Mauricio A. Elzo, University of Florida, 1996, 2005, 2006, 2010, 2014.

ANIMAL BREEDING NOTES

CHAPTER 3

EIGENVALUES, EIGENVECTORS, AND DIAGONALIZATION OF A SQUARE

 MATRIX
Eigenvalues and eigenvectors

The eigenvalues of a square matrix $\mathrm{A}_{\mathrm{n} \times \mathrm{n}}$ are the n roots of its characteristic polynomial:

$$
|A-\lambda I|=0
$$

The set of eigenvalues (or latent roots) is called the spectrum and can be denoted as:

$$
\lambda(\mathrm{A})=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}\right\}
$$

Associated with these n eigenvalues are n eigenvectors. The eigenvectors must satisfy the equation:

$$
A u_{i}=\lambda_{i} u_{i}, i=1, \ldots, n
$$

where $u_{i}=i^{\text {th }}$ eigenvector.
Diagonalizable matrix: a square matrix A is called diagonalizable if there is an invertible matrix P such that $\mathrm{P}^{-1} \mathrm{AP}$ is diagonal. The matrix P is said to diagonalize A (Anton, 1981, pg. 269).

Theorem: If A is an $\mathrm{n} \times \mathrm{n}$ matrix the following statements are equivalent:
(a) A is diagonalizable, and
(b) A has n linearly independent eigenvectors.

Proof:
(a) \Rightarrow (b) Assume A is diagonalizable, then there is an invertible matrix P such that:

$$
\begin{aligned}
\mathrm{P}^{-1} \mathrm{AP} & =\mathrm{D} \\
\mathrm{AP} & =\mathrm{PD}
\end{aligned}
$$

$$
\left[\begin{array}{llll}
\mathrm{Ap}_{1} & \mathrm{Ap} & \ldots & A p_{n}
\end{array}\right]=\left[\begin{array}{lllll}
\lambda_{1} p_{1} & \lambda_{2} \mathrm{p}_{2} & \ldots & \lambda_{\mathrm{n}} \mathrm{p}_{\mathrm{n}}
\end{array}\right]
$$

$$
\Rightarrow A p_{i}=\lambda_{i} p_{i}, \quad i=1, \ldots, n
$$

where
$\left\{\lambda_{i}\right\} \quad$ are the eigenvalues of A, and
$\left\{p_{i}\right\} \quad$ are the corresponding eigenvectors, which are independent because P^{-1} exists.
(b) \Rightarrow (a) Assume A has n linearly independent eigenvectors $\left(\mathrm{p}_{\mathrm{i}}\right)$ with associated eigenvalues $\left\{\lambda_{i}\right\}$. Consider the product,

$$
\mathrm{A}\left[\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}\right]
$$

But $\mathrm{Ap}_{\mathrm{i}}=\lambda_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}, \quad \mathrm{i}=1, \ldots, \mathrm{n}$. Thus, $\mathrm{AP}=\mathrm{PD}$, where $\mathrm{D}=\operatorname{diag}\left\{\lambda_{\mathrm{i}}\right\}$.
Since the columns of P are linearly independent, P^{-1} exists, so

$$
\mathrm{P}^{-1} \mathrm{AP}=\mathrm{D} \Rightarrow \mathrm{~A} \text { is diagonalizable. }
$$

This theorem indicates that if a square matrix A is diagonalizable, we can find a set of n linearly independent eigenvectors. The matrix A can be singular or non-singular.

Placing the latent vectors of matrix A together to form a matrix we obtain:

$$
\mathrm{U}=\left[\mathrm{u}_{1} \mathbf{u}_{2} \ldots \mathrm{u}_{\mathrm{n}}\right]
$$

where U is an $n \times n$ square matrix, $\operatorname{rank}(U)=n$, hence U is non-singular and U^{-1} exists. Thus, forming the equations $A u_{i}=\lambda u_{i}$, for $i=1, \ldots$, n we get:

$$
\mathrm{A}\left[\mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{\mathrm{n}}\right]=\left[\mathbf{u}_{1} \mathbf{u}_{2} \ldots \mathbf{u}_{\mathrm{n}}\right] \operatorname{diag}\left\{\lambda_{\mathrm{i}}\right\}
$$

or

$$
\begin{aligned}
& \mathrm{AU}=\mathrm{UD} \\
& \Rightarrow \quad \mathrm{~A}=\mathrm{UDU}^{-1} \text { and } \quad \mathrm{D}=\mathrm{U}^{-1} \mathrm{AU}
\end{aligned}
$$

where

$$
\mathrm{D}=\text { canonical form of } \mathrm{A} \text { under similarity. }
$$

Furthermore, if \mathbf{A} is symmetric, i.e., $\mathrm{A}^{\prime}=\mathrm{A}$, there exist an orthogonal \mathbf{U} (i.e., $\mathrm{UU}^{\prime}=\mathrm{U}^{\prime} \mathrm{U}=\mathrm{I}$)
such that
$\mathrm{A}=\mathrm{UDU}^{\prime}$
and
$\mathrm{D}=\mathrm{U}^{\prime} \mathrm{AU}$

Spectral Decomposition

For a non-symmetric matrix $A_{n \times n}$, the spectral decomposition is:

$$
\mathrm{A}=\lambda_{1} \mathrm{u}_{1} \mathrm{v}^{1}+\lambda_{2} \mathrm{u}_{2} \mathrm{v}^{2}+\cdots+\lambda_{\mathrm{n}} \mathrm{u}_{\mathrm{n}} \mathrm{v}^{\mathrm{n}}
$$

where $\left\{\lambda_{i}\right\}=$ eigenvalues of A
$\left\{u_{i}\right\}=$ eigenvectors of A
$\left\{\mathrm{v}^{\mathrm{i}}\right\}=$ rows of the matrix U^{-1}
Proof:

$$
\mathrm{A}=\mathrm{UDU}^{-1}
$$

Let $\left[\begin{array}{r}\mathrm{v}_{1} \\ \mathrm{v}_{2} \\ \vdots \\ \mathrm{v}_{\mathrm{n}}\end{array}\right]$ be the row vectors of matrix U^{-1}.

