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ANIMAL BREEDING NOTES 

CHAPTER 2 

LINEAR DEPENDENCE, MATRIX INVERSES, AND CONSISTENCY OF LINEAR 

EQUATIONS 

 

Linear dependence 

Let {y1, y2, ..., yn} be a set of n m × 1 vectors.  This set of n vectors is linearly dependent if 

there is a set of scalars {c1, ..., cn} not all zero, such that 

  c1y1 + c2y2 + ... + cnyn = 0. 

Contrarily, if the only set of scalars for which the above sum is {0,0, ...,0}, the set of vectors 

{y1, ..., yn} is linearly independent. 

Remarks: 

1) Any set of vectors containing the zero vector is linearly dependent. 

2) Any subset of a linearly independent set of vectors is linearly independent. 

3) If a set contains more than m m × 1 vectors, it is linearly dependent. 

Examples: 
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The set {y1, y2, y3} is linearly independent because 


3

1  i

c1yi  =  0  only if  c1  =  c2  =  c3  =  0. 
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The set {x1, x2, x3} is linearly dependent because x1 + 2x3 = 0. 

Rank of a matrix:  The columns of a matrix Am×n can be considered as a set of vectors (i.e., 

column vectors).  Similarly, the rows of a matrix Am×n constitute a set of row vectors.  The rank 

of a matrix Am×n is the number of linearly independent column vectors (column rank) or row 

vectors (row rank).  The row rank and the column rank of a matrix are equal. 

Remarks: 

1) The rank of Am×n, m =/   n  min (m, n). 

 [Note:  rank (A) = rank (A)] 

2) The rank of AB  min (rank A, rank B). 

3) The rank of a square matrix is equal to or less than its order. 

4) The rank of (A  B) = rank of A + rank of B. 

5) The following statements are equivalent for a nonsingular (square) matrix An: 

 a) Ax = 0    x = 0, and 

 b) │A│ ≠ 0. 

6) For D = diagonal matrix, rank (D) = number of nonzero elements.  In particular, rank (In) = n. 

Examples: 
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1) The matrix A3  =  
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
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 has rank = 3 (i.e., it is nonsingular) because: 

 a)   Ax = 0  x = [0  0  0] 

 b) │A│ = 
 1 6  

 3 2 
 5


(B1)3 = 100 

2) The matrix B3  =  


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 has rank = 2 (i.e., it is singular) because: 

 a)   Bx = 0 for  x = [1   0   2] 

 b) │B│ = 
 36  

 1 2 
 5




 (B1)3  =  B5(0)  =  0 

c) If the first or the third columns are ignored the remaining columns are linearly 

independent. 

Inverse of a matrix:  The matrix B such that AB = BA = I is called the inverse of A and it is 

denoted by AB1.  The inverse is defined only for square matrices. 

Remarks: 

1) The matrix A has an inverse if it is nonsingular, i.e., 

  AB1 exists   












0A

0x0Ax
 

2) A-1 is unique. 

3) (A-1) -1 = A 

4) (A)B1 = (AB1) 
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5) If A is symmetric (i.e., A = A), then AB1 is also symmetric (i.e., (AB1) = AB1). 

6) If A and B are nonsingular, then (AB)B1 = BB1AB1 

7) If AB1 = A then AA = I  A ≡ orthogonal matrix. 

8) (A  B)B1 = AB1  BB1 

9) (A * B)B1 = AB1 * BB1 

10)  D = diag {dii}     DB1 = 








d

1

ii

. 

Computation of the inverse of a matrix 

  AB1  = │A│B1 adj (A) 

where 

  │A│ = Determinant of the matrix A 

 adj (A)  = Transposed matrix of cofactors of the elements of A 

    = adjugate or adjoint of A 

Example: 
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    AB1 = 
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Inversion of a matrix by partitioning 

If a nonsingular matrix A is too large to be directly inverted in a computer, its inverse (i.e., AB1) 

could be obtained by partitioning A into four submatrices, i.e., 

 A = 












 AA 

 AA 

2221

1211
 where A11 and A22 are square matrices.  

Let 

 AB1 = 


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

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 A A 
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. 

