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ANIMAL BREEDING NOTES
CHAPTER 7
EXPECTATION, VARIANCES, AND COVARIANCES OF RANDOM VARIABLES

AND RANDOM VECTORS

Expected value of a random variable
Discrete random variable: the expected value of a discrete random variable X, whose probability

mass function is p(x), is denoted by E[X] and given by

EXI = 2 xp(®) = u

X:p(x)>0
i.e., the expected value of X is a weighted average of the possible values that X can have, each
value being weighted by the probability that X assumes it.
Continuous random variable: if X is a continuous random variable having a probability density
function f(x), then because f(x) dx = P{x < X < x + dx} for dx small, it is reasonable to define E[X]

as follows:
EX] = [xF)dx =

Animal Breeding example (continued)
The expected value of X, i.e., the weighted average genetic value of the chromosomes of bull B is:

E[X]

10 (0.2) + 20(0.5) + 30(0.3)
= 21

Similarly, E[Y], the weighted average genetic value of the chromosomes for cow C, is:

E[Y] 10(0.3) + 20(0.5) + 30(0.2)

= 19
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Expected value of a function of a random variable
Let X be a discrete random variable with probability mass function p(x). Then, the expectation of

a function g of Xis:

E[gX)] = > 9® p®X

x:p(x) >0
Let X be a continuous random variable with probability density function f(x). Then, the

expectation of a function g of X is:

ElOOO] = | 009 09 dx

—00

Example:

The expected value of g(X) = X", n > 1, the n™ moment of X, is:

EIXT = > x"p( if X is discrete
x:p(x) > 0
E[X" = I x" f(X) dx if X is continuous

—00

The expected value of the linear function aX + b with respect to X, where a and b are constants,
is:

E[aX + b]

aE[X] +Db
Proof:

1) Discrete case:

E[aX + b]

Y. (@x+b)p()

xX:p(x) >0

= a > xp@+b > pK

x:p(x) >0 X:p(x) >0
= aE[X] + b(1)

= aE[X] + b
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2) Continuous case:

E[aX + b] T (ax + b) f(x) dx

= a T xf(X) dx+b T f(X) dx

= aE[X] + b(2)

aE[X] + b
The expected value of (X-E[X])? is the variance of X, i.e., var(X), where X has density f(x). The

var(X) is equal to:

var(X) = E[(X-E[X]]
= E[X7 - (EIX])?

Proof:
var(X) = E[(X-E[X]]

= E[X?-2XE[X] + (E[X])]

= T x% f(x) dx - 2E[X] T x f(x) dx + (E[X]ZT f(x) dx

—00

= E[X?] - 2(E[X])? + (E[X])?

E[X] - (E[X])?
The variance of the linear function aX + b, where a and b are constants, is:

var(aX + b)

a? var(X)
Proof:

var(ax + b)

E[(aX + b - (aE[X] + b))]

E[(aX - aE[X])’]

E[a*(X - E[X])’]
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= a’var(X)
Expected value of a sum of random variables: consider two random variables, X and Y. By the

expectation of a function of a random variable,

E[X +Y]

[ ] 6ty ex,y) dxdy

—00 —0

= TT x f(x, y) dx dy + TT y f(x, y) dx dy

—00 —00 —00 —00

= ] xheodk+ | yhy)ay

= E[X]+E[Y]
Thus,

n

E{gxi} = > E[X]

=
If X and Y are independent, then the expectation of the product of (any) functions g(X) and
h(Y) is:

E[9(X) h(Y)] = E[9(X)] E[h(Y)]
Proof:

Suppose that X and Y are jointly continuous with density f(x, y). Then,

E[gOOhM] = [ [ 9(x) hey) f(x, y) dx dy

—00 —00

= [ ] 909 n) 00 ) ox oy

—00 —00

o0 o0

= [ 90 fx)dx [ h(y)f(y) dy

—00 —00

= E[g(X)] E[h(Y)]
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The covariance of two random variables X and Y, i.e., cov(X, Y), is defined by:

cov(X,Y)

E[(X - EIX])(Y - E[Y])]

E[XY] - X E[Y] - E[X] Y + E[X] E[Y]]

E[XY] - E[X] E[Y] - E[X] E[Y] + E[X] E[Y]

E[XY] - E[X] E[Y]
Remark: If X and Y are independent, then cov(X,Y) = 0. The converse is not true.