Then, $A=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]\left[\begin{array}{c}\mathrm{v}^{1} \\ \mathrm{v}^{2} \\ \vdots \\ \mathrm{v}^{\mathrm{n}}\end{array}\right]$

$$
\mathrm{A}=\lambda_{1} \mathrm{u}_{1} \mathrm{v}^{1}+\lambda_{2} \mathrm{u}_{2} \mathrm{v}^{2}+\cdots+\lambda_{\mathrm{n}} \mathrm{u}_{\mathrm{n}} \mathrm{v}^{\mathrm{n}}
$$

For a symmetric matrix $A_{n \times n}$, the spectral decomposition is:

$$
\mathrm{A}=\lambda_{1} \mathrm{u}_{1} \mathrm{u}^{1 \prime}+\lambda_{2} \mathrm{u}_{2} \mathrm{u}^{2 \prime}+\cdots+\lambda_{\mathrm{n}} \mathrm{u}_{\mathrm{n}} \mathrm{u}^{\mathrm{n} \prime}
$$

where $\left\{\mathrm{u}^{\mathrm{i}}\right\}=$ rows of the symmetric matrix U^{-1}.
Thus, if the set of linearly independent eigenvectors $\left\{u_{i}\right\}$ of a non-singular matrix A is orthogonalized, the spectral decomposition of A becomes:

$$
\mathrm{A}=\lambda_{1} \mathrm{u}_{1} \mathrm{u}^{1 \prime}+\lambda_{2} \mathrm{u}_{2} \mathrm{u}^{2 \prime}+\cdots+\lambda_{\mathrm{n}} \mathrm{u}_{\mathrm{n}} \mathrm{u}^{\mathrm{n} \prime}
$$

where $\left\{u_{i}\right\}=$ orthogonal eigenvectors of $A\left(u_{i}^{\prime} u_{i^{\prime}}\right)=0$.
Furthermore, if the $\left\{u_{i}\right\}$ are normalized such that $u_{i}{ }^{\prime} u_{i}=1$, the spectral decomposition is:

$$
\mathrm{A}=\lambda_{1} \mathrm{e}_{1} \mathrm{e}_{1}^{\prime}+\lambda_{2} \mathrm{e}_{2} \mathrm{e}_{2}^{\prime}+\cdots+\lambda_{\mathrm{n}} \mathrm{e}_{\mathrm{n}} \mathrm{e}_{\mathrm{n}}^{\prime}
$$

where $\left\{\mathrm{e}_{\mathrm{i}}\right\}=$ orthonormal eigenvectors of $\mathrm{A}\left(\mathrm{e}_{\mathrm{i}^{\prime}} \mathrm{e}_{\mathrm{i}^{\prime}}=0\right.$ and $\left.\mathrm{e}_{\mathrm{i}}{ }^{\prime} \mathrm{e}_{\mathrm{i}}=1\right)$.

Results:

1) If A is an $n \times n$ matrix, U is an $n \times n$ non-singular matrix and $D=P A P^{-1}$, then the characteristic polynomial, characteristic roots, trace, determinant and rank of D are identical to those of A.

Proof:
(a) $|\mathrm{D}-\lambda \mathrm{I}|=\left|\mathrm{PAP}^{-1}-\lambda \mathrm{I}\right|$

$$
\begin{aligned}
& =\left|\mathrm{PAP}^{-1}-\lambda \mathrm{PP}^{-1}\right| \\
& =\left|\mathrm{P}(\mathrm{~A}-\lambda \mathrm{I}) \mathrm{P}^{-1}\right| \\
& =|\mathrm{P}||\mathrm{A}-\lambda \mathrm{I}|\left|\mathrm{P}^{-1}\right| \\
& =|\mathrm{A}-\lambda \mathrm{I}|\left|\mathrm{PP}^{-1}\right| \\
& =|\mathrm{A}-\lambda \mathrm{I}||\mathrm{I}| \\
& =|\mathrm{A}-\lambda \mathrm{I}|
\end{aligned}
$$

\Rightarrow the characteristic polynomial and the characteristic roots of D and A are the same.
(b) trace $(\mathrm{D})=\operatorname{trace}\left(\mathrm{PAP}^{-1}\right)$

$$
\begin{aligned}
& =\operatorname{trace}\left(\mathrm{P}^{-1} \mathrm{PA}\right) \\
& =\operatorname{trace}(\mathrm{A})
\end{aligned}
$$

Also, note that

$$
\operatorname{trace}(\mathrm{D})=\sum_{i=1}^{n} \lambda_{i}=\operatorname{trace}(\mathrm{A})
$$

(c) $|\mathrm{D}|=\left|\mathrm{PAP}^{-1}\right|$

$$
\begin{aligned}
& =|\mathrm{P}||\mathrm{A}|\left|\mathrm{P}^{-1}\right| \\
& =|\mathrm{P}|\left|\mathrm{P}^{-1}\right||\mathrm{A}|
\end{aligned}
$$

But the product of the determinants of two square matrices of the same order is equal to the determinant of the product of these matrices (Searle, 1966, pg. 76), thus

$$
\begin{aligned}
|\mathrm{D}| & =\left|\mathrm{PP}^{-1}\right||\mathrm{A}| \\
|\mathrm{D}| & =|\mathrm{A}|
\end{aligned}
$$

where

$$
|\mathrm{D}|=\prod_{i_{-} 1}^{n} \lambda_{i}=|\mathrm{A}|
$$

(d) $\operatorname{rank}(\mathrm{D})=\operatorname{rank}\left(\mathrm{PAP}^{-1}\right)$

```
rank (PA) \leq rank (A)
```

Let $\mathrm{B}=\mathrm{PA} \Rightarrow \mathrm{A}=\mathrm{P}^{-1} \mathrm{~B}$.

$$
\begin{aligned}
\operatorname{rank}\left(\mathrm{A}=\mathrm{P}^{-1} \mathrm{~B}\right) & \leq \operatorname{rank}(\mathrm{B}) \quad=\operatorname{rank}(\mathrm{PA}) \\
\Rightarrow \quad \operatorname{rank}(\mathrm{PA}) & =\operatorname{rank}(\mathrm{A})
\end{aligned}
$$

Similarly,

$$
\operatorname{rank}\left(\mathrm{BP}^{-1}\right) \leq \operatorname{rank}(\mathrm{B})
$$

Let $\mathrm{C}=\mathrm{BP}^{-1} \Rightarrow \mathrm{~B}=\mathrm{CP}$.

$$
\begin{aligned}
\operatorname{rank}(\mathrm{B}=\mathrm{CP}) & \leq \operatorname{rank}(\mathrm{C}) \quad=\operatorname{rank}\left(\mathrm{BP}^{-1}\right) \\
\Rightarrow \quad \operatorname{rank}\left(\mathrm{BP}^{-1}\right) & =\operatorname{rank}(\mathrm{B})
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{rank}\left(\mathrm{PAP}^{-1}\right) & =\operatorname{rank}\left(\mathrm{BP}^{-1}\right) \\
& =\operatorname{rank}(\mathrm{B}) \\
& =\operatorname{rank}(\mathrm{PA}) \\
& =\operatorname{rank}(\mathrm{A}) \\
\Rightarrow \quad \operatorname{rank}(\mathrm{D})= & \operatorname{rank}\left(\mathrm{PAP}^{-1}\right)=\operatorname{rank}(\mathrm{A})
\end{aligned}
$$

(Proof taken from Goldberger, 1964, pg. 25 \& 29)
2) If D is a diagonal matrix its latent roots are its diagonal elements.

