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ANIMAL BREEDING NOTES 

CHAPTER 7 

EXPECTATION, VARIANCES, AND COVARIANCES OF RANDOM VARIABLES 

AND RANDOM VECTORS 

 

Expected value of a random variable 

Discrete random variable:  the expected value of a discrete random variable X, whose probability 

mass function is p(x), is denoted by E[X] and given by 

   E[X] =  
0 > p(x) :x 

p(x)   x  ≡ μ 

i.e., the expected value of X is a weighted average of the possible values that X can have, each 

value being weighted by the probability that X assumes it. 

Continuous random variable:  if X is a continuous random variable having a probability density 

function f(x), then because f(x) dx  P{x  X  x + dx} for dx small, it is reasonable to define E[X] 

as follows: 

   E[X] = 




dx f(x)x  ≡ μ   

Animal Breeding example (continued) 

The expected value of X, i.e., the weighted average genetic value of the chromosomes of bull B is: 

   E[X] = 10 (0.2) + 20(0.5) + 30(0.3) 

     = 21 

Similarly,  E[Y], the weighted average genetic value of the chromosomes for cow C, is: 

   E[Y] = 10(0.3) + 20(0.5) + 30(0.2)  

     = 19 
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Expected value of a function of a random variable 

Let X be a discrete random variable with probability mass function p(x).  Then, the expectation of 

a function g of X is: 

   E[g(X)] = p(x)  g(x)  
0  >  p(x) :x 

  

Let X be a continuous random variable with probability density function f(x).  Then, the 

expectation of a function g of X is: 

   E[g(X)] = 




dx f(x) g(x)  

Example: 

The expected value of g(X) = Xn, n  1, the nth moment of X, is: 

   E[Xn] = p(x) x  n

0  >  :p(x)x

   if X is discrete 

   E[Xn] =   dx f(x)   x
n






   if X is continuous 

The expected value of the linear function aX + b with respect to X, where a and b are constants, 

is: 

   E[aX + b] = aE[X] + b 

Proof: 

1) Discrete case: 

   E[aX + b] =  
0  >  p(x) :x 

p(x) b)(ax     

      =  
0  >  p(x) :x 0  >  p(x) :x 

p(x)     b    p(x)    x  a  

      = a E[X]  +  b (1) 

      = a E[X]  +  b 
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2) Continuous case: 

   E[aX + b] = 




 dx f(x) b) (ax   

      = 








 dx f(x)  b dx f(x) x  a  

      = a E[X]  +  b (1) 

      = a E[X]  +  b 

The expected value of (XBE[X])2 is the variance of X, i.e., var(X), where X has density f(x).  The 

var(X) is equal to: 

   var(X)  = E[(X B E[X])2]  

      = E[X2] B (E[X])2 

Proof: 

   var(X)  = E[(X B E[X])2] 

      = E[X2 B 2XE[X] + (E[X])2] 

      = 




x2 f(x) dx  B  2E[X] 




x f(x) dx  +  (E[X]2





f(x) dx 

      = E[X2] B 2(E[X])2 + (E[X])2 

      = E[X2] B (E[X])2 

The variance of the linear function aX + b, where a and b are constants, is: 

  var(aX + b) = a2 var(X) 

Proof: 

  var(aX + b) = E[(aX + b B (aE[X] + b))2] 

      = E[(aX B aE[X])2] 

      = E[a2(X B E[X])2] 
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      = a2 var(X) 

Expected value of a sum of random variables:  consider two random variables, X and Y.  By the 

expectation of a function of a random variable,  

  E[X + Y] =  








 (x + y) f(x, y) dx dy 

     =  








 x f(x, y) dx dy  +   








 y f(x, y) dx dy 

     = 




x fX(x) dx  +  




y fY(y) dy 

     = E[X] + E[Y] 

Thus,  

   









 n

1i

i

n

1i

i XEXE  

If X and Y are independent, then the expectation of the product of (any) functions g(X) and 

h(Y) is: 

