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ANIMAL BREEDING NOTES 

CHAPTER 3 

EIGENVALUES, EIGENVECTORS, AND DIAGONALIZATION OF A SQUARE 

MATRIX 

 

Eigenvalues and eigenvectors 

The eigenvalues of a square matrix An×n are the n roots of its characteristic polynomial: 

    0    λI A   

The set of eigenvalues (or latent roots) is called the spectrum and can be denoted as: 

     n21 λ , ,λ ,λ    λ(A)   

Associated with these n eigenvalues are n eigenvectors.  The eigenvectors must satisfy the 

equation: 

    n ,   1,  i  , uλ    Au iii   

where ui = ith eigenvector. 

Diagonalizable matrix: a square matrix A is called diagonalizable if there is an invertible matrix 

P such that PB1AP is diagonal.  The matrix P is said to diagonalize A (Anton, 1981, pg. 269). 

Theorem: If A is an n × n matrix the following statements are equivalent: 

   (a) A is diagonalizable, and 

   (b) A has n linearly independent eigenvectors. 

Proof: 

(a)    (b) Assume A is diagonalizable, then there is an invertible matrix P such that: 
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      PB1AP = D 

      AP  = PD 

   pA    pA  pA n21   =  p λ    p λ  p λ nn2211   

     pA   i  = n ,   1,  i    , pλ ii   

where 

  {λi} are the eigenvalues of A, and 

  {pi} are the corresponding eigenvectors, which are independent because PB1 

exists. 

(b)    (a) Assume A has n linearly independent eigenvectors (pi) with associated eigenvalues 

{λi}.  Consider the product, 

        p    p p A n21  . 

But n ,   1,  i    , pλ    pA iii  .  Thus, AP = PD, where D = diag {λi}. 

Since the columns of P are linearly independent, PB1 exists, so 

      PB1AP  =  D    A is diagonalizable. 

This theorem indicates that if a square matrix A is diagonalizable, we can find a set of n linearly 

independent eigenvectors.  The matrix A can be singular or non-singular.  

Placing the latent vectors of matrix A together to form a matrix we obtain: 

   u    u u     U n21   

where U is an n × n square matrix, rank (U) = n, hence U is non-singular and UB1 exists.   Thus, 

forming the equations Aui = λui, for i = 1, ..., n we get: 

      λ diag  u   u u      u    u u A in21n21    
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or 

  AU  = UD 

   A   =  UDUB1   and   D = UB1AU 

where  

   D  =  canonical form of A under similarity. 

Furthermore, if A is symmetric, i.e., A = A, there exist an orthogonal U (i.e., UU = UU = I) 

such that 

   A = UDU  and   D = UAU 

 

Spectral Decomposition 

For a non-symmetric matrix An×n, the spectral decomposition is: 

 A = λ1 u1 v1 + λ2 u2 v2 + ... + λn un vn 

where {λi} = eigenvalues of A 

  {ui} = eigenvectors of A 

  {vi} = rows of the matrix UB1 

Proof: 

 A = UDUB1 
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Then, A =  
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  A = λ1 u1 v1 + λ2 u2 v2 + ... + λn un vn 

For a symmetric matrix An×n, the spectral decomposition is: 

  A = λ1 u1 u1
 + λ2 u2 u2

 + ... + λn un un
 

where {ui
} = rows of the symmetric matrix UB1. 

Thus, if the set of linearly independent eigenvectors {ui} of a non-singular matrix A is 

orthogonalized, the spectral decomposition of A becomes: 

  A = λ1 u1 u1
 + λ2 u2 u2

 + ... + λn un un
 

where {ui} = orthogonal eigenvectors of A (ui ui) = 0. 

Furthermore, if the {ui} are normalized such that ui ui = 1, the spectral decomposition is: 

  A = λ1 e1 e1 + λ2 e2 e2 + ... + λn en en 

where {ei} = orthonormal eigenvectors of A (ei ei = 0 and ei ei = 1). 