The variance of a sum of random variables, X1 + Xo + ... + Xp, is equal to:

var(ixij = Zn:var(xi) + Zzn:zn:cov(xi,xj)

i=1 i=1
Proof:

Consider two random variables, X and Y,

var(X +Y) E[(X+Y -E[X +Y])]

E[((X - E[X]) + (Y - E[YD))]

E[(X - E[X])’] + E[(X - E[X])(Y - E[Y])]

+E[(Y - E[YD(X - EIXD] + E[(Y - E[Y])7]

var(X) + 2 cov(X, Y) + var(Y)
By induction we get the result above.
Also, note that:

var(X-Y) = var(X)-2cov(X,Y) +var(Y)

Conditional expectation

The conditional expectation of X given Y =y is:

EIX|Y=y] = > xP{X=x|Y=y}

x:p(x)>0
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D xpx|y (x]y) for all y such that py (y) > 0,

x:p(x)>0
for the discrete case

and

E[X[Y=y]

j x f(x | y)f(x|y)dx  provided that fy (y) > 0,

for the continuous case

The conditional expectation of g(X) given Y =y is:

E[9(X) |[Y=yl = D a(X)px|v(x|y) forthe discrete case
x:p(x)>0
and
E[g(X) |[Y=y] = j g(x) fx|v(x|y) dx for the continuous case

Remark: the conditional expectation of a sum of random variables is equal to the sum of

the conditional expectations of the individual random variables, i.e.,

ELZ:Xi = y} = Zn:E[Xi Y =y]

i=1
Computing probabilities by conditioning

Let E be an arbitrary event and define an indicator random variable X by

1 if E occurs
X =
0 if E does not occur
Then,
E[X] = ()*P(X=E) + (0)*P(X £E)

P(E)
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E[X|Y=y] PIX=E|Y=y}+P{X£E|Y =V}

P{E|Y =y}

Using the formulae for computation of expectations by conditioning above we get:

P(E)

> P{E|Y=y}P{Y =y} ifYisdiscrete

x:p(x)>0

and

j P{E | Y =y} fy(y) dy if Y is continuous

—0

P(E)

Example 1: Let X and Y be independent random variables with densities fx(x) and fy(y).

Compute P{X < Y}.

0

[ PX<Y[Y=y)fr(y) dy

—00

P{X <Y}

0

| PX<y|Y=y)fuy) dy

—00

I P(X <y) fv(y) dy by independence

-0

] {J 09 dx} fo () dy

—o0 | —o0

0

[ Fx(y) fr(y) dy

—00

Remark: If Xand Y are not independent, then

[ee]

| PX<y|Y=y)fuy) dy

-0

P{X <Y}

—00 —00

T U v (X y)dX} fv(y) dy
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= j Fx|v(x | y) fy(y) dy

Example 2: Let X and Y be independent random variables. Find the distribution of X + Y, i.e.,

find P{X + Y <a}. Condition XonY.

o0

I P{X+Y <al|Y =y} fy(y) dy

—00

P{X +Y <a}

= | P{X+y<a|Y=y}v(y)dy

P{X<a-y|Y=y}fv(y) dy

1
§ ——8

= [ P{X<a-y}fv(y) dy by independence

T D‘y fy (%) dx} fv(y) dy

—00 —00

0

[ Fx@-y) fv(y) dy

—00

If X and Y are not independent

0

| P{X<a-y|Y=y}f(y) dy

—00

P{X+Y <a}

]2 l:aj‘yfxw (x| Y)dx} fy(y) dy

—00 —00

I Fx|v(a-y|y) Fv(y) dy
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Computing expectations by conditioning
Sometimes it is easier to compute the expectation of a random variable by conditioning it on
another. Let E[X| Y] be the function of a random variable X, whose value at Y =y is E[X|Y =
y]. Note that E[X| Y] is itself a random variable.
Then,