  E[g(X) h(Y)] = E[g(X)] E[h(Y)] 

Proof: 

Suppose that X and Y are jointly continuous with density f(x, y). Then, 

  E[g(X)h(Y)] =   








 g(x) h(y) f(x, y) dx dy 

      =   








 g(x) h(y) f(x) f(y) dx dy 

      =  




g(x) f(x) dx 




h(y) f(y) dy 

      =  E[g(X)] E[h(Y)] 
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The covariance of two random variables X and Y, i.e., cov(X, Y), is defined by: 

  cov(X, Y) =  E[(X B E[X])(Y B E[Y])] 

     = E[XY] B X E[Y] B E[X] Y + E[X] E[Y]] 

     = E[XY] B E[X] E[Y] B E[X] E[Y] + E[X] E[Y] 

     = E[XY] B E[X] E[Y] 

Remark:  If X and Y are independent, then cov(X,Y) = 0.  The converse is not true. 

The variance of a sum of random variables, X1 + X2 + ... + Xn, is equal to: 

  )X ,Xcov( 2    )var(X    Xvar j

n

1i

i

n

1i

n

1i

i

n

1i

i 
 









 

Proof: 

Consider two random variables, X and Y, 

  var(X + Y)  =  E[(X + Y B E[X + Y])2] 

      = E[((X B E[X]) + (Y B E[Y]))2] 

      = E[(X B E[X])2] + E[(X B E[X])(Y B E[Y])] 

       + E[(Y B E[Y])(X B E[X])] + E[(Y B E[Y])2] 

      = var(X) + 2 cov(X, Y) + var(Y) 

By induction we get the result above. 

Also, note that: 

  var(X B Y)  = var(X) B 2 cov(X, Y) + var(Y) 

 

Conditional expectation 

The conditional expectation of X given Y = y is : 

  E[X│Y = y] = 
0 > p(x) :x 

x P{X = x│Y = y} 
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= 
0 > p(x) :x 

x pX│Y (x│y)  for all y such that pY (y) > 0, 

for the discrete case 

and 

  E[X│Y = y] = 




dx y)|f(x y)|f(x x   provided that fY (y) > 0, 

       for the continuous case 

The conditional expectation of g(X) given Y = y is: 

  E[g(X) │Y = y] =  
0 > p(x) :x 

g(x) pX│Y(x│y)  for the discrete case 

and 

  E[g(X) │Y = y] =  




g(x) fX│Y(x│y) dx  for the continuous case 

Remark: the conditional expectation of a sum of random variables is equal to the sum of 

the conditional expectations of the individual random variables, i.e.,  

   












n

1i

i

n

1i

i |XE|XE yYyY  

Computing probabilities by conditioning 

Let E be an arbitrary event and define an indicator random variable X by 

   










occurnot  does E if0 

            occurs E if1 

    X  

Then, 

  E[X]  = (1)*P(X = E) + (0)*P(X ≠ E) 

     = P(E) 
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 E[X│Y = y] = P{X = E│Y = y} + P{X ≠ E│Y = y} 

     = P{E│Y = y} 

Using the formulae for computation of expectations by conditioning above we get: 

  P(E) =  
0 > p(x) :x 

P{E│Y = y} P{Y = y}  if Y is discrete 

and 

  P(E) = 




P{E│Y = y} fY(y) dy   if Y is continuous 

Example 1:  Let X and Y be independent random variables with densities fX(x) and fY(y).   

Compute P{X < Y}. 

  P{X < Y} = 




P(X < Y│Y = y) fY(y) dy 

     = 




P(X < y│Y = y) fY(y) dy 

     = 




P(X < y) fY(y) dy   by independence 

     =  


  









 y

X dx (x)f   fY (y) dy 

     = 




FX(y) fY(y) dy 

Remark:  If X and Y are not independent, then 

  P{X < Y} = 




P(X < y│Y = y) fY(y) dy 

     =  


  









 y

Y|X dx y)|(xf   fY(y) dy 
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     = 




FX│Y(x│y) fY(y) dy 

Example 2:  Let X and Y be independent random variables.  Find the distribution of X + Y, i.e.,  

find P{X + Y < a}.  Condition X on Y. 