 

Results: 

1) If A is an n × n matrix, U is an n × n non-singular matrix and D = PAPB1, then the 

characteristic polynomial, characteristic roots, trace, determinant and rank of D are identical to 

those of A. 

Proof: 

(a) │D B λI│ = │PAPB1 B λI│ 
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    =  │PAPB1 B λPPB1
│ 

    = │P(A B λI)PB1
│ 

    = │P│ │A B λI│ │PB1
│ 

    = │A B λI│ │PPB1
│ 

    = │A B λI│ │I│ 

    = │A B λI│ 

 the characteristic polynomial and the characteristic roots of D and A are the same. 

(b) trace (D) = trace (PAPB1) 

    = trace (PB1PA) 

    = trace (A) 

Also, note that 

 trace (D) =  i

n

1  i




 = trace (A) 

(c) │D│ = │PAPB1
│ 

   = │P│ │A│ │PB1
│ 

   = │P│ │PB1
│ │A│ 

But the product of the determinants of two square matrices of the same order is equal to the 

determinant of the product of these matrices (Searle, 1966, pg. 76), thus 

 │D│ = │PPB1
│ │A│ 

 │D│ = │A│ 

where 
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 │D│ =  i

n

1  i


_

 = │A│ 

(d) rank (D) = rank (PAPB1) 

 rank (PA)  rank (A) 

Let B = PA    A = PB1B. 

 rank (A = PB1B)  rank (B) = rank (PA) 

   rank (PA) = rank (A) 

Similarly, 

  rank (BPB1)  rank (B) 

Let C = BPB1    B = CP.   

  rank (B = CP)  rank (C) = rank (BPB1) 

  rank (BPB1) = rank (B) 

Thus, 

  rank (PAPB1) = rank (BPB1) 

      = rank (B) 

      = rank (PA) 

      = rank (A) 

  rank (D) = rank (PAPB1) = rank (A) 

(Proof taken from Goldberger, 1964, pg. 25 & 29) 

2) If D is a diagonal matrix its latent roots are its diagonal elements. 

Proof: 

  │D B λI│  = 0 
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  │{dii B λ}│ = 0 

  │{dii B λ}│ = (d11 B λ)(d22 B λ) ... (dnn B λ) 

     {λi = dii} 

3) For a symmetric matrix A, if 

   (A B λ1I) u1  =  0  and  (A B λ2I) u2  =  0 

 where 

   λ1 ≠ 0,  λ2 ≠ 0  and  λ1 ≠ λ2 

 then 

   u1u2  =  0. 

Proof: 

 u2(A B λ1I) u1  = u2Au1 B λ1u2u1 

      = 0 

   λ1u2u1  = u2Au1 

Similarly, 

   λ2u1u2  =  u1Au2 

But 

   u2u1  = u1u2 

and 

   u2Au1  = (u2Au1)  

      = u1Au2 

      = u1Au2 

   λ2u1u2  = λ1u2u1 



 [3-8] 
 

 

or 

    u1u2 = 




2

1 u2u1 

But  λ1  ≠  λ2   ≠  0 

    u1u2 = 0 

4) For a symmetric matrix A there is an orthogonal matrix P that diagonalizes A.  Then, the 

latent roots of A are the diagonal elements of D = PAP and the rank (A) = number of diagonal 

elements of D. 

Proof: 

(a) │D B λI│ = │PAP B λI│ 

    = │P(A B λI)P│ 

    = │A B λI│ │PP│ 

    = │A B λI│ 

b) rank (D) = rank (PAP) 

    = rank (A), by  1)(d) above 

    = number of diagonal elements of D 

 

Latent roots all different 

If the latent roots of a matrix An×n are all different, then the corresponding latent vectors are 

linearly independent.  Furthermore, if the matrix A is symmetric, the latent vectors are 

mutually orthogonal. 
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Multiple latent roots 

If various latent roots are the same, then a linearly independent set of vectors should be found 

for each set of repeated latent roots. 

