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ANIMAL BREEDING NOTES 

CHAPTER 4 

DEFINITE, ORTHOGONAL, AND IDEMPOTENT MATRICES 

 

Definitions 

Definite matrices are defined for symmetric matrices only.  Let A be an n×n symmetric matrix and 

xAx be a quadratic form.  Then, the symmetric matrix A and the quadratic form xAx are said to 

be: 

a) positive definite (p.d.), 

 if  xAx  >  0 for all x ≠ 0, 

b) positive semi-definite (p.s.d.), 

 if  xAx  ≥  0 for all x ≠ 0, with xAx = 0 for at least one x ≠ 0, 

c) non-negative definite (n.n.d), 

 if  xAx  ≥  0 for all x ≠ 0, 

d) negative definite (n.d.), 

 if  xAx  <  0 for all x ≠ 0, 

e) negative semi-definite (n.s.d.), 

 if  xAx  ≤  0 for all x ≠ 0, with xAx = 0 for at least one x ≠ 0, and 

f) non-positive definite (n.p.d.), 

 if  xAx  ≤  0 for all x ≠ 0. 
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Properties of positive definite (p.d.) matrices 

(1) A symmetric matrix A is p.d. if and only if all the characteristic roots of A are positive. 

Proof:  (by contradiction) 

 {λi > 0}    A p.d. 

Let P be an orthogonal matrix that diagonalizes A, i.e., 

  PAP = D = diag {λi}, 

where  {λi} are the latent roots of A. 

Let  y  =  Px        x  =  (P)1y  =  Py 

Thus xAx  =  yPAPy  =  yDy  =  
n

1 = i

λiyi
2  

If all λi > 0, then xAx = yDy ≥ 0 for all y, with equality only when y = 0, i.e., when x = Py = P0 = 

0    A is p.d. 

  A p.d.    {λi > 0} 

Assume a characteristic root of A, e.g. λ1, is not positive. 

Let y* be the n×1 vector with the first element equal to 1 and the rest zeroes, and let x* = Py*, then 

x* ≠ 0    because  y* ≠ 0 (see 4.28, pg. 23, Goldberger, 1964). 

Then,  
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  0    λ    yλ    Dy’y    APyP’’y    Ax’x 1
2*

ii

n

1 = i

******     

which contradicts the assumption that A is p.d.  λ1 > 0 and by induction    {λi > 0}. 

(2) If An×n is p.d., then 

 (a)  │A│ > 0, 

 (b)  rank (A) = n,  and 

 (c)  A is non-singular. 

Proof: 

(a) │A│ = │PAP│ = │D│ =  λ1 λ2  ...  λn, where {λi > 0} by property (1) of p.d. matrices, thus, 

│D│ >  0    │A│ >  0, 

(b) rank (A) = rank (PAP), 

    = rank (D), 

    = n because λi > 0, i = 1, ... , n, 

(c) A is nonsingular because │A│ > 0 as proven in (a). 

(3) If An×n is p.d. and P is an n×m matrix with rank (P) = m, then PAP is p.d. 

Proof:  PAP is an m×m symmetric matrix.  Consider yn×1, y ≠ 0, then y(PAP)y = xAx for x = 

Py.  Because A is p.d. and x ≠ 0, then xAx > 0.  But y(PAP) y = xAx, thus y(PAP) y > 0 for all 

y ≠ 0, so, by definition, PAP is p.d. 

Specializations of property (3) 

(3.1)  If A is p.d. and P is nonsingular, then PAP is p.d. 

Proof:  same as for property (3) above. 
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(3.2)  If A is p.d., then A1 is p.d. 

Proof:  Let 

   P = (A1)AA1 

   = (A1) 

   = A1  because A is symmetric 

  A1  is p.d. 

(3.3)  If P is an n×m matrix with rank (P) = m, then PP is p.d. 

Proof:  Consider A = I in (3) above.  The identity matrix I is p.d. because 

  xIx  =  
n

1=i

xi
2  >  0   for all  x ≠ 0. 

So, we have: 

  PAP  =  PIP  =  PP        PP is p.d.,  by property (3) above. 

(4) A principal submatrix of a square matrix A is a submatrix whose diagonal elements coincide 

with the diagonals of A.  A principal submatrix is obtained by deleting the appropriate rows and 

columns of A.  If A is p.d., then every principal submatrix of A is p.d. 

