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ANIMAL BREEDING NOTES 

CHAPTER 4 

DEFINITE, ORTHOGONAL, AND IDEMPOTENT MATRICES 

 

Definitions 

Definite matrices are defined for symmetric matrices only.  Let A be an n×n symmetric matrix and 

xAx be a quadratic form.  Then, the symmetric matrix A and the quadratic form xAx are said to 

be: 

a) positive definite (p.d.), 

 if  xAx  >  0 for all x ≠ 0, 

b) positive semi-definite (p.s.d.), 

 if  xAx  ≥  0 for all x ≠ 0, with xAx = 0 for at least one x ≠ 0, 

c) non-negative definite (n.n.d), 

 if  xAx  ≥  0 for all x ≠ 0, 

d) negative definite (n.d.), 

 if  xAx  <  0 for all x ≠ 0, 

e) negative semi-definite (n.s.d.), 

 if  xAx  ≤  0 for all x ≠ 0, with xAx = 0 for at least one x ≠ 0, and 

f) non-positive definite (n.p.d.), 

 if  xAx  ≤  0 for all x ≠ 0. 
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Properties of positive definite (p.d.) matrices 

(1) A symmetric matrix A is p.d. if and only if all the characteristic roots of A are positive. 

Proof:  (by contradiction) 

 {λi > 0}    A p.d. 

Let P be an orthogonal matrix that diagonalizes A, i.e., 

  PAP = D = diag {λi}, 

where  {λi} are the latent roots of A. 

Let  y  =  Px        x  =  (P)1y  =  Py 

Thus xAx  =  yPAPy  =  yDy  =  
n

1 = i

λiyi
2  

If all λi > 0, then xAx = yDy ≥ 0 for all y, with equality only when y = 0, i.e., when x = Py = P0 = 

0    A is p.d. 

  A p.d.    {λi > 0} 

Assume a characteristic root of A, e.g. λ1, is not positive. 

Let y* be the n×1 vector with the first element equal to 1 and the rest zeroes, and let x* = Py*, then 

x* ≠ 0    because  y* ≠ 0 (see 4.28, pg. 23, Goldberger, 1964). 

Then,  
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  0    λ    yλ    Dy’y    APyP’’y    Ax’x 1
2*

ii

n

1 = i

******     

which contradicts the assumption that A is p.d.  λ1 > 0 and by induction    {λi > 0}. 

(2) If An×n is p.d., then 

 (a)  │A│ > 0, 

 (b)  rank (A) = n,  and 

 (c)  A is non-singular. 

Proof: 

(a) │A│ = │PAP│ = │D│ =  λ1 λ2  ...  λn, where {λi > 0} by property (1) of p.d. matrices, thus, 

│D│ >  0    │A│ >  0, 

(b) rank (A) = rank (PAP), 

    = rank (D), 

    = n because λi > 0, i = 1, ... , n, 

(c) A is nonsingular because │A│ > 0 as proven in (a). 

(3) If An×n is p.d. and P is an n×m matrix with rank (P) = m, then PAP is p.d. 

Proof:  PAP is an m×m symmetric matrix.  Consider yn×1, y ≠ 0, then y(PAP)y = xAx for x = 

Py.  Because A is p.d. and x ≠ 0, then xAx > 0.  But y(PAP) y = xAx, thus y(PAP) y > 0 for all 

y ≠ 0, so, by definition, PAP is p.d. 

Specializations of property (3) 

(3.1)  If A is p.d. and P is nonsingular, then PAP is p.d. 

Proof:  same as for property (3) above. 
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(3.2)  If A is p.d., then A1 is p.d. 

Proof:  Let 

   P = (A1)AA1 

   = (A1) 

   = A1  because A is symmetric 

  A1  is p.d. 

(3.3)  If P is an n×m matrix with rank (P) = m, then PP is p.d. 

Proof:  Consider A = I in (3) above.  The identity matrix I is p.d. because 

  xIx  =  
n

1=i

xi
2  >  0   for all  x ≠ 0. 

So, we have: 

  PAP  =  PIP  =  PP        PP is p.d.,  by property (3) above. 

(4) A principal submatrix of a square matrix A is a submatrix whose diagonal elements coincide 

with the diagonals of A.  A principal submatrix is obtained by deleting the appropriate rows and 

columns of A.  If A is p.d., then every principal submatrix of A is p.d. 

Proof:  Without loss of generality, let B be the principal submatrix of A obtained by deleting the 

last n-m rows and columns of A.  Then, 
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m
 is an n×m matrix of rank equal to m, it qualifies as the P of property (3) above.  