For a symmetric matrix An×n with multiple latent roots, a procedure to obtain pairwise 

orthogonal sets of eigenvectors for each set of repeated latent roots is the following: 

(a) Given that the rank (A B λiI) = n B mi, for i = 1, ..., n, where mi = multiplicity of λi (i.e., the 

number of time λi appears), the equation 

    (A B λiI) ui  = 0 

has mi linearly independent non-null (LINN) solutions ui.  Denote one solution by vi1.  Now 

consider solving the system 

    (A B λiI) ui  = 0 

     vi1 ui  = 0 

simultaneously for ui.  This set has miB1 LINN.  Any one of them, e.g., ui2 is a latent vector of A 

and it is orthogonal to ui1 and to any latent vector corresponding to λi  λi because of the 

orthogonality property of latent vectors from different latent roots (see result [3] above). 

If mi = 3, solve for vi3 using the set of equations: 

    (A B λiI) ui  = 0 

     vi1 ui  = 0 

     vi2 ui  = 0 

This equation system yields miB2 LINN solutions for ui. 

(b) Continue this process until all the m solutions are obtained.  The set of eigenvalues, {ui}, 

obtained this way are pairwise orthogonal within and across sets of repeated eigenvalues.  The 
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matrix formed by these eigenvectors, however, is not orthogonal, i.e., UU ≠ UU ≠ I.  To 

orthogonalize the matrix U, simply divide each eigenvector by its length, i.e., by [uiui]2.  The 

resulting matrix is orthogonal because UU = I    UU = I. 

For a non-symmetric matrix A there is no guarantee that the set of linearly independent 

eigenvectors {ui} will be pairwise orthogonal, i.e., uiui may not be zero for some pairs of 

vectors.  Hence, to orthogonalize a matrix of eigenvectors U for non-symmetric matrix A use 

the Gram-Schmidt process or other suitable orthogonalization procedure (e.g., see Golub and 

Van Loan, 1983). 

 

Gram-Schmidt process 

Given a linearly independent set of vectors {x1, x2, ... , xn} (i.e., an arbitrary basis), there exists 

a set of mutually perpendicular (i.e., orthogonal) vectors {u1, u2, ... , un} that have the same linear 

span. 

To construct a mutually orthogonal set of vectors {ui} from the set of vectors (xi} proceed as 

follows (for proof see Scheffé, 1959, pg. 382). 

(a) Set u1 = x1. 

(b) Compute vectors u2 to un using the formula: 

   n    j    2      ,  u 
u ’ u

) u ’ x(     x   u j
jj

ji
1  i

1  j
ii  





 

For example: 

   u 
u ’ u

)u ’ x(     x   u 1
11

12
22   
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   u 
u ’ u

)u ’ x(    u 
u ’ u

)u ’ x(     x   u 2
22

23
1

11

13
33   

We can also build a mutually orthogonal set of vectors {zi} from the set {xi} which, in 

addition, have length equal to 1.  This process, called normalizing a set of vectors, can be 

easily accomplished by dividing each vector ui by its length, i.e., 

   
 

n , ... 1,  ifor     
u ’ u

u    Z
ii

½
i

i   

where [uui]2 is the length of vector ui. 

 

Remarks: 

(1)    
 

1    
u ’u
u ’u    z ’z

ii
½

ii
½

ii   

(2) (xzj) zj is the projection of xi on zj. 

(3) 
 1  i

1 =j 

(xzj)zj  is the projection of xi on the linear span of z1, z2, ..., ziB1 (or the span of x1, x2, ..., 

xiB1 because both {zi} and {xi} have the same span). 

(4) The Gram-Schmidt (GS) procedure has poor numerical properties.  There is typically a 

severe loss of orthogonality among the computed zi (Golub and Van Loan, 1983, pg. 151).  

Better methods are: 

(a) Modified Gram-Schmidt (Golub & Van Loan, 1983, pg. 152). 

(b) Householder Orthogonalization (Golub & Van Loan, 1983, pg. 148). 