Proof:

$$
|D-\lambda I|=0
$$

$$
\begin{aligned}
\left|\left\{\mathrm{d}_{\mathrm{ii}}-\lambda\right\}\right| & =0 \\
\left|\left\{\mathrm{~d}_{\mathrm{ii}}-\lambda\right\}\right| & =\left(\mathrm{d}_{11}-\lambda\right)\left(\mathrm{d}_{22}-\lambda\right) \cdots\left(\mathrm{d}_{\mathrm{nn}}-\lambda\right) \\
\Rightarrow \quad\left\{\lambda_{\mathrm{i}}\right. & \left.=\mathrm{d}_{\mathrm{ii}}\right\}
\end{aligned}
$$

3) For a symmetric matrix A, if

$$
\left(A-\lambda_{1} I\right) u_{1}=0 \quad \text { and } \quad\left(A-\lambda_{2} I\right) u_{2}=0
$$

where

$$
\lambda_{1} \neq 0, \lambda_{2} \neq 0 \text { and } \lambda_{1} \neq \lambda_{2}
$$

then

$$
\mathrm{u}_{1}{ }^{\prime} \mathbf{u}_{2}=0 .
$$

Proof:

$$
\begin{aligned}
& \mathrm{u}_{2}{ }^{\prime}\left(\mathrm{A}-\lambda_{1} \mathrm{I}\right) \mathrm{u}_{1} \\
& =\mathrm{u}_{2}{ }^{\prime} A \mathrm{u}_{1}-\lambda_{1} \mathrm{u}_{2}{ }^{\prime} \mathrm{u}_{1} \\
& =0 \\
\Rightarrow \quad \lambda_{1} \mathrm{u}_{2}^{\prime} \mathrm{u}_{1} & =\mathrm{u}_{2}{ }^{\prime} A u_{1}
\end{aligned}
$$

Similarly,

$$
\lambda_{2} \mathrm{u}_{1}{ }^{\prime} \mathrm{u}_{2}=\mathrm{u}_{1}{ }^{\prime} \mathrm{Au}_{2}
$$

But

$$
\mathrm{u}_{2}{ }^{\prime} \mathrm{u}_{1} \quad=\mathrm{u}_{1}{ }^{\prime} \mathrm{u}_{2}
$$

and

$$
\begin{aligned}
\mathrm{u}_{2}^{\prime} \mathrm{A} u_{1} & =\left(\mathrm{u}_{2}^{\prime} A u_{1}\right)^{\prime} \\
& =\mathrm{u}_{1}^{\prime} \mathrm{A}^{\prime} \mathrm{u}_{2} \\
& =\mathrm{u}_{1}^{\prime} A \mathrm{u}_{2} \\
\Rightarrow \quad \lambda_{2} \mathrm{u}_{1}^{\prime} \mathrm{u}_{2} & =\lambda_{1} \mathrm{u}_{2}^{\prime} \mathrm{u}_{1}
\end{aligned}
$$

or

$$
\mathrm{u}_{1}{ }^{\prime} \mathrm{u}_{2}=\frac{\lambda_{1}}{\lambda_{2}} \mathrm{u}_{2}{ }^{\prime} \mathrm{u}_{1}
$$

But $\quad \lambda_{1} \neq \lambda_{2} \neq 0$
$\Rightarrow \quad \mathrm{u}_{1}{ }^{\prime} \mathrm{u}_{2}=0$
4) For a symmetric matrix A there is an orthogonal matrix P that diagonalizes A. Then, the latent roots of A are the diagonal elements of $\mathrm{D}=\mathrm{P}^{\prime} \mathrm{AP}$ and the rank $(\mathrm{A})=$ number of diagonal elements of D.

Proof:
(a) $|\mathrm{D}-\lambda \mathrm{I}|=\left|\mathrm{P}^{\prime} \mathrm{AP}-\lambda \mathrm{I}\right|$
$=\left|P^{\prime}(\mathrm{A}-\lambda \mathrm{I}) \mathrm{P}\right|$
$=|\mathrm{A}-\lambda \mathrm{I}|\left|\mathrm{P}^{\prime} \mathrm{P}\right|$
$=|\mathrm{A}-\lambda \mathrm{I}|$
b) $\operatorname{rank}(\mathrm{D})=\operatorname{rank}\left(\mathrm{P}^{\prime} \mathrm{AP}\right)$
$=\operatorname{rank}(\mathrm{A})$, by 1$)(\mathrm{d})$ above
$=$ number of diagonal elements of D

Latent roots all different

If the latent roots of a matrix $\mathrm{A}_{\mathrm{n} \times \mathrm{n}}$ are all different, then the corresponding latent vectors are linearly independent. Furthermore, if the matrix A is symmetric, the latent vectors are mutually orthogonal.

Multiple latent roots

If various latent roots are the same, then a linearly independent set of vectors should be found for each set of repeated latent roots.

For a symmetric matrix $A_{n \times n}$ with multiple latent roots, a procedure to obtain pairwise orthogonal sets of eigenvectors for each set of repeated latent roots is the following:
(a) Given that the rank $\left(\mathrm{A}-\lambda_{\mathrm{i}} \mathrm{I}\right)=\mathrm{n}-\mathrm{m}_{\mathrm{i}}$, for $\mathrm{i}=1, \ldots$, n , where $\mathrm{m}_{\mathrm{i}}=$ multiplicity of λ_{i} (i.e., the number of time λ_{i} appears), the equation

$$
\left(\mathrm{A}-\lambda_{\mathrm{i}} \mathrm{I}\right) \mathrm{u}_{\mathrm{i}}=0
$$

has m_{i} linearly independent non-null (LINN) solutions u_{i}. Denote one solution by v_{il}. Now consider solving the system

$$
\begin{aligned}
\left(\mathrm{A}-\lambda_{\mathrm{i}} \mathrm{I}\right) \mathrm{u}_{\mathrm{i}} & =0 \\
\mathrm{v}_{\mathrm{i} 1}{ }^{\prime} \mathrm{u}_{\mathrm{i}} & =0
\end{aligned}
$$

simultaneously for u_{i}. This set has m_{i-1} LINN. Any one of them, e.g., $u_{i 2}$ is a latent vector of A and it is orthogonal to $u_{i 1}$ and to any latent vector corresponding to $\lambda_{i^{\prime}} \neq \lambda_{i}$ because of the orthogonality property of latent vectors from different latent roots (see result [3] above).