Note that: 
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  A11A11 + A12A21  = I               [1] 

  A11A12 + A12A22  = 0               [2] 

  A21A11 + A22A21  = 0               [3] 

  A21A12 + A22A22  = I               [4] 

Assuming that A11 and A22 are nonsingular, using [1], [2], [3], and [4], we get:      

 from [2]: A12  = BA11
-1 A12A22              [5] 

 from [3]: A21  = B A22
-1  A21A11             [6] 

Substituting [6] in [1] and [5] in [4] we get: 

  A11A11 + A12(BA22
-1A21A11) = I 

   (A11 B A12A22
-1A21)A11 = I 

         A11  = (A11 B A12A22
-1A21)B1        [7] 

and 

  A21(BA11
-1A12A22) + A22A22 = I 

        A22  = (A22 B A21A11
-1A12)B1        [8] 

This approach requires inverting four matrices:  A11, A22, (A11 B A12AA21) and (A22 B A21AA12). 

A procedure that requires inverting only two matrices is as follows.  Recall that: 
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Thus, 

    A11A11 + A12A21  = I             [9] 
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    A11A12 + A12A22  = 0             [10] 

    A21A11 + A22A21  = 0             [11] 

    A21A12 + A22A22  = I             [12] 

From [10]: 

        A12  = BA11A12 A22
-1          [13] 

From [12]: 

        A22  = (I B A21A12) A22
-1 

        A22  = A22
-1 B A21A12 A22

-1        [14] 
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Remark: Matrix [15] requires the existence of A22
-1. 

Similarly, from [11] and [9], we get: 

        A21  = BA22A21A11
-1          [16] 

and 

        A11  = (I B A12A21)A11
-1 

        A11  = A11
-1 B A12A21A11

-1        [17] 
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1
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  [18] 

Remark: Matrix A11
-1 must exist if AB1 is to be computed using [18]. 

Expressions for obtaining the inverse of a symmetric matrix by partitioning are similar to [15] 

and [18], with A12 and A12
 substituted for A21 and A21. 

Example: 
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  A3×3 = 
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  A22  = 
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Elementary operators 

Elementary operators are square matrices derived from the identity matrix.  The rank of the 

matrix resulting from multiplying an elementary operator by a matrix Am×n is the same as the 

rank of A. 

The elementary operators are: 

a) Eij is I with rows i and j interchanged, e.g., 

  


















 0 0 1 

 0 1 0 

 1 0 0 

    E13     

b) Rii(λ) is I with λ substituted for 1 in the ith diagonal element, e.g., 

  


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 0 1 0 

 0 0 2 
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c) Pij(λ) is I with λ replacing for 0 in the ijth location for i =/   j, e.g., 

  

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Effect of elementary operators on Am×n 

Pre-multiplication of A by an elementary operator affects the rows of A.  Post-multiplication of 

A by an elementary operator affects the columns of A. 

Pre-multiplication of A by: 

a) Eij interchanges the ith and jth rows, e.g., 

  
 

 3 2 1 
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 0 1 0 
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AE           A                           E 1313
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b) Rii(λ) multiples the ith row by λ, e.g., 
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(2)AR        A                         (2)R 1111

 

c) Pij(λ) adds λ times the jth row to the ith row of A, e.g.,  

  



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

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






 9  8   7 

 6   5   4 

 15  12  9 

      

 9  8  7 

 6  5  4 

 3  2  1 

  

1  0  0 

 0  1  0 

 0  2  1 
(2)AP              A                          (2)P 1212
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Determinants, transposes and inverses of elementary operators 

Determinant Transpose Inverse 

│Eij│ = B1 │EijA│ = B│A│ Eijʹ = Eij Eij
-1 = Eij 

│Rii(λ)│ = λ │Rii(λ)A│ = λ│A│ Riiʹ (λ) = Rii(λ) 
[Rii(λ)]B1 = Rii 











1  

│Pij(λ)│ = 1 │Pij(λ)A│ = │A│ [Pij(λ)] = Pji(λ) [Pij(λ)]B1 = Pij(Bλ) 

 

Reduction of a matrix to its equivalent diagonal form 

Equivalence:  two matrices are equivalent if one can be derived from the other by multiplying it 

by a series of elementary operators, i.e., a matrix Bmn is equivalent to a matrix Amn if 