 

Computation of eigenvalues and eigenvectors 
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Consider a matrix A3×3, 
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2134
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a) Eigenvalues 

 The characteristic equations of A is: 

   0    

 λ10 2 2 

 2 λ13 4 

 2 4 λ13 









 

To find the latent roots we need to expand the above determinant.  The diagonal expansion 

(appropriate for (A + D) matrices, D = diagonal, Searle, 1966, pg. 71-73), when the diagonal 

elements of D are equal, i.e., {dii} = {Bλ}.  Then, 

  0    A   +  +  
 aa 

 aa 
 +  + 

 aa 

 aa 
  )λ( + a +  + a + a )λ( + )λ(

nnn1

1n11

2221

12112n
nn2211

1nn















   

or 

 


 
n

0i
i

in 0    (A)traceλ)(    λIA  

where 

 trace0 (A)  = 1 

tracei (A)  = sum of the principal minors (i.e., minors with diagonals that coincide with 

the diagonal of │A│) of order i of │A│ 

tracen (A)  = │A│ 

Thus, the diagonal expansion for A3×3 above is: 
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 0    
1022

2134
2413
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λ10)13(13λλ 23 
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 Bλ3 + 36λ2 B λ (153 + 126 + 126) + 1458  = 0 

     Bλ3 + 36λ2 B405 λ + 1458  = 0 

      λ3 B 36λ2 +405 λ B 1458  = 0 

To solve for this third degree polynomial equation: 

(1) Find an integer number λ1 such that: 

 (a) Is an exact division of the constant 1458 

 (b) It satisfies the equation λ3 B 36λ2 + 405λ B 1458 = 0 

(2) Divide λ3 B36λ + 405λ B 1458 by λ B λ1.  The result of this division is a second degree 

polynomial, which can be solved by the quadratic formula.  The quadratic formula is: 

      
a 2
4(a)(c)  )b(  b     λ

2 1/2 


  

whose solutions satisfy the quadratic equation 

     a λ2 + b λ + c = 0 

In our example, the integers ±1, ±2, ±3, ±6 and ±9 are exact divisions of 1458, but only 9 

satisfies the above cubic equation, i.e., (9)3 B 36(9)2 + 405(9) B 1458 = 0.  Thus, the first root of 

the cubic polynomial above is 9, because this polynomial can be written as: 

     (λ B 9)(λ2 + bλ + c) = 0 

for some integers b and c.  To find them, divide the cubic polynomial by λ B 9, i.e.,  

     162 + 27λ  λ    9  λ : 1458  405λ + 36λ  λ 223   
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405λ + λ27  0     
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1458  162λ  +  0               

243λ 
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


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0    +    0   

1458 
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 )162λ(
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    0    162) + 27λ  λ( 9)  (λ 2   

    9    λ1   

Solving for the quadratic equation λ2 B 27λ + 162 = 0 yields, 

     
2(1)

4(1)(162)  )(27  27
    λ

2 1/2 


       

    
2

9  27    λ


  

    9    
2

18    λ2    

and 

    18    
2

36    λ3   

which satisfy 

    (λ B 9)(λ B 18)   λ2 B 27λ + 162   0 

Thus, the set of eigenvalues is: 
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    {λ1, λ2, λ3}   = {9, 9, 18} 

b) Eigenvectors 

We need to solve the equations: 

    Aui   =   λiui,  for i = 1, 2, 3. 

Eigenvector for λ1 = 9 

The set of equations to solve is: 

    (A B λiI)ui  =  0 

    0    
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By theorem 4) of Linear Equations (Chapter 2), a vector of solutions to the above system is 

given by: 

    ui  =  (H B I)z 

for an arbitrary z, where H = GA.  To obtain G, look for dependencies in A, zero out the 

dependent rows and columns, and invert the resulting non-singular matrix.  The first row of A is 

equal to (B1)row 2 and (2)row 3.  The same dependencies exist among columns.  Thus, 

   H  = GA  = 
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and 
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Arbitrarily choose z2 = B1 and z3 = 0, then, an eigenvector for λ1 = 9 is: 
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Eigenvector for λ2 = 9 

The system of equations to be solved for λ2 = 9 is the same as for λ1 = 9.  Here we choose a 

different set of values for z2 and z3 such that u2 and u1 are linearly independent, i.e., let 

 z2 = 1 and z3 = 4. 