If $m_{i}=3$, solve for $v_{i 3}$ using the set of equations:

$$
\begin{aligned}
\left(\mathrm{A}-\lambda_{\mathrm{i}} \mathrm{I}\right) \mathrm{u}_{\mathrm{i}} & =0 \\
\mathrm{v}_{\mathrm{i} 1}{ }^{\prime} \mathrm{u}_{\mathrm{i}} & =0 \\
\mathrm{v}_{\mathrm{i} 2}{ }^{\prime} \mathrm{u}_{\mathrm{i}} & =0
\end{aligned}
$$

This equation system yields m_{i-2} LINN solutions for u_{i}.
(b) Continue this process until all the m solutions are obtained. The set of eigenvalues, $\left\{u_{i}\right\}$, obtained this way are pairwise orthogonal within and across sets of repeated eigenvalues. The
matrix formed by these eigenvectors, however, is not orthogonal, i.e., $U^{\prime} \neq U^{\prime} U \neq I$. To orthogonalize the matrix U, simply divide each eigenvector by its length, i.e., by $\left[\mathrm{u}_{\mathrm{i}}{ }^{\prime} \mathrm{u}_{\mathrm{i}}\right]^{1 / 2}$. The resulting matrix is orthogonal because $\mathrm{UU}^{\prime}=\mathrm{I} \Rightarrow \mathrm{U}^{\prime} \mathrm{U}=\mathrm{I}$.

For a non-symmetric matrix A there is no guarantee that the set of linearly independent eigenvectors $\left\{u_{i}\right\}$ will be pairwise orthogonal, i.e., $u_{i}{ }^{\prime} u_{i}$ may not be zero for some pairs of vectors. Hence, to orthogonalize a matrix of eigenvectors U for non-symmetric matrix A use the Gram-Schmidt process or other suitable orthogonalization procedure (e.g., see Golub and Van Loan, 1983).

Gram-Schmidt process

Given a linearly independent set of vectors $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$ (i.e., an arbitrary basis), there exists a set of mutually perpendicular (i.e., orthogonal) vectors $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ that have the same linear span.

To construct a mutually orthogonal set of vectors $\left\{u_{i}\right\}$ from the set of vectors $\left(x_{i}\right\}$ proceed as follows (for proof see Scheffé, 1959, pg. 382).
(a) $\operatorname{Set} u_{1}=x_{1}$.
(b) Compute vectors u_{2} to u_{n} using the formula:

$$
\mathrm{u}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\sum_{\mathrm{j}=1}^{\mathrm{i}-1} \frac{\left(\mathrm{x}_{\mathrm{i}}{ }^{\prime} \mathrm{u}_{\mathrm{j}}\right)}{\mathrm{u}_{\mathrm{j}}^{\prime} \mathrm{u}_{\mathrm{j}}} \mathrm{u}_{\mathrm{j}}, \quad 2 \leq \mathrm{j} \leq \mathrm{n}
$$

For example:

$$
\mathrm{u}_{2}=\mathrm{x}_{2}-\frac{\left(\mathrm{x}_{2}^{\prime} \mathrm{u}_{1}\right)}{\mathrm{u}_{1}^{\prime} \mathrm{u}_{1}} \mathrm{u}_{1}
$$

$$
\begin{equation*}
u_{3}=x_{3}-\frac{\left(\mathrm{x}_{3}^{\prime} \mathrm{u}_{1}\right)}{\mathrm{u}_{1}^{\prime} \mathrm{u}_{1}} \mathrm{u}_{1}-\frac{\left(\mathrm{x}_{3}{ }^{\prime} \mathrm{u}_{2}\right)}{\mathrm{u}_{2}^{\prime} \mathrm{u}_{2}} \mathrm{u}_{2} \tag{3-11}
\end{equation*}
$$

We can also build a mutually orthogonal set of vectors $\left\{z_{i}\right\}$ from the set $\left\{x_{i}\right\}$ which, in addition, have length equal to 1 . This process, called normalizing a set of vectors, can be easily accomplished by dividing each vector u_{i} by its length, i.e.,

$$
Z_{i}=\frac{u_{i}}{\left[u_{i}{ }^{\prime} u_{i}\right]^{1 / 2}} \text { for } i=1, \ldots, n
$$

where $\left[u_{i}\right]^{1 / 2}$ is the length of vector u_{i}.

Remarks:

(1) $\left[z_{i}{ }^{\prime} z_{i}\right]=\frac{\left[\mathrm{u}_{\mathrm{i}}{ }^{\prime} \mathrm{u}_{\mathrm{i}}\right]^{\prime / 2}}{\left[\mathrm{u}_{\mathrm{i}}{ }^{\prime} \mathrm{u}_{\mathrm{i}}\right]^{{ }^{\prime 2}}}=1$
(2) $\left(x z_{j}\right) z_{j}$ is the projection of x_{i} on z_{j}.
(3) $\sum_{j=1}^{i-1}\left(\mathrm{xz}_{\mathrm{j}}\right) \mathrm{z}_{\mathrm{j}}$ is the projection of x_{i} on the linear span of $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{i}-1}$ (or the span of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$, $\mathrm{X}_{\mathrm{i}-1}$ because both $\left\{\mathrm{z}_{\mathrm{i}}\right\}$ and $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ have the same span).
(4) The Gram-Schmidt (GS) procedure has poor numerical properties. There is typically a severe loss of orthogonality among the computed z_{i} (Golub and Van Loan, 1983, pg. 151).

Better methods are:
(a) Modified Gram-Schmidt (Golub \& Van Loan, 1983, pg. 152).
(b) Householder Orthogonalization (Golub \& Van Loan, 1983, pg. 148).