  P{X + Y < a} = 




P{X + Y < a│Y = y} fY(y) dy 

      = 




P{X + y < a│Y = y} fY(y) dy 

      = 




P{X < a B y│Y = y} fY(y) dy 

      = 




P{X < a B y} fY(y) dy   by independence 

      =  















 ya

X dx (x)f   fY(y) dy 

      = 




FX(a B y) fY(y) dy 

If X and Y are not independent 

  P{X + Y < a} = 




P{X < a B y│Y = y} fY(y) dy 

      =  






 









 ya

Y|X dx y)|(xf   fY(y) dy 

      = 




FX│Y (a B y│y) FY(y) dy
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Computing expectations by conditioning 

Sometimes it is easier to compute the expectation of a random variable by conditioning it on 

another.  Let E[X│Y] be the function of a random variable X, whose value at Y = y is E[X│Y = 

y].  Note that E[X│Y] is itself a random variable. 

Then, 

  E[X] = EY[E[X│Y]] 

Thus, for a discrete random variable 

  E[X] = 
0 > p(x) :x 

E[X│Y = y] P(Y = y) 

and for a continuous random variable 

  E[X] = 




E[X│Y = y] fY(y) dy 

Proof:  For X and Y continuous, 

 




E[X│Y = y] fY(y) dy = 









x fX│Y(x│y) fY(y) dx dy 

        =  
















dy y)f(x,  x dx 

        = 




x fX(x) dx 

        = E[X] 

Animal Breeding example (continued) 

The variance of the genetic values of chromosomes from bull B, var(X), is: 

  var(X)  = E[X2] − (E[X])2 

  E[X2]  = 


n

1i

x2 p(xi) 
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     = (10)2 (0.2) + (20)2 (0.5) + (30)2 (0.3) 

     = 490 

and 

  E[X]  = 21 

  var(X)  = 490 B (21)2 

     = 490 B 441 

     = 49 

Similarly, the variance of the genetic values of chromosomes from cow C, var(Y), is: 

  E[Y2]  = (10) 2 (0.3) + (20) 2 (0.5) + (30) 2 (0.2) 

     = 410 

and 

  E[Y]  = 19 

    var(Y)  = 410 B (19)2 

     = 410 B 361  

     = 49 

The cov(X,Y) is: 

  cov(X,Y) = E[XY] B E[X]E[Y] 

  E[XY]  = 
 

3

1i

3

1j

xi yj p(xi, yj) 

     = (10)(10)(0.06) + (10)(20)(0.15) + (10)(30)(0.09) 

      + (20)(10)(0.10) + (20)(20)(0.25) + (20)(30)(0.15) 

      + (30)(10)(0.04) + (30)(20)(0.10) + (30)(30)(0.06) 



 [7-11] 
 

     = 399 

   cov(X,Y)  = 399 B (21)(19) 

     = 399 B 399 

     = 0   as expected because of the independence of X and Y 

The var(X + Y) is: 

 var(X + Y)  = var(X) + var(Y) + 2 cov(X, Y) 

     =  49 + 49 + 2(0) 

     = 98 

and the var(X B Y) is: 

      var(X B Y) = 49 + 49 B 2(0)  

     = 98 

     =  var(X + Y)  because X and Y are independent 

The E[X│Y = y] for y = 10, 20, 30, are computed using the formula: 

  E[X│Y = y] = 


3

1i

xi pX│Y(xi│y) 

The conditional probability mass function of X│Y is: 

xi pX│Y(x│10) pX│Y (x│20) pX│Y (x│30) 