E[X] = Ev[E[X]|Y]]

Thus, for a discrete random variable

E[X] = > EIX|Y=yIP(Y=y)

x:p(x)>0

and for a continuous random variable

[ee]

EX] = [ EIX|Y=ylfv(y)dy

—00

Proof: For X and Y continuous,

o0

[ EIX|Y =] fv(y) dy [ xfxiv(x]y) fv(y) dx dy

11
§——8

X { T (X, y)dy} dx

= Txfx(x)dx

= EIX]
Animal Breeding example (continued)
The variance of the genetic values of chromosomes from bull B, var(X), is:

var(X) E[X?] - (E[X])?

E[X%]

X2 p(i)

n
i=1



and

E[X]

= var(X)
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(10)2 (0.2) + (20)? (0.5) + (30)2 (0.3)

490

21

490 - (212

490 - 441

49

Similarly, the variance of the genetic values of chromosomes from cow C, var(Y), is:

E[Y?]
and

E[Y]
= var(Y)

The cov(X,Y) is:

cov(X,Y)

E[XY]

(10)? (0.3) + (20) 2 (0.5) + (30) 2 (0.2)

410

19
410 - (19)2

410 - 361

49

E[XY] - E[X]E[Y]

ZZ Xi Yi P(Xi, i)

(10)(10)(0.06) + (10)(20)(0.15) + (10)(30)(0.09)
+ (20)(10)(0.10) + (20)(20)(0.25) + (20)(30)(0.15)

+ (30)(10)(0.04) + (30)(20)(0.10) + (30)(30)(0.06)



cov(X,Y)

The var(X +Y) is:

var(X +Y)

and the var(X - Y) is:

var(X -Y)

399
399 - (21)(19)

399 - 399
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0 as expected because of the independence of X and Y

var(X) + var(Y) + 2 cov(X, Y)

49 + 49 + 2(0)

98

49 + 49 - 2(0)

98

var(X+Y)  because X and Y are independent

The E[X|Y =y] fory = 10, 20, 30, are computed using the formula:

EIX[Y=y] = 2 xipxjv(xi|y)

3
i=1

The conditional probability mass function of X| Y is:

Xi px|v(X | 10) px|v (x| 20) px|v (x| 30)

10 (0.06/0.3) = 0.2 (0.10/0.5) = 0.2 (0.04/0.2) = 0.2
20 (0.15/0.3) = 0.5 (0.25/.05) = 0.5 (0.10/0.2) = 0.5
30 (0.09/0.3) = 0.3 (0.15/0.5) = 0.3 (0.06/0.2) = 0.3

E[X|Y=10] =

(10)(0.2) + (20)(0.5) + (30)(0.3)
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= 21
= E[X]|Y=20]
= E[X|Y =30]
= E[X] because X does not depend on Y
Similarly,
E[Y|X=10] = E[Y|X=20]
= E[Y|X=30]
= E[Y]
= 19
Var(X|Y =10) = E[(X]|Y -E[X]|Y])T
= E[(X|Y)] - (E[X] Y]
For instance, the var(X|Y = 10) is:

var(X |Y =10)

E[(X]Y =10)*] - (E[X |y = 10])’

X2 px|v(x | 10) - (E[X |y = 10)?

3
i=1

[(10)? (0.2) + (20)2 (0.5) + (30)? (0.3)] - (21)2

490 - 441

= 49

var(X) because X is independent of Y
The E[X] computed as Ev[E[X | Y]] is:
3

>, EIX|yilpv(y)

=

E[X]

Z{zxipw (X | yj)} pv(Yi)

j=1 [i=1
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= [(10)(0.2) + (20)(0.5) + (30)(0.3)](0.3)
+[(10)(0.2) + (20)(0.5) + (30)(0.3)](0.5)
+[(10)(0.2) + (20)(0.5) + (30)(0.3)](0.2)

= [21](0.3) + [21](0.5) + [21](0.2)

= [21][0.3+0.5+0.2]

= 2

The P(X = 10) computed as P(X = 10| Y =y) is:

P(X =10) Z Pxiy (x=10) pY(yj)