Computation of eigenvalues and eigenvectors

Consider a matrix $\mathrm{A}_{3 \times 3}$,

$$
A=\left[\begin{array}{ccc}
13 & -4 & 2 \\
-4 & 13 & -2 \\
2 & -2 & 10
\end{array}\right]
$$

a) Eigenvalues

The characteristic equations of A is:

$$
\left|\begin{array}{rrr}
13-\lambda & -4 & 2 \\
-4 & 13-\lambda & -2 \\
2 & -2 & 10-\lambda
\end{array}\right|=0
$$

To find the latent roots we need to expand the above determinant. The diagonal expansion (appropriate for (A + D) matrices, $\mathrm{D}=$ diagonal, Searle, 1966, pg. 71-73), when the diagonal elements of D are equal, i.e., $\left\{\mathrm{d}_{\mathrm{ii}}\right\}=\{-\lambda\}$. Then, $(-\lambda)^{n}+(-\lambda)^{n-1}\left(a_{11}+a_{22}+\ldots+a_{n n}\right)+(-\lambda)^{n-2}\left\{\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|+\ldots+\left|\begin{array}{ll}a_{11} & a_{1 n} \\ a_{n 1} & a_{n n}\end{array}\right|\right\}+\ldots+|A|=0$
or

$$
|\mathrm{A}-\lambda \mathrm{I}|=\sum_{\mathrm{i}=0}^{\mathrm{n}}(-\lambda)^{\mathrm{n}-\mathrm{i}} \operatorname{trace}_{\mathrm{i}}(\mathrm{~A})=0
$$

where
$\operatorname{trace}_{0}(\mathrm{~A})=1$
trace $_{i}(\mathrm{~A}) \quad=$ sum of the principal minors (i.e., minors with diagonals that coincide with the diagonal of $|A|$) of order i of $|A|$
$\operatorname{trace}_{\mathrm{n}}(\mathrm{A})=|\mathrm{A}|$
Thus, the diagonal expansion for $\mathrm{A}_{3 \times 3}$ above is:

$$
\begin{align*}
&-\lambda^{3}+\lambda^{2}(13+13+10)-\lambda\left\{\left\{\begin{array}{cc}
13 & -4 \\
-4 & 13
\end{array}\left|+\left|\begin{array}{cc}
13 & 2 \\
2 & 10
\end{array}\right|+\left|\begin{array}{cc}
13 & -2 \\
-2 & 10
\end{array}\right|\right\}+\left|\begin{array}{ccc}
13 & -4 & 2 \\
-4 & 13 & -2 \\
2 & -2 & 10
\end{array}\right|=0\right.\right. \tag{3-13}\\
&-\lambda^{3}+36 \lambda^{2}-\lambda(153+126+126)+1458=0 \\
&-\lambda^{3}+36 \lambda^{2}-405 \lambda+1458=0 \\
& \lambda^{3}-36 \lambda^{2}+405 \lambda-1458=0
\end{align*}
$$

To solve for this third degree polynomial equation:
(1) Find an integer number λ_{1} such that:
(a) Is an exact division of the constant 1458
(b) It satisfies the equation $\lambda^{3}-36 \lambda^{2}+405 \lambda-1458=0$
(2) Divide $\lambda^{3}-36 \lambda+405 \lambda-1458$ by $\lambda-\lambda_{1}$. The result of this division is a second degree polynomial, which can be solved by the quadratic formula. The quadratic formula is:

$$
\lambda=\frac{-\mathrm{b} \pm\left[\left(\mathrm{b}^{2}\right)-4(\mathrm{a})(\mathrm{c})\right]^{1 / 2}}{2 \mathrm{a}}
$$

whose solutions satisfy the quadratic equation

$$
\mathrm{a} \lambda^{2}+\mathrm{b} \lambda+\mathrm{c}=0
$$

In our example, the integers $\pm 1, \pm 2, \pm 3, \pm 6$ and ± 9 are exact divisions of 1458 , but only 9 satisfies the above cubic equation, i.e., $(9)^{3}-36(9)^{2}+405(9)-1458=0$. Thus, the first root of the cubic polynomial above is 9 , because this polynomial can be written as:

$$
(\lambda-9)\left(\lambda^{2}+b \lambda+c\right)=0
$$

for some integers b and c. To find them, divide the cubic polynomial by $\lambda-9$, i.e.,

$$
\lambda^{3}-36 \lambda^{2}+405 \lambda-1458: \lambda-9=\lambda^{2}-27 \lambda+162
$$

$$
\begin{gathered}
\frac{-\lambda^{3}{ }^{(+)}-9 \lambda^{2}}{0-27 \lambda^{2}+405 \lambda} \\
\frac{e^{(+)} 27 \lambda^{2}(-)}{-^{(-)} 243 \lambda} \\
0+162 \lambda-1458 \\
\Rightarrow \quad \frac{(-) 162 \lambda^{(+)}-1458}{0+0} \\
\Rightarrow \quad(\lambda-9)\left(\lambda^{2}-27 \lambda+162\right)=0 \\
\lambda_{1}=9
\end{gathered}
$$

Solving for the quadratic equation $\lambda^{2}-27 \lambda+162=0$ yields,

$$
\begin{array}{ll}
\Rightarrow & \lambda=\frac{-27 \pm\left[(27)^{2} \pm 4(1)(162)\right]^{1 / 2}}{2(1)} \\
\Rightarrow & \lambda=\frac{27 \pm 9}{2} \\
\Rightarrow & \lambda_{2}=\frac{18}{2}=9
\end{array}
$$

and

$$
\lambda_{3}=\frac{36}{2}=18
$$

which satisfy

$$
(\lambda-9)(\lambda-18)=\lambda^{2}-27 \lambda+162=0
$$

Thus, the set of eigenvalues is:

$$
\left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\} \quad=\{9,9,18\}
$$

b) Eigenvectors

We need to solve the equations:

$$
A u_{i}=\lambda_{i} u_{i}, \text { for } i=1,2,3 .
$$

Eigenvector for $\boldsymbol{\lambda}_{1}=9$

The set of equations to solve is:

$$
\begin{aligned}
& \left(A-\lambda_{i} I\right) u_{i}=0 \\
& {\left[\begin{array}{rrr}
(13-9) & -4 & 2 \\
-4 & (13-9) & -2 \\
2 & -2 & (10-9)
\end{array}\right]\left[\begin{array}{l}
u_{11} \\
u_{21} \\
u_{31}
\end{array}\right]=0} \\
& {\left[\begin{array}{rrr}
4 & -4 & 2 \\
-4 & 4 & -2 \\
2 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
u_{11} \\
u_{21} \\
u_{31}
\end{array}\right]=0}
\end{aligned}
$$