Thus, by property (3), B is p.d. 

(5) A principal minor is the determinant of a principal submatrix.  Then, if A is p.d., then every 
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principal minor of A is positive. 

Proof:  Let │B│, where B comes from (4) above, be a principal minor.  Since B is p.d. by property 

(4), │B│ > 0 by property (2). 

A particular case of (5) is: 

 If A is p.d., then 

  (a) aii > 0,  and 

  (b) aiiajj  aij
2 > 0  for all i and j. 

Proof: 

(a) Without loss of generality choose Bn×1 with a 1 in the first element and zeroes elsewhere.  

Hence, rank (B) = 1.  Thus, by property (4) BAB = [a11] is p.d., and by property (2) its determinant 

is positive, i.e., 

   │BAB│ = │a11│ = a11  >  0 

(b) Without loss of generality choose Bn×2 with 1s in positions (1,1) and (2,2), and zeroes 

elsewhere.  Hence, rank (B) = 2. 

By property (4), 

     BAB  = 












 a  a 

 a  a 

2212

1211
 is p.d. 

By property (2), 

   │BAB│ = 
a  a 

 a  a 

2212

1211
 = a11a22  a12

2  >  0 

(6) If A is p.d., there exists a nonsingular matrix P such that PAP = I and PP = A1. 

Proof:  Let E be the orthogonal matrix such that  
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    EAE  =  D  =  diag {λi} 

and let 

     T  =  diag








λ
1

i

. 

Define: 

  P  = TE,  where P  is nonsingular because it is the product of nonsingular matrices. 

Thus, 

 PAP = TEAET 

 PAP = TDT 

 PAP = diag








λ
1

i

 diag{λi}  diag








λ
1

i

  

 PAP = I 

Furthermore, from PAP = I we get: 

      PAP  = I 

   P(PAP)P  = PIP 

     PPAPP  = PP 

Because P is nonsingular, PP is also nonsingular, hence (PP)1 exists.  Thus, 

 (PP)1PPAPP = (PP)1PP 

       APP = I 

      A1APP = A1I 

    PP  = A1 

(7) If A is p.d. of order n, there is a full rank n×n matrix L such that A = LL. 
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Proof:  PAP = D for P orthogonal, where D = diagonal of order n whose elements are the 

eigenvalues of A (and D).  Because P is orthogonal, PP = PP = I.  Thus, 

   PPAPP = PDP. 

But since A is p.d. the elements of D = diag {λi} are all positive, thus 

     A = PDP 

     A = (PD2)(D2P) 

     A = LL,    where    L  =  D2P. 

Also, note that 

       LL = D2PPD2   

      = D 

(8) A symmetric matrix is p.d. if and only if it can be written as PP for a nonsingular P. 

Proof: 

(a) Necessary condition:  existence of P. 

Because A is symmetric, there is an orthogonal matrix Q such that 

    QAQ = D = diag {λi} 

    QAQ = D2ID2 

   D2QAQD2 = D2D2ID2D2 

    TAT = I  for  T  =  D2Q 

Note:  T is nonsingular because D2 and Q are, which implies that (D2)1 and Q1 exist.  If T is 

nonsingular, T1 = Q1D2 exists, because Q1 and (D2)1 exist.  Hence, T is nonsingular.  

However, T is not orthogonal, even if Q is, because each element of each eigenvector is multiplied 

by the reciprocal of the square root of each eigenvalue, e.g., for the jth eigenvector of A, i.e., qj, the 
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product D2qj = tj is: 
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Thus,  A = T1(T)1 = PP for P = T1 = Q1D2. 

(b) If A = PP for P nonsingular, then A is symmetric and 

  xAx = xPPx 

which is the sum of squares of Px.  Thus, 

  xAx > 0 for all  Px ≠ 0  

and 

  xAx = 0 for all Px = 0. 

But  Px = 0 only when x = 0 because P is non-singular, which implies that P1 exists.  Thus, 

  xAx > 0  for all x ≠ 0 

and 

  xAx = 0 only for x = 0 
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  by definition A is p.d. 

(9) If Am×n has full column rank, i.e., the rank (A) = n, then AA is positive definite. 

Proof:  xAAx is the sum of squares of the elements of Ax.  If A is full column rank, then Ax = 0 

only when x = 0.  Thus, 

  xAAx > 0 for all x ≠ 0 

  AA is p.d. 