(0.06/0.3)(0.3) + (0.10/0.5)(0.5) + (0.04/0.2)(0.2)

0.06 + 0.10 + 0.04

= 0.20
Expectation and covariances of random vectors
1) The expectation of a random vector xnx1 is defined to be the vector of expectations of its

elements, i.e., E[each random variable in x],

X, E[x,]
Elx] = £ | = E[>:<2]Eu
X, E[x,]

2) Let x be a random vector with E[x] = p. Then, the covariance matrix of vector x is V, and it

is defined as:

V = E[X-px-wT]
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(X, — 1)

E (XZTMZ) [(Xl_ul) (X, =) - (Xn_l'tn)]
(Xn_un)

| E[(Xl _“1)2] E[(Xl _”1)(Xn _un)]

(GRS

[0y O, O

Ga1 Oz ' Opy

[Ont Onz """ Opp

Animal Breeding example (continued)

o

(@) Elx] =
b V =
vV =
vV =

(c) E[x1|x2]

E[Xx1 | X2] =

EsiRESIRNEN
Elo —w)?]  Elx —m)(x, - uz)]}
E[(x, ~ 1) —m)] E[ox, —11)?)

49 0

|0 49

= Z Xy Pyyx, (X1 [X3) for the discrete case
X;:p(a) >0
j Xy Frx, (%0 [ X5) dx, for the continuous case

—00

E[xi[x2=20] = (10)(0.2) + (20)(0.5) + (30)(0.3) = 21
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(d) var(x1 | x2 = 20)

{[(10)? (0.2) + (20)? (0.5) + (30)? (0.3)] - (21)*}

= 490 - 441

= 49
3) Letx beann x 1random vector, i.e., X = [X1, X2, ... , Xn], Where the {xi} are the realized
values of the set of random variables {Xi}, then the cumulative distribution function (c.d.f.) of
the random vector x is the joint c.d.f.

F(Xla X21 ey Xn)

P{X1<X1, X2<X2, ... , Xn < Xn}

Xy Xp

I IXJ' f(x1, X2, ..., Xn) dX1, dX2, ..., dXn

—00 —00

where

an
f(X1, X2, ..., Xn)= F(x1, X2, ..., X
O, X2 ) OX; OX, -++ OX O, X2 )

and

f(X1, X2, ... , Xn)> 0 for —o0< Xj < oo and for all i
I j J' f(X1, X2, ..., Xn) OXg, dX2, ..., dXn = 1

—00 —00

The marginal density function of the last (n-k) x's is f(x1, X2, ... , Xn) after integrating out the

first k x's, i.e., the marginal of X+1, Xk+2, ..., Xn IS:

0 o0

g(Xk+1, Xk+2, oo y Xn) = I I f(X1, v ) Xky Xkt1, +e y Xn) AX1 ... dXk

The conditional distribution of the first k x's given that last (n-k) x's is the ratio of

(X, X0 -+ 1 X0)
g(Xk+1’Xk+2’ 'Xn)

(X1, ooy Xk | Xkt1, ooy Xn) =

The expected value of xi™, i.e., E[xi™], is
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EXi™ = xi™f(Xy, X2, ..., Xn) dX1, dXo, ..., dXn
If m=1,then E[Xi] = pi.

The covariance between variables i and j, i.e., oij = E[(Xi - wi)(Xj - ;)] is:
oij = [ [ (=)0 ) e, Xa, .o, Xo) dxa, Az, ..., Ao

Similar expressions for E[Xi™ | Xk+1, ... , Xn] and E[(Xi = pi)(Xj = pj) | Xk+1, ..., Xn] can be

written using f(xa, ..., Xk | Xk+1, ..., Xn) instead of f(xa, Xz, ..., Xn) in the two previous

formulae.

Expectations and covariances of normal random variables and vectors

A) Let X be a normal random variable. Then, X is normally distributed with parameters p and
2

o".