10 (0.06/0.3) = 0.2 (0.10/0.5) = 0.2 (0.04/0.2) = 0.2 

20 (0.15/0.3) = 0.5 (0.25/.05) = 0.5 (0.10/0.2) = 0.5 

30 (0.09/0.3) = 0.3 (0.15/0.5) = 0.3 (0.06/0.2) = 0.3 

 

  E[X│Y = 10] = (10)(0.2) + (20)(0.5) + (30)(0.3) 
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      = 21 

      = E[X│Y = 20] 

      = E[X│Y = 30] 

      = E[X]   because X does not depend on Y 

Similarly, 

  E[Y│X = 10] = E[Y│X = 20]  

      = E[Y│X = 30] 

      = E[Y] 

      = 19 

  Var(X│Y = 10) = E[(X│Y B E[X│Y])2] 

       = E[(X│Y)2] B (E[X│Y])2  

For instance, the var(X│Y = 10) is: 

  var(X│Y = 10) = E[(X│Y = 10)2] B (E[X│y = 10])2 

       = 


3

1i

x2 pX│Y(x│10) B (E[X│y = 10)2 

       = [(10)2 (0.2) + (20)2 (0.5) + (30)2 (0.3)] B (21)2 

       = 490 B 441 

       = 49 

       = var(X)   because X is independent of Y 

The E[X] computed as EY[E[X│Y]] is: 

  E[X] = 


3

1j

E[X│yj] pY(yj) 

    =  
 








3

1j

3

1i

jiY|Xi )y|(xpx pY(yj) 
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    = [(10)(0.2) + (20)(0.5) + (30)(0.3)](0.3) 

     + [(10)(0.2) + (20)(0.5) + (30)(0.3)](0.5) 

     + [(10)(0.2) + (20)(0.5) + (30)(0.3)](0.2) 

    = [21](0.3) + [21](0.5) + [21](0.2) 

    = [21][0.3 + 0.5 + 0.2] 

    = 21 

The P(X = 10) computed as P(X = 10│Y = y) is: 

  P(X = 10) = )(yp 10)(xp jY

3

1j

Y|X


  

     = (0.06/0.3)(0.3) + (0.10/0.5)(0.5) + (0.04/0.2)(0.2) 

     = 0.06 + 0.10 + 0.04 

     = 0.20 

Expectation and covariances of random vectors 

1) The expectation of a random vector xn×1 is defined to be the vector of expectations of its 

elements, i.e., E[each random variable in x], 

  E[x] = μ    

]E[x

]E[x

]E[x

    

x

x

x

E

n

2

1

n

2

1










































 

2) Let x be a random vector with E[x] = μ.  Then, the covariance matrix of vector x is V, and it 

is defined as:  

  V = ])μμ)(xE[(x   
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  V =  















































)μ(x)μ(x)μ(x

)μ(x

)μ(x

)μ(x

E nn2211

nn

22

11




 

  V = 

   

    



















2

nn11nn

nn11

2

11

)μ(xE)μ)(xμ(xE

)μ)(xμ(xE)μ(xE







 

  V = 



















nnn2n1

2n2221

1n1211

σσσ

σσσ

σσσ









 

Animal Breeding example (continued) 

Let  


















2

1

x

x
    

Y

X
  x   

(a) E[x] = 
 
 

 
  




































2

1

2

1

μ

μ
    

19

21
    

xE

xE
    

YE

XE
  

(b)     V = 
   

    











2

221122

2211

2

11

)μ(xE)μ)(xμ(xE

)μ)(xμ(xE)μ(xE
 

     V = 








2221

1211

σσ

σσ
 

     V = 








490

049
 

(c) E[x1│x2]  = 
0 > )p(x : x

21X|X1

11

21
)x|(xp     x   for the discrete case 

 E[x1│x2] = 121X|X1 dx )x|(xf  x
21





  for the continuous case 

 E[x1│x2 = 20]  = (10)(0.2) + (20)(0.5) + (30)(0.3) = 21 
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(d) var(x1│x2 = 20) = {[(10)2 (0.2) + (20)2 (0.5) + (30)2 (0.3)] B (21)2} 

      = 490 B 441 

      = 49 

3) Let x be an n × 1 random vector, i.e., x  = [x1, x2, ... , xn], where the {xi} are the realized 

values of the set of random variables {Xi}, then the cumulative distribution function (c.d.f.) of 

the random vector x is the joint c.d.f. 