Corollary: If Am×n has full row rank, i.e., the rank (A) = m, then AA is p.d. 

(10)  The sum of p.s.d. matrices is also p.s.d. 

Proof:  Let Ai, i=1, ..., p be a set of p.s.d. matrices.  Then, consider: 

  x 







A i

p

1 = i

x = xA1x +  ...  + xApx 

Each one of the quadratics xAix, i = 1, ... , p, is p.s.d.  their sum is positive  the sum of p.d. 

matrices is also p.d. 

 

Properties of positive semi-definite (p.s.d.) matrices 

(1)  A symmetric matrix A is p.s.d. if and only if all the eigenvalues are either zero or positive 

with at least one of them equal to zero. 

(2)  If An×n is p.s.d., then, 

(a) │A│ = 0, 

  (b) rank (A) = r < n, 
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(c) A is singular. 

(3)  If An×n is p.s.d. and P is an n×m matrix with rank (P) = m, then PAP is p.s.d. 

Specializations of property (3): 

(3.1)  If A is p.s.d. and P is nonsingular, then PAP is p.s.d. 

(3.2)  If A is p.s.d. then A is p.s.d. 

(3.3)  If P is an n×m matrix with rank (P) = r < m, then PP is p.s.d. 

(4)  If A is p.s.d., then some principal submatrices of A are p.s.d. while others are p.d. 

(5)  If A is p.s.d., then some principal minors of A are positive while others are zero.  In 

particular,  

(a) aii ≥ 0 for all i with at least one i for which aii = 0, and 

(b) aiiajj  aij
2 ≥ 0 for all i and j, except for at least one i and j where aiiajj  aij

2 = 0. 

(6) If An×n is p.s.d. of rank r, there exists a singular matrix Pn×n of rank r, such that, 

  (a) PAP =  








 0  0 

 0  I r ,  and 

  (b) PP  = A. 

Proof: 

(a) EAE =  








 0   0 

 0  D r   

   = Dn  for E orthogonal. 

Define:  

  T =  








 0    0 

 0  D ½
r   

Then, 
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      P  = TE  P is singular because T is singular. 

Thus, 

  PAP = TEAET 

  PAP = T 








 0   0 

 0  D r T 

  PAP = 






















 

 0     0 

 0  D   
 0   0 

 0  D 
  

 0     0 

 0  D ½
rr

½
r  

  PAP = 






 

 0             0 

 0  DDDD ½
r

½
r

½
r

½
r  

  PAP = 








 0  0 

 0  I r  

(b) A g-inverse for A must satisfy AAA = A,  where  A = EDnE,  for E orthogonal. 

Proof:  Consider 

   A = (EDnE) 

   A = E Dn
 E 

Thus, 

  AAA = (EDnE)(E Dn
 E)(EDnE) 

    = EDnI Dn
  IDnE 

    = EDnE 

   A = E Dn
 E is a g-inverse of A. 

But 
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   Dn = Dn
2Dn

2 = TT = TT, 

   A = ETTE 

   A = PP 

   PP  is a g-inverse of A. 

(7) If An×n is p.s.d. of rank r, there is a full column rank n×r matrix L such that A = LL. 

Proof: 

  PAP = 








 0   0 

 0  D r  for P orthogonal 

  PAP =   0    D   
   0 

 D ½
r

½
r








 

Thus, 

   A =  P  0    D  
    0  

  D  
 P’ ½

r

½
r








 

   A = LL 

where 

L = 








   0 

 D  P’
½
r     is n×r of full column rank, 

and 

   L = P 0]    D[ ½
r     is r×n of full row rank. 

Also, note that 
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  LL =   








   0 

 D  PP’  0    D 
½
r½

r  

  LL = Dr
½ Dr

½  

  LL = Dr 

(8) A symmetric matrix is p.s.d. if it can be written as PP for a singular matrix P. 

Proof: 

(a) Necessary condition:  existence of P. 

Because A is symmetric, 

  QAQ = 








 0   0 

 0  D r   ≡    Dn for Q orthogonal 

   A = QDnQ 

   A = QDDQ 

where 

   D = 








 0    0 

 0  D ½
r  

   A = PP  for  P = DQ 

(b) If A = PP for P singular, then A is symmetric and xAx = xPPx, which is the sum of squares 

of Px.  Thus, xAx ≥ 0 for all Px ≠ 0 with at least one Px ≠ 0 for which xAx = 0.  But Px = 0 at least 

for one x ≠ 0  P is singular.  Hence, xAx ≥ 0 for all x ≠ 0 with at least one x ≠ 0 for which xAx 

= 0.  So, by definition A is p.s.d. 
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(9)  If Am×n does not have full column rank, i.e., rank (A) = r < m, then AA is p.s.d. 