By theorem 4) of Linear Equations (Chapter 2), a vector of solutions to the above system is given by:

$$
\mathrm{u}_{\mathrm{i}}=(\mathrm{H}-\mathrm{I}) \mathrm{z}
$$

for an arbitrary z , where $\mathrm{H}=\mathrm{GA}$. To obtain G , look for dependencies in A , zero out the dependent rows and columns, and invert the resulting non-singular matrix. The first row of A is equal to (-1)row 2 and (2)row 3. The same dependencies exist among columns. Thus,

$$
\mathrm{H}=\mathrm{GA}=\left[\begin{array}{rrr}
1 / 4 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrr}
4 & -4 & 2 \\
-4 & 4 & -2 \\
2 & -2 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 1 / 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and

$$
\mathrm{u}_{1}=\left[\begin{array}{rrr}
(1-1) & -1 & 1 / 2 \tag{3-16}\\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{z}_{1} \\
\mathrm{z}_{2} \\
\mathrm{z}_{3}
\end{array}\right]=\left[\begin{array}{r}
-\mathrm{z}_{2}+1 / 2 \mathrm{z}_{3} \\
-\mathrm{z}_{2} \\
-\mathrm{z}_{3}
\end{array}\right]
$$

Arbitrarily choose $z_{2}=-1$ and $z_{3}=0$, then, an eigenvector for $\lambda_{1}=9$ is:

$$
\mathrm{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Eigenvector for $\lambda_{2}=9$
The system of equations to be solved for $\lambda_{2}=9$ is the same as for $\lambda_{1}=9$. Here we choose a different set of values for z_{2} and z_{3} such that u_{2} and u_{1} are linearly independent, i.e., let

$$
\mathrm{z}_{2}=1 \text { and } \mathrm{z}_{3}=4 .
$$

Thus, the second eigenvector is:

$$
\mathrm{u}_{2}=\left[\begin{array}{r}
1 \\
-1 \\
-4
\end{array}\right]
$$

Note: because A is symmetric, $\mathrm{u}_{2}{ }^{\prime} \mathrm{u}_{1}=0$.
Eigenvector for $\lambda_{3}=18$
The set of equations for u_{3} is:

$$
\left[\begin{array}{rrr}
-5 & -4 & 2 \\
-4 & -5 & -2 \\
2 & -2 & -8
\end{array}\right]\left[\begin{array}{l}
\mathbf{u}_{13} \\
\mathbf{u}_{23} \\
\mathbf{u}_{33}
\end{array}\right]=0
$$

Here, (2) [column 2 - column 1] = column 3. Thus, delete the first row and column, replace them with zeroes and compute G, i.e.,

$$
G=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 \\
0 & {\left[\begin{array}{cc}
-5 & -2 \\
-2 & -8
\end{array}\right]^{-1}}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\frac{2}{9} & \frac{1}{18} \\
0 & \frac{1}{18} & -\frac{5}{36}
\end{array}\right]
$$

Thus, u_{3} is:

$$
\begin{aligned}
& (\mathrm{GA}-\mathrm{I}) \mathrm{z}=\left\{\begin{array}{|ccc}
0 & 0 & 0 \\
0 & -\frac{2}{9} & \frac{1}{18} \\
0 & \frac{1}{18} & -\frac{5}{36}
\end{array}\left|\left[\begin{array}{rrr}
-5 & -4 & 2 \\
-4 & -5 & -2 \\
2 & -2 & -8
\end{array}\right]-\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right|\left[\begin{array}{l}
\mathrm{z}_{1} \\
\mathrm{z}_{2} \\
\mathrm{z}_{3}
\end{array}\right]\right. \\
& (\mathrm{GA}-\mathrm{I}) \mathrm{z}=\left[\begin{array}{r}
(0-1) \\
1 \\
1
\end{array}(1-1)\right. \\
& 0 \\
& -\frac{1}{2}
\end{aligned}
$$

Arbitrarily set $\mathrm{z}_{1}=-2$. The resulting eigenvector is:

$$
\mathrm{u}_{3}=\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]
$$

The matrix U is:

$$
U=\left[\begin{array}{rrr}
1 & 1 & 2 \tag{3-18}\\
1 & -1 & -2 \\
0 & -4 & 1
\end{array}\right]
$$

We can verify that,

$$
\mathrm{D}=\mathrm{U}^{-1} \mathrm{AU}=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & -1 & -2 \\
0 & -4 & 1
\end{array}\right]^{-1}\left[\begin{array}{rrr}
13 & -4 & 2 \\
-4 & 13 & -2 \\
2 & -2 & 10
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 1 & 2 \\
0 & -4 & 1
\end{array}\right]=\left[\begin{array}{rrr}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 18
\end{array}\right]
$$

and

$$
A=\mathrm{UDU}^{-1}=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & -1 & -2 \\
0 & -4 & 1
\end{array}\right]\left[\begin{array}{rrr}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 18
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & -1 & -2 \\
0 & -4 & 1
\end{array}\right]^{-1}=\left[\begin{array}{rrr}
13 & -4 & 2 \\
-4 & 13 & -2 \\
2 & -2 & 10
\end{array}\right]
$$

The matrix D is the canonical form of A under similarity

Because A is symmetric in this example, an orthogonal matrix E can be obtained from matrix U by dividing the elements of each vector u_{i} by its length, i.e., by $\left[u_{i}{ }^{\prime} u_{i}\right]^{1 / 2}$.

The lengths of the eigenvectors of A, i.e., the $\left[u_{i}{ }^{\prime} u_{i}\right]^{1 / 2}$ for $i=1,2,3$, are:

$$
\begin{aligned}
& {\left[u_{1}^{\prime} u_{1}\right]^{1 / 2}=\left[(1)^{2}+(1)^{2}+(0)^{2}\right]^{1 / 2}=\sqrt{2}} \\
& {\left[u_{2}^{\prime} u_{2}\right]^{1 / 2}=\left[(1)^{2}+(-1)^{2}+(-4)^{2}\right]^{1 / 2}=\sqrt{18}} \\
& {\left[u_{3}^{\prime} u_{3}\right]^{1 / 2}=\left[(2)^{2}+(-2)^{2}+(1)^{2}\right]^{1 / 2}=3}
\end{aligned}
$$

Thus, the orthogonal matrix of eigenvectors, E , is:

$$
\mathrm{E}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3} \tag{3-19}\\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{-4}{\sqrt{18}} & \frac{1}{3}
\end{array}\right]
$$