 P{X1 ≤ x1, X2 ≤ x2, ... , Xn ≤ xn} = F(x1, x2, ... , xn)  

          =  
 

n1 2 xx x

    f(x1, x2, ... , xn) dx1, dx2, ... , dxn 

where 

  f(x1, x2, ... , xn)= 
n21

n

x  x x 




F(x1, x2, ... , xn)  

and 

  f(x1, x2, ... , xn)≥ 0 for  B ∞ ≤  xi  ≤  ∞  and for all i 

   












    f(x1, x2, ... , xn) dx1, dx2, ... , dxn = 1 

The marginal density function of the last (n-k) x's is f(x1, x2, ... , xn) after integrating out the 

first k x's, i.e., the marginal of  xk+1, xk+2, ... , xn  is: 

  g(xk+1, xk+2, ... , xn) = 








   f(x1, ... , xk, xk+1, ... , xn) dx1 ... dxk 

The conditional distribution of the first k x's given that last (n-k) x's is the ratio of  

  f(x1, ... , xk │ xk+1, ... , xn) = 
)x,    ,x,g(x

)x,    ,x,f(x

n2k1k

n21







 

The expected value of xi
m, i.e., E[xi

m], is 
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  E[xi
m] = xi

m f(x1, x2, ... , xn) dx1, dx2, ... , dxn 

If  m = 1, then E[Xi] = μi . 

The covariance between variables i and j, i.e.,  σij = E[(xi B μi)(xj B μj)]  is: 

  σij =  












    (xi B μi)(xj B μj) f(x1, x2, ... , xn) dx1, dx2, ... , dxn 

Similar expressions for E[xi
m │xk+1, ... , xn] and E[(xi B μi)(xj B μj) │xk+1, ... , xn] can be 

written using f(x1, ... , xk │ xk+1, ... , xn) instead of f(x1, x2, ... , xn) in the two previous 

formulae.  

Expectations and covariances of normal random variables and vectors 

A) Let X be a normal random variable.  Then, X is normally distributed with parameters μ and 

σ2. 

Proof (Ross, 1976): 

 The density function of normal variable X is given by: 

  f(x)= 
22 /2σμ)(xe

σ2π

1    B ∞ <  x  <  ∞ 

The expectation of X is: 

  E[X] = 




 dxe x 
σ2π

1 22 /2σμ)(x  

Replacing x by [(x B μ) + μ]  and letting y = (x B μ), 

  E[X] = 










  dxeμ  
σ2π

1
    dyey  

σ2π

1 2222 /2σμ)(x/2σ(y)  

  E[X] = 








  dx f(x) μ    dyey  
σ2π

1 22 /2σ(y)  
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where f(x) is the normal density.  The first integral is zero by symmetry, and the second integral 

is equal to μ(1).  Thus,  

  E[X] = 0  +  μ(1) 

  E[X] = μ 

The variance of X is: 

  E[(X B μ)2] = 




 dxe μ)(x 
σ2π

1 22 /2σμ)(x2  

Letting y = (x B μ)/σ yields: 

  E[(X B μ)2] = 




 dy e y  
2π

σ /2y2
2

2

 

      = 







 










 dy e ey  
2π

σ /2y/2y
2

22

  by integration by parts 

      = 




 dy e  
2π

1
 σ /2y2 2

 

      = σ2 

B) Let Z = (X B μ)/σ.  Then, Z is a standard normal random variable with μ = 0 and σ2 = 1, 

and its density function is: 

  f(Z) = /2z2

e 
2π

1
    B ∞ <  x  <  ∞ 

The c.d.f. of Z is: 