(10)  The sum of p.s.d. matrices is also p.s.d. 

 

Similar theorems to those described above can also be made for n.n.d, n.d., n.s.d. and n.p.d. 

matrices.  In particular, note that if A is n.d., the "nested" principal minors of A alternate in sign, 

i.e.,  aii < 0,  aiiajj  aij
2
 > 0 ...  

 

Orthogonal matrices 

A matrix A is orthogonal if AA = I, which implies that A = A1 and that AA = I. 

Properties of orthogonal matrices: 

(1) The inner product of any row (column) with itself is 1, and with any other row (column) is zero. 

Proof:  This is a consequence of AA = I. 

(2) A product of orthogonal matrices is itself orthogonal. 

Proof:  Let A and B be two orthogonal matrices.  Then, 

  (AB)(AB)  =  ABBA  

      = AIA 

      = II  

      =  I 

(3) The determinant of an orthogonal matrix is either 1 or 1. 

Proof:  For A orthogonal, 

   │AA│  = │I│ 

      │A││A│ = │I│ 



 [4-15] 
 

Thus, 

      │A│  = │A│ 

    │A││A│  = 1 

But   (1)(1)  =  1    or    (1)(1)  =  1 

     │A│  = 1 or B1 

(4) If λ is a latent root of an orthogonal matrix A, then so is 
λ
1 . 

Proof: 

   │A  λI│ = │AA  λA│ = 0 

     = │I  λA│   = 0 for  AA = I 

     =   A    I 
λ
1   = 0 

     =   A    I 
λ
1   = 0 

     =  A    I 
λ
1  

'








  = 0 

     =   I 
λ
1  A    

'








  = 0 

     =   I 
λ
1  A      = 0 
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Idempotent Matrices 

A matrix A is idempotent if A2 = A.  For instance, the matrix H = GA is idempotent because 

(GA)(GA) = G(AGA) = GA. 

Properties of Idempotent Matrices 

(1) Idempotent matrices are square. 

Proof:  A idempotent    AA = A2 exists only if A is square. 

(2) The only nonsingular idempotent matrix is I. 

Proof:  Consider a nonsingular A, then 

   A2  = A 

  A1A2  = A1A 

  A1AA  = I 

   A  = I 

(3) If A and B are idempotent so is AB, provided that AB = BA. 

Proof: 

     (AB)2   = ABAB 

     =  ABBA  if AB = BA 

     =  AB2A 

     =  ABA 

     = AAB  if BA = AB 

     = A2B 

     = A2B2 

     = AB 
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(4) If P is orthogonal and A is idempotent, PAP is idempotent. 

Proof: 

    (PAP)(PAP) = PAIAP 

      = PA2P 

      = PAP 

(5) The latent roots of an idempotent matrix are either 0 or 1. 

Proof:  Let A be an idempotent matrix with an eigenvalue λ and its eigenvector u.   

Thus, 

     Au  = λu 

     A2u = λ2u 

But 

     A2u = Au 

   λ2u  = λu 

  (λ2 - λ)u = 0 

Also, because  u ≠ 0, 

  (λ2 - λ)  = 0 

  λ(λ  1) = 0 

  λ1 = 0 and  λ2 = 1 

(6) The number of eigenvalues of an idempotent matrix is the same as its rank. 

Proof:  Let matrix A be idempotent with rank (A) = r.  Let D be the equivalent diagonal form of A 
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whose diagonal elements are the eigenvalues of A.  Thus, rank (D) = rank (A) = r    by property 

(5) above, the only nonzero diagonal elements of D are 1's, and there must be r of them. 

(7) The trace of an idempotent matrix is equal to its rank. 

Proof:  Trace (A)  =  Trace (D)  =  r  by property (6). 

(8) A general form for an idempotent matrix is A = X(YX)1Y provided that (YX)1 exists. 

Proof: 

     A2 = (X(YX)1Y)(X(YX)1Y) 

     = X(YX)1IY 

     = X(YX)1Y 

(9)  A general form for an idempotent symmetric matrix is A = X(XX)1X, provided that 

(XX)1 exists. 

Proof: 

    A2  = X(XX)1XX(XX)1X 

     = X(XX)1IX 

     = X(XX)1X 
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