Proof:  Without loss of generality, let B be the principal submatrix of A obtained by deleting the 

last n-m rows and columns of A.  Then, 

   





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
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
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
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
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





 0 

    I 
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











  0 

    I 

m  m,n

m
 is an n×m matrix of rank equal to m, it qualifies as the P of property (3) above.  

Thus, by property (3), B is p.d. 

(5) A principal minor is the determinant of a principal submatrix.  Then, if A is p.d., then every 
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principal minor of A is positive. 

Proof:  Let │B│, where B comes from (4) above, be a principal minor.  Since B is p.d. by property 

(4), │B│ > 0 by property (2). 

A particular case of (5) is: 

 If A is p.d., then 

  (a) aii > 0,  and 

  (b) aiiajj  aij
2 > 0  for all i and j. 

Proof: 

(a) Without loss of generality choose Bn×1 with a 1 in the first element and zeroes elsewhere.  

Hence, rank (B) = 1.  Thus, by property (4) BAB = [a11] is p.d., and by property (2) its determinant 

is positive, i.e., 

   │BAB│ = │a11│ = a11  >  0 

(b) Without loss of generality choose Bn×2 with 1s in positions (1,1) and (2,2), and zeroes 

elsewhere.  Hence, rank (B) = 2. 

By property (4), 

     BAB  = 












 a  a 

 a  a 

2212

1211
 is p.d. 

By property (2), 

   │BAB│ = 
a  a 

 a  a 

2212

1211
 = a11a22  a12

2  >  0 

(6) If A is p.d., there exists a nonsingular matrix P such that PAP = I and PP = A1. 

Proof:  Let E be the orthogonal matrix such that  
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    EAE  =  D  =  diag {λi} 

and let 

     T  =  diag








λ
1

i

. 

Define: 

  P  = TE,  where P  is nonsingular because it is the product of nonsingular matrices. 

Thus, 

 PAP = TEAET 

 PAP = TDT 

 PAP = diag








λ
1

i

 diag{λi}  diag








λ
1

i

  

 PAP = I 

Furthermore, from PAP = I we get: 

      PAP  = I 

   P(PAP)P  = PIP 

     PPAPP  = PP 

Because P is nonsingular, PP is also nonsingular, hence (PP)1 exists.  Thus, 

 (PP)1PPAPP = (PP)1PP 

       APP = I 

      A1APP = A1I 

    PP  = A1 

(7) If A is p.d. of order n, there is a full rank n×n matrix L such that A = LL. 
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Proof:  PAP = D for P orthogonal, where D = diagonal of order n whose elements are the 

eigenvalues of A (and D).  Because P is orthogonal, PP = PP = I.  Thus, 

   PPAPP = PDP. 

But since A is p.d. the elements of D = diag {λi} are all positive, thus 

     A = PDP 

     A = (PD2)(D2P) 

     A = LL,    where    L  =  D2P. 

Also, note that 

       LL = D2PPD2   

      = D 

(8) A symmetric matrix is p.d. if and only if it can be written as PP for a nonsingular P. 

Proof: 

(a) Necessary condition:  existence of P. 

Because A is symmetric, there is an orthogonal matrix Q such that 

    QAQ = D = diag {λi} 

    QAQ = D2ID2 

   D2QAQD2 = D2D2ID2D2 

    TAT = I  for  T  =  D2Q 

Note:  T is nonsingular because D2 and Q are, which implies that (D2)1 and Q1 exist.  If T is 

nonsingular, T1 = Q1D2 exists, because Q1 and (D2)1 exist.  Hence, T is nonsingular.  

However, T is not orthogonal, even if Q is, because each element of each eigenvector is multiplied 

by the reciprocal of the square root of each eigenvalue, e.g., for the jth eigenvector of A, i.e., qj, the 
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product D2qj = tj is: 
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Thus,  A = T1(T)1 = PP for P = T1 = Q1D2. 

(b) If A = PP for P nonsingular, then A is symmetric and 

  xAx = xPPx 

which is the sum of squares of Px.  Thus, 

  xAx > 0 for all  Px ≠ 0  

and 

  xAx = 0 for all Px = 0. 

But  Px = 0 only when x = 0 because P is non-singular, which implies that P1 exists.  Thus, 

  xAx > 0  for all x ≠ 0 

and 

  xAx = 0 only for x = 0 
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  by definition A is p.d. 

(9) If Am×n has full column rank, i.e., the rank (A) = n, then AA is positive definite. 