  Φ(Z) = 




x

/2z dz e  
2π

1
 

2

 

and 

  Φ(BZ) = 1  B  Φ(Z)   B ∞ <  x  <  ∞ 
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Remark: 

  FZ(a) = 






 




σ

μa

σ

μx
P  

    = 






 

σ

μa
Φ  

C) Multivariate normal random variables 

(c1)  The random vector x  = [x1, x2, ... , xn] has a multivariate normal distribution with vector of 

means æ and covariance matrix V, i.e., x ~ MVN (μ, V), if its density function is: 

  f(x1, x2, ... , xn)= 

  ½
2

n

μ)(xV )μ(x ½

V 2π

e
1  

   

where matrix V is positive definite. 

Let    

  x = 








2

1

x

x
 

  x1′ = [x1  …  xk] 

  x2′ = [xk+1  …  xn] 

Then, 

  μ = 








2

1

μ

μ
 

and   

  V = 









2212

1211

VV

VV
 

(c2)  The marginal density function of x1 is: 

  g(x1) = g(x1, ... , xk) 
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    = 
 

 
½

11
2

k

11

1

1111

V 2π

)μ(xV )μ(x ½exp  

 

and the marginal density function of x2 is: 

  g(x2) = g(xk+1, ... , xn) 

    = 
 

 
½

22
2

kn

22

1

2222

V 2π

)μ(xV )μ(x ½exp


 
 

Note that the marginal densities of the multivariate normal distribution are themselves 

multivariate normal. 

(c3)  The conditional density function of x1 given x2 is: 

  f(x1│x2) = 
)g(x

f(x)

2

 

     = 
 

   ½22
2

k

22

1

2222

1

V / V 2π

)]μ(xV )μ(x    μ)(xV )μ[(x ½ exp  

 

In terms of partitioned matrices, VB1 is equal to: 

  VB1  = 















1

22121112

1

22

1

221112

1

22

1

22121111

VVWVVVWVV

VVWW
 

where 

  W11 = (V11 B V12V22
B1V12′ )B

1  

Then, the exponent in f(x1│x2) becomes: 

)μ(xV )μ(x  
)μ(x

)μ(x
 

VVWVVVWVV

VVWW
 ])μ(x   )μ[(x 22

1

2222

22

11

1

22121112

1

22

1

221112

1

22

1

22121111

2211 























 





 

and simplifies to: 

    






















 

 )μ(x

)μ(x
  VVI    W

VV

I
  ])μ(x     )μ[(x

22

111

221211

12

1

22

2211  
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which is equal to: 

  )]μ(xVV    )μ[(x    W])μ(xVV    )μ[(x 22

1

2212111122

1

221211    

By the Laplace expansion of a determinant (Searle, 1966, pg. 74-76 and 95-96) 

  │V│ = 
2212

1211

VV

VV


 

  │V│ = 
IVV

0I
  

VV

VV

12

1

222212

1211

 
 

  │V│ =  
IVV

0I
 

VV

VV
 

12

1

222212

1211




















 
 

  │V│ = 12

1

22121122 VVVV V    

  │V│ = 1

1122 W V   

  

22V

V
 = 1

11W   

Thus, 

  f(x1│x2) = 
 

 
½

1

11
2

k

22

1

2212111122

1

221211

W 2π

 )]μ(xVV  )μ[(x  W])μ(xVV  )μ[(x  exp



 
  

 The conditional distribution is also multivariate normal, i.e., 

  x1│x2 ~ MVN [μ1 + V12V22
B1 (x2 B μ2),  W11

B1] 

or, 

  x1│x2 ~ MVN [μ1 + V12V22
B1  (x2 B μ2),  V11 B V12V22

B1V12′] 

 

References 



 [7-21] 
 

Ross, S. 1976.  A First Course in Probability.  Macmillan Publishing Co., Inc., NY. 

Searle, S. R. 1971.  Linear Models.  John Wiley and Sons, Inc., NY. 

 