We can verify that $\mathrm{EE}^{\prime}=\mathrm{E}^{\prime} \mathrm{E}=\mathrm{I}$, and

$$
\mathrm{A}=\mathrm{EDE}^{\prime}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{-4}{\sqrt{18}} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 18
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{18}} & \frac{-1}{\sqrt{18}} & \frac{-4}{\sqrt{18}} \\
\frac{2}{3} & \frac{-2}{3} & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{ccc}
13 & -4 & 2 \\
-4 & 13 & -2 \\
2 & -2 & 10
\end{array}\right]
$$

and the canonical form of A under orthogonal similarity (only for symmetric A), i.e., D, is:

$$
\mathrm{D}=\mathrm{E}^{\prime} \mathrm{AE}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{18}} & \frac{-1}{\sqrt{18}} & \frac{-4}{\sqrt{18}} \\
\frac{2}{3} & \frac{-2}{3} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{rrr}
13 & -4 & 2 \\
-4 & 13 & -2 \\
2 & -2 & 10
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{\sqrt{18}} & \frac{2}{3} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{18}} & \frac{-2}{3} \\
0 & \frac{-4}{\sqrt{18}} & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{ccc}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 18
\end{array}\right]
$$

Numerical methods to compute eigenvalues and eigenvectors
Eigenvalues: Schur decomposition (Golub and Van Loan, 1983, pg. 192).
Eigenvectors: (Golub and Van Loan, 1983, pg. 238).
Note: To compute eigenvectors when the matrix $[A-\lambda I]$ is full rank:
(a) Substitute zeroes for the elements of the $\mathrm{i}^{\text {th }}$ dependent row and column of matrix A , and compute G,
(b) Compute $u_{i}=[G A-I] z$, and
(c) Assign arbitrary values to the necessary z_{i} 's and compute u_{i}.

Iterative procedures to find eigenvectors and eigenvalues

Dominant eigenvalue: if a symmetric matrix $\mathrm{A}_{\mathrm{n} \times \mathrm{n}}$ of rank r has eigenvalues $\left\{\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{n}}\right\}$, where

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n-1}\right| \geq\left|\lambda_{n}\right|
$$

then, λ_{1} is called the dominant eigenvalue of A.

1) Power method (or iterative method) to approximate the dominant eigenvector ($\mathrm{v}_{\mathbf{1}}$) and the dominate eigenvalue $\left(\lambda_{1}\right)$ of a diagonalizable matrix A.
(a) Arbitrarily select a vector, e.g., x_{0}, to be the first approximation to the dominant eigenvector v_{1}.
(b) Compute $\widetilde{\mathrm{V}}_{1(1)}=\mathrm{A} \widetilde{\mathrm{V}}_{1(0)}$ and scale it down, i.e., divide each element of $\widetilde{\mathrm{V}}_{1(1)}$ by its largest element.
(c) Compute $\widetilde{\mathrm{V}}_{1(2)}=\mathrm{A} \widetilde{\mathrm{V}}_{1(1)}\left(=\mathrm{A}^{2} \widetilde{\mathrm{~V}}_{1(0)}\right)$ and scale it down.
(d) Compute the first approximation to the dominant eigenvalue as follows:

$$
\lambda_{1} \approx \frac{\widetilde{\mathrm{v}}_{1(1)}, \widetilde{\mathrm{v}}_{1(2)}}{\widetilde{\mathrm{V}}_{1(1)}, \widetilde{\mathrm{V}}_{1(1)}}=\widetilde{\lambda}_{1(1)}
$$

This computation is based on the equality

$$
\frac{\mathrm{v}_{1}^{\prime}{ }^{\prime} \mathrm{Av}_{1}}{\mathrm{v}_{1}{ }^{\prime} \mathrm{v}_{1}}=\frac{\mathrm{v}_{1}{ }^{\prime} \lambda \mathrm{v}_{1}}{\mathrm{v}_{1}{ }^{\prime} \mathrm{v}_{1}}=\frac{\lambda \mathrm{v}_{1}^{\prime}{ }^{\prime} \mathrm{v}_{1}}{\mathrm{v}_{1}{ }^{\prime} \mathrm{v}_{1}}=\lambda
$$

Thus,

$$
\lambda_{1} \approx \frac{\widetilde{\mathrm{v}}_{1(1)}{ }^{\prime} \mathrm{A} \widetilde{\mathrm{~V}}_{1(1)}}{\widetilde{\mathrm{v}}_{1(1)} \widetilde{\mathrm{V}}_{1(1)}}=\frac{\widetilde{\mathrm{v}}_{1(1)}, \lambda_{1} \widetilde{\mathrm{v}}_{1(1)}}{\widetilde{\mathrm{v}}_{1(1)} \widetilde{\mathrm{v}}_{1(1)}}=\lambda_{1} \mathrm{~V}_{1(1)}, \widetilde{\mathrm{V}}_{1(1)}=\tilde{\lambda}_{1(1)}
$$

(e) Repeat the computations

$$
\tilde{\lambda}_{1(\mathrm{i})}=\frac{\widetilde{\mathrm{v}}_{1(\mathrm{i}-1)}}{\widetilde{\mathrm{V}}_{1(\mathrm{i}-1)}, \widetilde{\mathrm{v}}_{1(\mathrm{i})}}
$$

until the convergence criterion is met. Such convergence criterion could be:
(i) The estimated relative error:

$$
\left|\frac{\tilde{\lambda}_{1 \mathrm{i})}-\tilde{\lambda}_{1(\mathrm{i}-1)}}{\tilde{\lambda}_{1(\mathrm{i})}}\right|<\mathrm{E}
$$

i.e., the absolute value of the difference between the estimates of λ_{1} in the $i^{\text {th }}$ and $(i-1)^{\text {th }}$ iterations relative to the estimate of λ_{1} in the $\mathrm{i}^{\text {th }}$ iteration is less than a chosen number E . For instance, $\mathrm{E}=$ 0.00001 .
(ii) The estimated percentage error:

$$
\left|\frac{\tilde{\lambda}_{1 \mathrm{i})}-\tilde{\lambda}_{1(\mathrm{i}-1)}}{\tilde{\lambda}_{1(\mathrm{i})}}\right| * 100 \leq 100 \mathrm{E}
$$

(f) At convergence after p iterations, the vector x_{p} is a good approximation to the dominant eigenvector v_{1}, and the scalar $\lambda_{1(\mathrm{p})}$ is a good approximation to the dominant eigenvalue λ_{1}.

Proof:
Let A be an $\mathrm{n} \times \mathrm{n}$ diagonalizable matrix of rank r . If A is diagonalizable, A has a set of n independent eigenvectors $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. To see this, note that $\mathrm{AV}=\mathrm{VD}$, where $\mathrm{D}=\operatorname{diag}\left\{\lambda_{\mathrm{i}}\right\}$ and $\mathrm{V}=\left[\mathrm{v}_{1} \mathrm{~V}_{2} \ldots \mathrm{v}_{\mathrm{n}}\right]$ (for proof see Searle, 1966, pg. 168, or Anton, 1981, pg. 269).