Proof:  xAAx is the sum of squares of the elements of Ax.  If A is full column rank, then Ax = 0 

only when x = 0.  Thus, 

  xAAx > 0 for all x ≠ 0 

  AA is p.d. 

Corollary: If Am×n has full row rank, i.e., the rank (A) = m, then AA is p.d. 

(10)  The sum of p.s.d. matrices is also p.s.d. 

Proof:  Let Ai, i=1, ..., p be a set of p.s.d. matrices.  Then, consider: 

  x 







A i

p

1 = i

x = xA1x +  ...  + xApx 

Each one of the quadratics xAix, i = 1, ... , p, is p.s.d.  their sum is positive  the sum of p.d. 

matrices is also p.d. 

 

Properties of positive semi-definite (p.s.d.) matrices 

(1)  A symmetric matrix A is p.s.d. if and only if all the eigenvalues are either zero or positive 

with at least one of them equal to zero. 

(2)  If An×n is p.s.d., then, 

(a) │A│ = 0, 

  (b) rank (A) = r < n, 
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(c) A is singular. 

(3)  If An×n is p.s.d. and P is an n×m matrix with rank (P) = m, then PAP is p.s.d. 

Specializations of property (3): 

(3.1)  If A is p.s.d. and P is nonsingular, then PAP is p.s.d. 

(3.2)  If A is p.s.d. then A is p.s.d. 

(3.3)  If P is an n×m matrix with rank (P) = r < m, then PP is p.s.d. 

(4)  If A is p.s.d., then some principal submatrices of A are p.s.d. while others are p.d. 

(5)  If A is p.s.d., then some principal minors of A are positive while others are zero.  In 

particular,  

(a) aii ≥ 0 for all i with at least one i for which aii = 0, and 

(b) aiiajj  aij
2 ≥ 0 for all i and j, except for at least one i and j where aiiajj  aij

2 = 0. 

(6) If An×n is p.s.d. of rank r, there exists a singular matrix Pn×n of rank r, such that, 

  (a) PAP =  








 0  0 

 0  I r ,  and 

  (b) PP  = A. 

Proof: 

(a) EAE =  








 0   0 

 0  D r   

   = Dn  for E orthogonal. 

Define:  

  T =  








 0    0 

 0  D ½
r   

Then, 
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      P  = TE  P is singular because T is singular. 

Thus, 

  PAP = TEAET 

  PAP = T 




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





 0  0 

 0  I r  

(b) A g-inverse for A must satisfy AAA = A,  where  A = EDnE,  for E orthogonal. 

Proof:  Consider 

   A = (EDnE) 

   A = E Dn
 E 

Thus, 

  AAA = (EDnE)(E Dn
 E)(EDnE) 

    = EDnI Dn
  IDnE 

    = EDnE 

   A = E Dn
 E is a g-inverse of A. 

But 
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   Dn = Dn
2Dn

2 = TT = TT, 

   A = ETTE 

   A = PP 

   PP  is a g-inverse of A. 

(7) If An×n is p.s.d. of rank r, there is a full column rank n×r matrix L such that A = LL. 

Proof: 

  PAP = 








 0   0 

 0  D r  for P orthogonal 

  PAP =   0    D   
   0 

 D ½
r

½
r








 

Thus, 

   A =  P  0    D  
    0  

  D  
 P’ ½

r

½
r








 

   A = LL 

where 

L = 








   0 

 D  P’
½
r     is n×r of full column rank, 

and 

   L = P 0]    D[ ½
r     is r×n of full row rank. 

Also, note that 
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  LL =   








   0 

 D  PP’  0    D 
½
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r  
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(8) A symmetric matrix is p.s.d. if it can be written as PP for a singular matrix P. 

Proof: 

(a) Necessary condition:  existence of P. 

Because A is symmetric, 

  QAQ = 








 0   0 

 0  D r   ≡    Dn for Q orthogonal 

   A = QDnQ 

   A = QDDQ 

where 

   D = 








 0    0 

 0  D ½
r  

   A = PP  for  P = DQ 

(b) If A = PP for P singular, then A is symmetric and xAx = xPPx, which is the sum of squares 

of Px.  Thus, xAx ≥ 0 for all Px ≠ 0 with at least one Px ≠ 0 for which xAx = 0.  But Px = 0 at least 

for one x ≠ 0  P is singular.  Hence, xAx ≥ 0 for all x ≠ 0 with at least one x ≠ 0 for which xAx 

= 0.  So, by definition A is p.s.d. 
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(9)  If Am×n does not have full column rank, i.e., rank (A) = r < m, then AA is p.s.d. 