  Pu ... P2P1AQ1Q2 ... Qv  =  B 

where the Pi, i=1, ..., u and Qj, j = 1, ..., v are elementary operators.  Let 

  P =  Pu...P2P1  and  Q  =  Q1Q2 ... Qv 

where 

  P and {Pi} are m×n and Q and {Qj} are n×m nonsingular matrices.  Thus, 

  A =  PB1BQB1 

where 

  PB1  =  P1
-1... Pu-1

-1 Pu
-1 

  QB1  =  Qv
-1... Q2

-1Q1
-1 

which are also elementary operators.  Thus, B is equivalent to A and A is equivalent to B.  In 

addition, because multiplication of matrices by elementary operators does not change their rank, 

 rank (A) = rank (B). 
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Equivalent diagonal form 

 









 0  0 

 0  D 
    D r  

Note:  the rank of a matrix Amn can be obtained by obtaining an equivalent matrix B whose 

subdiagonal elements are zero. 

Examples:   

1) Reduction of A33 to D 

 

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
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 2  4  8 

  A   

 3   rank(A)     

 
2
7  0  0 

 0  4  0 

 24  8 

  A  PP     

 1  0  
4
1

 0  1  
2
1 

 0  0  1   

    PP 1212 

























































  

2)  Reduction of A33 to D 

 


















 2  0  2 

 0  4  4 

 2  4  6 

  A   
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


































































 
3
4   

3
4  0 

 
3
4  

3
4   0 

  2    4    6 

  A  PP    

 1  0  
3
1 

 0  1  
3
2 

 0  0  1   

    PP 1212  

 

PA                 A         PP                      P               

0   0   0 

 
3
4  

3
4  0 

 2    4   6 

    

 
3
4   

3
4  0 

 
3
4  

3
4    0 

 2    4     6 

  

 1  1  0 

 0  1  0 

 0  0  1 

  A  PPP

123

123












































































 

Because A is symmetric Qi = Pi’; thus, Q1Q2Q3 = P1’P2’P3’, 

   D                          P                  PA                                         
 0  0  0 

 0  
3
4  0 

 0  0  6 

    

 1  0  0 

 1  1  0 

 1  
3
2  1 

  

 0  0  0 

 
3
4  

3
4  0 

 2  4  6 

  =  PPPAPPP 321123















































 

























 

In this example, the rank(A) = 2. 

 

Generalized inverse of a matrix (Searle, 1966) 

A matrix G is said to be a generalized inverse of matrix A if AGA = A.  Matrix G is not unique.  

There is an infinite number of matrices G that satisfy the condition AGA = A. 
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Computing G (Searle, 1971) 

a) Consider D = PAQ, where P and Q are products of elementary operators.  The matrix D is 

  









 0  0 

 0  D 
    D r  

Define 

  

















 0  0 

 0  D 
    D

1
r  

Then, a g-inverse of matrix A is G = QDBP, because AGA = A. 

Proof: 

Note that 

   DDBD= D  and   DBDDB  = DB 

Thus,  

 AGA  = (PB1DQB1)(QDBP)(PB1DQB1) 

    = PB1DIDBIDQB1 

    = PB1DQB1 

    = A 

Also,  

  GAG  = (QDBP)(PB1DQB1)(QDBP) 

    = QDBIDIDBP 

    = QDBP 

    = G 

b) Consider a matrix A of rank = r.  If A can be partitioned in such a way that its leading 

principal minor is nonsingular, i.e.,  
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












 AA 

 AA 
    A

2221

1211
nm  

where A11 is r×r and r (A11) = r.  Then, a g-inverse of A is: 

  






 

 0 0 

 0 A  =G  
1

11  

because AGA = A. 