Thus, the second eigenvector is: 
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Note:  because A is symmetric, u2u1 = 0. 

Eigenvector for λ3 = 18 

The set of equations for u3 is: 
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Here, (2) [column 2 B column 1] = column 3.  Thus, delete the first row and column, replace 

them with zeroes and compute G, i.e., 
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Thus, u3 is: 
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Arbitrarily set z1 = B2.  The resulting eigenvector is: 

   u3  = 
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The matrix U is: 
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The matrix D is the canonical form of A under similarity 

Because A is symmetric in this example, an orthogonal matrix E can be obtained from matrix U 

by dividing the elements of each vector ui by its length, i.e., by [uiui]2. 

The lengths of the eigenvectors of A, i.e., the [uiui]2 for i = 1, 2, 3, are: 

      2     )(0 + )(1 + )(1      u ’u 
½ 222

11
½ 

   

      18     )4( + )1( + )(1     u ’u 222 ½ 
22

½ 
  

      3     )(1 + )2( + )(2     u ’u 222 ½ 
33

½ 
  

Thus, the orthogonal matrix of eigenvectors, E, is: 
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We can verify that EE = EE = I, and 
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and the canonical form of A under orthogonal similarity (only for symmetric A), i.e., D, is:
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Numerical methods to compute eigenvalues and eigenvectors 

Eigenvalues: Schur decomposition (Golub and Van Loan, 1983, pg. 192). 

Eigenvectors: (Golub and Van Loan, 1983, pg. 238). 

Note: To compute eigenvectors when the matrix [A B λI] is full rank: 
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(a) Substitute zeroes for the elements of the ith dependent row and column of matrix A, and  

compute G, 

(b) Compute ui = [GA B I]z, and 

(c) Assign arbitrary values to the necessary zi's and compute ui. 

 

Iterative procedures to find eigenvectors and eigenvalues 

Dominant eigenvalue:  if a symmetric matrix An×n of rank r has eigenvalues {λ1 λ2 ... λn}, where 

    λ1 > λ2 ≥  ...  ≥ λnB1 ≥ λn 

then, λ1 is called the dominant eigenvalue of A. 

1) Power method (or iterative method) to approximate the dominant eigenvector (v1) and 

the dominate eigenvalue (λ1) of a diagonalizable matrix A. 

(a) Arbitrarily select a vector, e.g., xo, to be the first approximation to the dominant eigenvector 

v1. 

(b) Compute v~A     v~ 1(0)1(1)   and scale it down, i.e., divide each element of v~1(1)  by its largest 

element. 

(c) Compute ) v~  A  ( v~A     v~ 1(0)
2

1(1)1(2)   and scale it down. 

(d) Compute the first approximation to the dominant eigenvalue as follows: 

   λ~    
v~’v~
v~’v~    λ 1(1)

1(1)1(1)

1(2)1(1)
1   

This computation is based on the equality 

   λ    
v’v
v’vλ    

v’v
vλ’v    

v’v
Av’v

11

11

11

11

11

11   
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Thus, 

   λ~    v~’vλ    
v~’v~
v~λ’v~    

v~v~
v~A’v~    λ 1(1)1(1)1(1)1

1(1)1(1)

1(1)11(1)

1(1)1(1)

1(1)1(1)
1   

(e) Repeat the computations 

   
v~’v~
v~’v~    λ~

1)-1(i1)-1(i

1(i)1)-1(i
1(i)   

until the convergence criterion is met.  Such convergence criterion could be: 

(i) The estimated relative error: 

   E  <  
λ~

λ~    λ~

1(i)

1)1(i1(i) 


 

i.e., the absolute value of the difference between the estimates of λ1 in the ith and (iB1)th iterations 

relative to the estimate of λ1 in the ith iteration is less than a chosen number E.  For instance, E = 

0.00001. 