(10)  The sum of p.s.d. matrices is also p.s.d. 

 

Similar theorems to those described above can also be made for n.n.d, n.d., n.s.d. and n.p.d. 

matrices.  In particular, note that if A is n.d., the "nested" principal minors of A alternate in sign, 

i.e.,  aii < 0,  aiiajj  aij
2
 > 0 ...  

 

Orthogonal matrices 

A matrix A is orthogonal if AA = I, which implies that A = A1 and that AA = I. 

Properties of orthogonal matrices: 

(1) The inner product of any row (column) with itself is 1, and with any other row (column) is zero. 

Proof:  This is a consequence of AA = I. 

(2) A product of orthogonal matrices is itself orthogonal. 

Proof:  Let A and B be two orthogonal matrices.  Then, 

  (AB)(AB)  =  ABBA  

      = AIA 

      = II  

      =  I 

(3) The determinant of an orthogonal matrix is either 1 or 1. 

Proof:  For A orthogonal, 

   │AA│  = │I│ 

      │A││A│ = │I│ 
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Thus, 

      │A│  = │A│ 

    │A││A│  = 1 

But   (1)(1)  =  1    or    (1)(1)  =  1 

     │A│  = 1 or B1 

(4) If λ is a latent root of an orthogonal matrix A, then so is 
λ
1 . 

Proof: 

   │A  λI│ = │AA  λA│ = 0 

     = │I  λA│   = 0 for  AA = I 

     =   A    I 
λ
1   = 0 

     =   A    I 
λ
1   = 0 

     =  A    I 
λ
1  

'








  = 0 

     =   I 
λ
1  A    

'








  = 0 

     =   I 
λ
1  A      = 0 
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Idempotent Matrices 

A matrix A is idempotent if A2 = A.  For instance, the matrix H = GA is idempotent because 

(GA)(GA) = G(AGA) = GA. 

Properties of Idempotent Matrices 

(1) Idempotent matrices are square. 

Proof:  A idempotent    AA = A2 exists only if A is square. 

(2) The only nonsingular idempotent matrix is I. 

Proof:  Consider a nonsingular A, then 

   A2  = A 

  A1A2  = A1A 

  A1AA  = I 

   A  = I 

(3) If A and B are idempotent so is AB, provided that AB = BA. 

Proof: 

     (AB)2   = ABAB 

     =  ABBA  if AB = BA 

     =  AB2A 

     =  ABA 

     = AAB  if BA = AB 

     = A2B 

     = A2B2 

     = AB 
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(4) If P is orthogonal and A is idempotent, PAP is idempotent. 

Proof: 

    (PAP)(PAP) = PAIAP 

      = PA2P 

      = PAP 

(5) The latent roots of an idempotent matrix are either 0 or 1. 

Proof:  Let A be an idempotent matrix with an eigenvalue λ and its eigenvector u.   

Thus, 

     Au  = λu 

     A2u = λ2u 

But 

     A2u = Au 

   λ2u  = λu 

  (λ2 - λ)u = 0 

Also, because  u ≠ 0, 

  (λ2 - λ)  = 0 

  λ(λ  1) = 0 

  λ1 = 0 and  λ2 = 1 

(6) The number of eigenvalues of an idempotent matrix is the same as its rank. 

Proof:  Let matrix A be idempotent with rank (A) = r.  Let D be the equivalent diagonal form of A 
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whose diagonal elements are the eigenvalues of A.  Thus, rank (D) = rank (A) = r    by property 

(5) above, the only nonzero diagonal elements of D are 1's, and there must be r of them. 

(7) The trace of an idempotent matrix is equal to its rank. 

Proof:  Trace (A)  =  Trace (D)  =  r  by property (6). 

(8) A general form for an idempotent matrix is A = X(YX)1Y provided that (YX)1 exists. 

Proof: 

     A2 = (X(YX)1Y)(X(YX)1Y) 

     = X(YX)1IY 

     = X(YX)1Y 

(9)  A general form for an idempotent symmetric matrix is A = X(XX)1X, provided that 

(XX)1 exists. 

Proof: 

    A2  = X(XX)1XX(XX)1X 

     = X(XX)1IX 

     = X(XX)1X 
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