Proof: 

 AGA = 






























 

 A A 

 A A 
 

 0 0 

 0 A  
 A A 

 A A 

2221

1211
1

11

2221

1211
 

   = 
























  A A 

 A A
 

 0 AA 

 0 I 

2221

1211

1
1121

 

   = 














  AAA A 

 A A 

12
1

112121

1211
 

Note that A can be factored as follows: first, partition 









 KF 

  F 
 A  where Fr×n are r independent 

rows and KF are mBr linear combinations of the first r rows.  If A has r independent rows, it also 

has r independent columns, where r  m  n.  Assuming the set of r independent columns are the 

first ones, A can be further partitioned as follows: 















 KB KA 

  B A 
 A 

11

11
 where A11 is an r×r matrix 

and B is an r×(nBr) matrix, where the columns of 








 KB 

  B 
 are linear combinations of the r 

independent columns 












 KA 

  A 

11

11
, i.e., 
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






















 LKA 

  A 
    

 KB 

  B 

11

11
. 
















LKAKA 

    LA    A 
  A    

1111

1111
 












































 LKA KA 

 LA A 
  

 0 0 

 0 A 
  

 LKA KA 

 LA  A 
  AGA    

1111

1111
1

11

1111

1111
 

























 LKA KA 

 LA A 
  

 0 K 

 0 I 
  AGA    

1111

1111
 





























 A A 

 A A 
  A      

 LKA KA 

 LA A 
  AGA    

2221

1211

1111

1111
 

or, by substituting A11L for A12 in A21A11
-1A12 we get 

 A21A11
-1A12 = KA11A11

-1A11L 

     = KA11L 

     ≡ A22 

Also, GAG = G.  Thus, 



































 0 0 

 0 A   
 LKA KA 

 LA A 
   

 0 0 

 0 A   GAG  
1

11

1111

1111
1

11  





















 0  0 

 0 A 
 0 0 

 L I 
  GAG  

1
11  

G    
 0 0 

 0 A   GAG  
1

11













 

or, 
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































 0 0 

 0 A   
 A A 

 A A
  

 0 0 

 0 A  GAG  
1

11

2221

1211
1

11  





















00
0A

  
00
AAI

  GAG  
1

1112
1

11  













 0 0 

 0 A   GAG  
1

11  

c) Symmetric matrices.  A computational algorithm for a symmetric matrix Amn of rank = r is: 

 1) Find any nonsingular principal minor of order r, e.g., Aii. 

 2) Invert Aii, i.e., obtain A11
-1. 

 3) Replace each element of Aii in A by the corresponding element of A11
-1. 

 4) Substitute zeroes for all the other elements of A. 

 5) The resulting matrix is a g-inverse of A. 

Examples: 

a) Method 1: G = QDBP 

  P    Q  ,

 1  1  1 

 0  1  
3
2 

 0  0  1  

    P  ,

 2  0  2 

 0  4  4 

 2  4  6 

    A3x3 
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4
3   0 
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2
1  

6
1 

    

 0  0  0 

 0  
4
3  0 

 0  0  
6
1 

  

 1   0   0 

 1   1   0 

 1  
3
2  1 

    QD  



 [2-18] 
 

  


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







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 0  0  0  
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2
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2
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 1  1  1 

 0  1  
3
2 

 0  0  1  

  

 0  0   0 

 0  
4
3   0 

 0  
2
1  

6
1 

    PQD  

Thus, AGA = A and GAG = G. 

b)Method 2:  Principal minor. 

Note that if A33  =  
 4    4 

 4    6 
 is used, then 

  











 0 0 

 0 A   G  
1

33   =  QDBP above.  Thus, 

  







































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










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


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The easiest to obtain G is the one based on A11, where A11  =  
 2  0 

 0  4 
.  Here, 
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   G = 

















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
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    AGA  = A    
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4
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    GAG  = G    
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Thus, AGA = A and GAG = G also. 

 

Generalized inverses for partitioned matrices (Searle, 1971, pp 16-28) 

Substitute B's for B1's in the superscripts of formulas [15] and [18] for partitioned matrices that 

have a unique inverse.  Thus, 

from equation [15], 

  












 A  A 

 A  A 
2221

1211

 = 
 





















 

 AAA A  AAA  

 AAA  AAA  A 

2212
21

22
11

2122

2212
11

21221211  

and from equation [18], 

  












 A  A 

 A  A 
2221

1211

 = 
  


















 



 AAA  A  AAA 

 AAA  AAA  A 

121121221121
22
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12111121

12
11

. 