Let $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ be the set of eigenvalues of A and assume that

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{n}\right|
$$

By theorem 9(a) of Anton (1981, pg. 155), the set of linearly independent eigenvectors of matrix A, $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ form a basis for R^{n}. Thus, an arbitrary vector x_{0} in R^{n} can be expressed as a linear combination of $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$, i.e.,

$$
\mathrm{x}_{0}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}+\ldots+\mathrm{m}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}
$$

But

$$
\begin{aligned}
\mathrm{Ax}_{0} & =\mathrm{m}_{1} A v_{1}+\mathrm{m}_{2} A v_{2}+\ldots+m_{n} A v_{n} \\
& =m_{1} \lambda_{1} v_{1}+m_{2} \lambda_{2} \mathrm{v}_{2}+\ldots+m_{n} \lambda_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{A}\left(\mathrm{Ax}_{0}\right) & =\mathrm{m}_{1} \lambda_{1} A v_{1}+\mathrm{m}_{2} \lambda \lambda_{2} A v_{2}+\ldots+\mathrm{m}_{\mathrm{n}} \lambda_{\mathrm{n}} \mathrm{Av}_{\mathrm{n}} \\
\mathrm{~A}^{2} \mathrm{x}_{0} & =\mathrm{m}_{1} \lambda \mathrm{v}_{1}+\mathrm{m}_{2} \lambda \mathrm{v}_{2}+\ldots+\mathrm{m}_{\mathrm{n}} \lambda \mathrm{v}_{\mathrm{n}} \\
& \vdots \\
& \\
\mathrm{~A}^{\mathrm{p}} \mathrm{x}_{0} & =\mathrm{m}_{1} \lambda \mathrm{v}_{1}+\mathrm{m}_{2} \lambda \mathrm{v}_{2}+\ldots+\mathrm{m}_{\mathrm{n}} \lambda \mathrm{v}_{\mathrm{n}} .
\end{aligned}
$$

Because $\lambda_{1} \neq 0$,

$$
\mathrm{A}^{\mathrm{p}} \mathrm{x}_{0}=\lambda_{1}^{\mathrm{p}}\left[\mathrm{~m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\mathrm{p}} \mathrm{v}_{2}+\ldots+\mathrm{m}_{\mathrm{n}}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\mathrm{p}} \mathrm{v}_{\mathrm{n}}\right]
$$

Also, as $\mathrm{p} \rightarrow \infty,\left\{\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{\mathrm{p}}, \ldots,\left(\frac{\lambda_{\mathrm{n}}}{\lambda_{1}}\right)^{\mathrm{p}}\right\} \rightarrow 0 \quad$ because $\quad\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{\mathrm{n}}\right|$.
Thus,

$$
\mathrm{A}^{\mathrm{p}} \mathrm{x}_{0} \approx \lambda \mathrm{~m}_{1} \mathrm{~V}_{1} \text { as } \mathrm{p} \rightarrow \infty .
$$

If $\mathrm{m}_{1} \neq 0$, then $\left(\lambda \mathrm{m}_{1}\right) \mathrm{v}_{1}$ is a multiple of the dominant eigenvector v_{1}. Thus, $\lambda \mathrm{m}_{1} \mathrm{v}_{1}$ is also a
dominant eigenvector. Therefore, as p increases, $\mathrm{A}^{\mathrm{p}} \mathrm{x}_{0}$ becomes an increasingly better estimate of a dominant eigenvector.

2) Deflation method to approximate nondominant eigenvectors and eigenvalues

The deflation method is based on the following theorem (Anton, 1981, pg. 336; Searle, 1966, pg. 187).

Theorem: Let A be a symmetric $n \times n$ matrix of rank r with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. If v_{1} is an eigenvector of A corresponding to λ_{1}, and $\left[\mathrm{v}_{1}{ }^{\prime} \mathrm{v}_{1}\right]^{1 / 2}=1$, i.e., v_{1} has unit length, then:
(i) The matrix $\mathrm{A}_{1}=\mathrm{A}-\lambda_{1} \mathrm{~V}_{1} \mathrm{~V}_{1}{ }^{\prime}$ has eigenvalues $0, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{\mathrm{n}}$.
(ii) The eigenvectors of A_{1} corresponding to $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\mathrm{n}}$ are also eigenvectors for $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\mathrm{n}}$ in A.

Proof: see Searle, 1966, pg. 187.
The deflection method also rests on the assumption that

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\left|\lambda_{3}\right|>\ldots \geq\left|\lambda_{\mathrm{n}}\right| .
$$

The procedure of deflation is as follows:
(a) Compute A_{1} using the expression:

$$
\mathrm{A}_{1}=\mathrm{A}-\widetilde{\lambda}_{1(\mathrm{p})} \widetilde{\mathrm{Z}}_{1(\mathrm{p})} \widetilde{\mathrm{Z}}_{1(\mathrm{p})}
$$

where

$$
\widetilde{\mathrm{Z}}_{1(\mathrm{p})}=\frac{\widetilde{\mathrm{V}}_{1(\mathrm{p})}}{\left[\widetilde{\mathrm{v}}_{1(\mathrm{p})} \widetilde{\mathrm{V}}_{1(\mathrm{p})}\right]^{1 / 2}}
$$

(b) Estimate the dominant eigenvector $\left(\mathrm{v}_{2}\right)$ and the dominant eigenvalue $\left(\lambda_{2}\right)$ of A_{1} using the power method, i.e., obtain $\widetilde{\mathrm{V}}_{2(\mathrm{p})}$ and $\tilde{\lambda}_{2(\mathrm{p})}$.
(c) Repeat steps (a) and (b) for $\mathrm{A}_{\mathrm{i}}, \mathrm{i}=3, \ldots$, last dominant eigenvector and eigenvalue.

Warning: because λ_{i} and v_{i} are estimated iteratively, rounding errors accumulate quickly. Thus, the deflation method is recommended to estimate only two or three eigenvectors and eigenvalues (Anton, 1981, pg. 338).

References

Anton, H. 1981. Elementary Linear Algebra. John Wiley and Sons, NY.
Goldberger, A. S. 1964. Econometric Theory. John Wiley and Sons, NY.
Golub, G. H. and C. F. Van Loan. 1983. Matrix Computations. The John Hopkins University Press, MD.

Searle, S. R. 1966. Matrix Algebra for the Biological Sciences (including Applications in Statistics). John Wiley and Sons, NY.

Scheffé, H. 1959. The analysis of variance. John Wiley and Sons, Inc., NY.