Proof (Ross, 1976):

The density function of normal variable X is given by:

1
f(x)= = glwihe -0< X < ©

Jeno

The expectation of X is:

1
Jeno

E[X] '[ X @ % W2" gy

Replacing x by [(x - ) + u] and lettingy = (X - ),

1 < 20 2 1 % 210 2
E[X] = e W dy + g KW gy
[X] 2no J;O Y Y \2no '[o :
1 0 g 0
E[X] = N f ye V% dy + uj f(x) dx
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where f(x) is the normal density. The first integral is zero by symmetry, and the second integral
is equal to p(1). Thus,

E[X] = 0+ wl)

E[X] = n

The variance of X is:
EIOC- 07 = o [ (e e
Vono °.

Letting y = (x — u)/c yields:

2
(¢}

E[(X - p)’] T

T yz e—y2/2 dy

2 o0 2 2

_ \/02_ {—y o YP + I gV dy} by integration by parts
s — o0

_ o2 1

B A

= 62

B) Let Z = (X - p)/o. Then, Z is a standard normal random variable with p = 0 and ¢ = 1,

and its density function is:

1 2
f(Z = _— gl —0< X < ®
(2) N
The c.d.f. of Z is:
D(Z) L j e dz
Jom J,

and

D(-2) = 1 - OZ) —w< X < w
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Remark:

Fz(a)

11
B
f—/;_‘\
X
a ||l
-
IN
@
all
-
%/_J

2)

(¢

C) Multivariate normal random variables

(c1l) The random vector X = [X1, X2, ... , Xn] has a multivariate normal distribution with vector of

means & and covariance matrix V, i.e., X ~ MVN (y, V), if its density function is:

Ve (x—p)' V! (x—p)
_ e
f(X1, X2, ... , Xn)= y

(2n)z |V

where matrix V is positive definite.

Let
X
X2
X1 = [X1 XK]
X2 = [Xk+1 ... Xn]
Then,
_ {Hl}
H —_
U,
and

VvV = |:Vl’1 V12:|
V12 V22

(c2) The marginal density function of xu is:

g(x1) = (X, ..., XK)
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EXP [_1/2 (X, — )’ \/1711 (X, — Hl)]
k ¥
(2n)2 |V

and the marginal density function of x2 is:

g(Xk+1, «v y Xn)

g(x2)

EXP [_1/2 (X, —1,)' V2_21(X2 _”2)]
n-k .
(2n)2 |V,[*

Note that the marginal densities of the multivariate normal distribution are themselves
multivariate normal.

(c3) The conditional density function of x1 given x: is:

10

f(x1 | x2) 00)

exp {6 [(X—1)' V(X —1) — (X, —p1,)' Vot (%, —11,)]}
(2n)e (V] /[Vy])’

In terms of partitioned matrices, V-1 is equal to:

V_l — [ W11 _W11V12V£21 }
Vo VW Vo, + Vo, VWL VLY,
where
Wi = (Vi1 - ViV iV )t

Then, the exponent in f(x1 | x2) becomes:

(X =) (X, — uz)]{ Wi =W, Vi, Vo, M(X 1)

_ ' _ _ , . _ (X _u )Iv—l(x —M )
V221V12W11 V221 + V221V12W11V12V221 ( - HZ):| 2 2 22 2 2

and simplifies to:

[0 -m) uz)]{ V} L - ][(X - )J
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which is equal to:
[(X,—ny) = \/12V2_21(X2 —)l Wy [(X—1y) — Vlzvz_zl(xz —1,)]

By the Laplace expansion of a determinant (Searle, 1966, pg. 74-76 and 95-96)

V., V.
V| = V1,1 V12
12 Vo
V,, V, I 0
V= v v |‘
12 Va2 22 V12
V= e ] O
Vip Vo[ -VoVi, |
| \ | = |V22| ‘Vll _V12V2_21V1,2
= M |V22|‘W111‘
S
V|
Thus,
fixa|x2) = exp {[(X1 — 1) = VipViop (X5 = 1)1 Wy [(X, = 1y) = Vi Vi, (X5 —11y)] }

Yo

(2n)§ \W;ll

= The conditional distribution is also multivariate normal, i.e.,

X1 | X2 ~ MVN [ + V12Vt (x2 - p2), W]
or,

X1|X2 ~ MVN [+ V12Vt (X2 - n2), Vi1 - V12V2-1Vio']
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