 

Linear Equations 

Consistency:  a set of linear equations Ax = y is consistent if, and only if, the linear relationships 

that exist among rows of the matrix A also exist among the elements of vector y. 

Theorems: 

1) The equations Ax = y are consistent if, and only if, the rank of the augmented matrix [A y] is 
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equal to the rank of A. 

Proof: 

 If Ax = y is consistent, then  [A y]  = 














 Ly LA 

 y  A 

11

11
    the same number of linearly 

independent rows exists for A and [A y]    rank (A) = rank ([A y]). 

 If rank (A) = rank ([A y]), then  rank












LA 

 A 

1

1
  =  rank















 Ly LA 

 y  A 

11

11
 for some K.   

Clearly this is true only if K = L, which implies that Ax = y is a consistent set of equations. 

2) If a matrix A has p rows and rank r, p > r, and if D = PAQ is an equivalent diagonal form of 

A, then the equations Ax = y are consistent if, and only if, the last pBr elements of Py are zero. 

Proof: 

 Given: Ax = y consistent. 

     D = PAQ 

 Show: last pBr elements of Py = 0. 

     Ax = y 

     PAx = Py 

But 

 PAx  =  








   0 

x A r  =  Py    last pBr elements of Py = 0. 

 Given: last pBr elements of Py = 0. 

   Show:  Ax = y is consistent. 

If Py = 0 for the last pBr elements, then the set of equations 



 [2-22] 
 

 Py   x  
 0

Ar









 

is consistent.  Because P is a matrix of elementary operators PB1 exists, so 

y  Ax    y    y   PP Ax     x  
   0

 A 
 P 1-r1 








   is also a set of consistent equations.  This is so 

because:   

 a) Py   x  
   0 

 Ar









  is a set of consistent equations, and  

 b) the same set of linear relationships (i.e., PB1) were applied to the rows of  x
   0  

 A r








 and 

to the elements of Py. 

3) A solution to the consistent set of equations Ax = y is given by x = Gy if, and only if, AGA = 

A. 

Proof: 

 Given x = Gy,  show that AGA = A. 

   x = Gy    Ax = AGy 

But  y = Ax, 

  Ax =  AGAx 

  A =  AGA 

 Given AGA = A, show that x = Gy. 

  AGAx = Ax 

But 

 Ax   =  y 
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 AGy =  y 

or 

 A(Gy) =  y    x = Gy is a solution of the system of equations Ax = y. 

Note: If A is square and full rank x is the vector of solutions to Ax = y. 

4) Let A be a matrix of n columns, z be any n×1 vector and define H ≡ GA.  Then, if A = AGA, 

x is a solution to the consistent set of equations Ax = y, where 

  x = Gy + (H B I)z 

Proof: 

   x = Gy + (HBI)z 

 Ax = AGy + A(GABI)z 

 Ax = AGy + (AGABA)z 

But, 

 AGA = A, 

 Ax = AGy 

 Ax = y,  by theorem 3) above. 

5) Given a set of consistent equations Ax = y and a matrix G such that AGA = A, define H ≡ 

GA.  Then, a linear combination of the elements of any solution x, e.g., kx, is unique if, and 

only if, kH = k. 

Proof:  from theorem 4), x = Gy + (H B I)z.  Thus, 

   kx = kGy + k(HBI)z 

which is independent of the arbitrary vector z if kH = k.  If so, the value of kx is kGy for 

any x.  To see that this statement is true, consider any two solution vectors, i.e., xi and xj, thus 
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   xi = Giy 

   xi = GiAx,  because y = Ax. 

Similarly, 

   xj = GjAx 

But    

  Axi  = AGiAx  = Ax  = y 

  Axj  = AGjAx  = Ax  = y 

  mAxi = mAx  = my 

  mAxj = mAx  = my 

for some vector m.  Thus, letting  k = mA, we have that 

  kxi = kxj = kx  = my 

  no matter which matrix G we use to obtain a solution vector x, a linear combination of the 

elements of x satisfying the relationship kH = k is unique. 

Also, note that 

  kH = mAGA = mA 

  a necessary and sufficient condition for kx to be unique is for k to be a linear combination 

of the rows of A. 
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