(ii) The estimated percentage error: 

    E 100    100  *  
λ~

λ~    λ~

1(i)

1)1(i1(i)



  

(f) At convergence after p iterations, the vector xp is a good approximation to the dominant 

eigenvector v1, and the scalar λ1(p) is a good approximation to the dominant eigenvalue λ1. 

Proof: 

Let A be an n×n diagonalizable matrix of rank r.  If A is diagonalizable, A has a set of n 

independent eigenvectors {v1, v2, ... , vn}.  To see this, note that AV = VD, where D = diag {λi} 

and V = [v1 v2 ... vn] (for proof see Searle, 1966, pg. 168, or Anton, 1981, pg. 269). 
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Let {λ1, λ2, ... , λn} be the set of eigenvalues of A and assume that 

   λ1 > λ2 ≥  ...  ≥ λn. 

By theorem 9(a) of Anton (1981, pg. 155), the set of linearly independent eigenvectors of matrix 

A, {v1, v2, ... , vn} form a basis for Rn.  Thus, an arbitrary vector x0 in Rn can be expressed as a 

linear combination of v1, v2, ... , vn, i.e.,  

    x0  = m1v1 + m2v2 + ... + mnvn. 

But 

   Ax0 = m1Av1 + m2Av2 + ... + mnAvn 

    = m1λ1v1 + m2λ2v2 + ... + mnλnvn 

and 

 A(Ax0)  = m1λ1Av1 + m2λ2Av2 + ... + mnλnAvn 

 A2x0  = m1λv1 + m2λv2 + ... + mnλvn 

      

 Apx0  = m1λv1 + m2λv2 + ... + mnλvn. 

Because λ1 ≠ 0, 
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Also, as p → ∞, 

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
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
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
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



λ
λ  ,  ,  

λ
λ 

1

n
p

1

2
p

  → 0    because    λ1 > λ2 ≥  ...  ≥ λn. 

Thus, 

  Apx0    λm1v1  as  p → ∞. 

If m1 ≠ 0, then (λm1)v1 is a multiple of the dominant eigenvector v1.  Thus, λm1v1 is also a 



 [3-23] 
 

 

dominant eigenvector.  Therefore, as p increases, Apx0 becomes an increasingly better estimate 

of a dominant eigenvector. 

2) Deflation method to approximate nondominant eigenvectors and eigenvalues 

The deflation method is based on the following theorem (Anton, 1981, pg. 336; Searle, 1966, pg. 

187). 

Theorem:  Let A be a symmetric n×n matrix of rank r with eigenvalues λ1, λ2, ... , λn.  If v1 is an 

eigenvector of A corresponding to λ1, and [v1v1]2  = 1, i.e., v1 has unit length, then: 

 (i) The matrix A1 = A B λ1v1v1 has eigenvalues 0, λ2, λ3, ... , λn. 

(ii) The eigenvectors of A1 corresponding to λ2, λ3, ... , λn are also eigenvectors for λ2, λ3, ... , λn 

in A. 

Proof:  see Searle, 1966, pg. 187. 

The deflection method also rests on the assumption that 

   λ1 > λ2 > λ3 >  ...  ≥ λn. 

The procedure of deflation is as follows: 

(a) Compute A1 using the expression: 

    z~z~λ~ A     A 1(p)1(p)1(p)1   

where 

    
 v~’v~

v~    z~
1(p)1(p)

½ 
1(p)

1(p)   

(b) Estimate the dominant eigenvector (v2) and the dominant eigenvalue (λ2) of A1 using the 

power method, i.e., obtain v~2(p)  and λ~2(p) . 

(c) Repeat steps (a) and (b) for Ai, i = 3, ... , last dominant eigenvector and eigenvalue. 
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Warning:  because λi and vi are estimated iteratively, rounding errors accumulate quickly.  Thus, 

the deflation method is recommended to estimate only two or three eigenvectors and eigenvalues 

(Anton, 1981, pg. 338). 
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