrow \mathrm{Ax}=\mathrm{AGy}
$$

But $y=A x$,
$\Rightarrow \quad \mathrm{Ax}=\mathrm{AGAx}$
$\Rightarrow \quad \mathrm{A}=\mathrm{AGA}$
\Leftarrow Given $\mathrm{AGA}=\mathrm{A}$, show that $\mathrm{x}=\mathrm{Gy}$.

$$
\mathrm{AGAx}=\mathrm{Ax}
$$

But

$$
\mathrm{Ax}=\mathrm{y}
$$

$\Rightarrow \mathrm{AGy}=\mathrm{y}$
or

$$
A(G y)=y \Rightarrow x=G y \text { is a solution of the system of equations } A x=y
$$

Note: If A is square and full rank x is the vector of solutions to $A x=y$.
4) Let A be a matrix of n columns, z be any $\mathrm{n} \times 1$ vector and define $\mathrm{H} \equiv \mathrm{GA}$. Then, if $\mathrm{A}=\mathrm{AGA}$,
x° is a solution to the consistent set of equations $A x=y$, where

$$
x^{\circ}=G y+(H-I) z
$$

Proof:

$$
\begin{aligned}
\mathrm{x}^{\circ} & =\mathrm{Gy}+(\mathrm{H}-\mathrm{I}) \mathrm{z} \\
A x^{\circ} & =\mathrm{AGy}+\mathrm{A}(\mathrm{GA}-\mathrm{I}) \mathrm{z} \\
A x^{\circ} & =\mathrm{AGy}+(\mathrm{AGA}-\mathrm{A}) \mathrm{z}
\end{aligned}
$$

But,

$$
\begin{aligned}
\mathrm{AGA} & =\mathrm{A} \\
\Rightarrow \mathrm{Ax}^{\circ} & =\mathrm{AGy} \\
\Rightarrow \mathrm{Ax}^{\circ} & =\mathrm{y}, \text { by theorem } 3 \text {) above. }
\end{aligned}
$$

5) Given a set of consistent equations $A x=y$ and a matrix G such that $A G A=A$, define $H \equiv$ GA. Then, a linear combination of the elements of any solution x°, e.g., $k^{\prime} x^{\circ}$, is unique if, and only $\mathrm{if}, \mathrm{k}^{\prime} \mathrm{H}=\mathrm{k}^{\prime}$.

Proof: from theorem 4), $x^{\circ}=\mathrm{Gy}+(\mathrm{H}-\mathrm{I}) \mathrm{z}$. Thus,

$$
\mathrm{k}^{\prime} \mathrm{x}^{\circ}=\mathrm{k}^{\prime} \mathrm{Gy}+\mathrm{k}^{\prime}(\mathrm{H}-\mathrm{I}) \mathrm{z}
$$

which is independent of the arbitrary vector z if $\mathrm{k}^{\prime} \mathrm{H}=\mathrm{k}^{\prime}$. If so, the value of $\mathrm{k}^{\prime} \mathrm{x}^{\circ}$ is $\mathrm{k}^{\prime} \mathrm{Gy}$ for any x°. To see that this statement is true, consider any two solution vectors, i.e., x_{i} and x_{j}, thus

$$
\begin{align*}
x_{i} & =G_{i} y \tag{2-24}\\
\Rightarrow x_{i} & =G_{i} A x, \text { because } y=A x .
\end{align*}
$$

Similarly,

$$
\mathrm{x}_{\mathrm{j}}=\mathrm{G}_{\mathrm{j}} \mathrm{Ax}
$$

But

$$
\begin{aligned}
& \mathrm{Ax}_{\mathrm{i}}=\mathrm{AG}_{\mathrm{i}} \mathrm{Ax}=\mathrm{Ax}=\mathrm{y} \\
& \mathrm{Ax}_{\mathrm{j}}=\mathrm{AG}_{\mathrm{j}} \mathrm{Ax}=\mathrm{Ax}=\mathrm{y} \\
& \Rightarrow \quad \mathrm{~m}^{\prime} \mathrm{Ax}_{\mathrm{i}}=\mathrm{m}^{\prime} \mathrm{Ax} \quad=\mathrm{m}^{\prime} \mathrm{y} \\
& m^{\prime} A x_{j}=m^{\prime} A x=m^{\prime} y
\end{aligned}
$$

for some vector m. Thus, letting $k^{\prime}=m^{\prime} A$, we have that

$$
\mathrm{k}^{\prime} \mathrm{x}_{\mathrm{i}}=\mathrm{k}^{\prime} \mathrm{x}_{\mathrm{j}}=\mathrm{k}^{\prime} \mathrm{x}=\mathrm{m}^{\prime} \mathrm{y}
$$

\Rightarrow no matter which matrix G we use to obtain a solution vector x°, a linear combination of the elements of x° satisfying the relationship $\mathrm{k}^{\prime} \mathrm{H}=\mathrm{k}^{\prime}$ is unique.

Also, note that

$$
\mathrm{k}^{\prime} \mathrm{H}=\mathrm{m}^{\prime} \mathrm{AGA}=\mathrm{m}^{\prime} \mathrm{A}
$$

\Rightarrow a necessary and sufficient condition for $\mathrm{k}^{\prime} \mathrm{x}^{\circ}$ to be unique is for k^{\prime} to be a linear combination of the rows of A .

References

Goldberger, A. S. 1964. Econometric Theory. John Wiley and Sons, Inc., NY.
Searle, S. R. 1966. Matrix Algebra for the Biological Sciences (including Applications in Statistics). John Wiley and Sons, Inc., NY.

Searle, S. R. 1971. Linear Models. John Wiley and Sons, Inc., NY.
Scheffé, H. 1959. The analysis of variance. John Wiley and Sons, Inc., NY.

