ANIMAL BREEDING NOTES

CHAPTER 7

EXPECTATION, VARIANCES, AND COVARIANCES OF RANDOM VARIABLES AND RANDOM VECTORS

Expected value of a random variable

Discrete random variable: the expected value of a discrete random variable X , whose probability mass function is $\mathrm{p}(\mathrm{x})$, is denoted by $\mathrm{E}[\mathrm{X}]$ and given by

$$
E[X]=\sum_{x: p(x)>0} x p(x) \equiv \mu
$$

i.e., the expected value of X is a weighted average of the possible values that X can have, each value being weighted by the probability that X assumes it.

Continuous random variable: if X is a continuous random variable having a probability density function $f(x)$, then because $f(x) d x \approx P\{x \leq X \leq x+d x\}$ for $d x$ small, it is reasonable to define $E[X]$ as follows:

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x \equiv \mu
$$

Animal Breeding example (continued)

The expected value of X , i.e., the weighted average genetic value of the chromosomes of bull B is:

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] & =10(0.2)+20(0.5)+30(0.3) \\
& =21
\end{aligned}
$$

Similarly, $\mathrm{E}[\mathrm{Y}]$, the weighted average genetic value of the chromosomes for cow C , is:

$$
\begin{aligned}
\mathrm{E}[\mathrm{Y}] & =10(0.3)+20(0.5)+30(0.2) \\
& =19
\end{aligned}
$$

Expected value of a function of a random variable

Let X be a discrete random variable with probability mass function $\mathrm{p}(\mathrm{x})$. Then, the expectation of a function g of X is:

$$
\mathrm{E}[\mathrm{~g}(\mathrm{X})]=\sum_{\mathrm{x}: \mathrm{p}(\mathrm{x})>0} \mathrm{~g}(\mathrm{x}) \mathrm{p}(\mathrm{x})
$$

Let X be a continuous random variable with probability density function $f(x)$. Then, the expectation of a function g of X is:

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f(x) d x
$$

Example:

The expected value of $g(X)=X^{n}, n \geq 1$, the $n^{\text {th }}$ moment of X, is:

$$
\begin{array}{ll}
E\left[X^{n}\right]=\sum_{x: p(x)>0} x^{n} p(x) & \text { if } X \text { is discrete } \\
E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f(x) d x & \text { if } X \text { is continuous }
\end{array}
$$

The expected value of the linear function $\mathbf{a X}+\mathbf{b}$ with respect to \mathbf{X}, where a and b are constants, is:

$$
\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{aE}[\mathrm{X}]+\mathrm{b}
$$

Proof:

1) Discrete case:

$$
\begin{aligned}
\mathrm{E}[\mathrm{aX}+\mathrm{b}] & =\sum_{\mathrm{x}: \mathrm{p}(\mathrm{x})>0}(\mathrm{ax}+\mathrm{b}) \mathrm{p}(\mathrm{x}) \\
& =\mathrm{a} \sum_{\mathrm{x}: \mathrm{p}(\mathrm{x})>0} \mathrm{xp}(\mathrm{x})+\mathrm{b} \sum_{\mathrm{x}: \mathrm{p}(\mathrm{x})>0} \mathrm{p}(\mathrm{x}) \\
& =a E[X]+b(1) \\
& =a E[X]+b
\end{aligned}
$$

2) Continuous case:

$$
\begin{aligned}
\mathrm{E}[\mathrm{aX}+\mathrm{b}] & =\int_{-\infty}^{\infty}(\mathrm{ax}+\mathrm{b}) f(\mathrm{x}) \mathrm{dx} \\
& =a \int_{-\infty}^{\infty} x f(x) d x+b \int_{-\infty}^{\infty} f(x) d x \\
& =a E[X]+b(1) \\
& =a E[X]+b
\end{aligned}
$$

The expected value of $(\mathbf{X}-\mathbf{E}[\mathbf{X}])^{2}$ is the variance of \mathbf{X}, i.e., $\operatorname{var}(\mathbf{X})$, where X has density $f(x)$. The $\operatorname{var}(\mathbf{X})$ is equal to:

$$
\begin{aligned}
\operatorname{var}(\mathrm{X}) & =\mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right] \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
\operatorname{var}(X) & =E\left[(X-E[X])^{2}\right] \\
& =E\left[X^{2}-2 X E[X]+(E[X])^{2}\right] \\
& =\int_{-\infty}^{\infty} x^{2} f(x) d x-2 E[X] \int_{-\infty}^{\infty} x f(x) d x+\left(E[X]^{2} \int_{-\infty}^{\infty} f(x) d x\right. \\
& =E\left[X^{2}\right]-2(E[X])^{2}+(E[X])^{2} \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

The variance of the linear function $\mathbf{a X}+\mathbf{b}$, where a and b are constants, is:

$$
\operatorname{var}(\mathrm{aX}+\mathrm{b})=\mathrm{a}^{2} \operatorname{var}(\mathrm{X})
$$

Proof:

$$
\begin{aligned}
\operatorname{var}(\mathrm{aX}+\mathrm{b}) & =\mathrm{E}\left[(\mathrm{aX}+\mathrm{b}-(\mathrm{aE}[\mathrm{X}]+\mathrm{b}))^{2}\right] \\
& =\mathrm{E}\left[(\mathrm{aX}-\mathrm{aE}[\mathrm{X}])^{2}\right] \\
& =\mathrm{E}\left[\mathrm{a}^{2}(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right]
\end{aligned}
$$

$$
=a^{2} \operatorname{var}(X)
$$

Expected value of a sum of random variables: consider two random variables, X and Y . By the expectation of a function of a random variable,

$$
\begin{aligned}
E[X+Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x+y) f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y+\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x+\int_{-\infty}^{\infty} y f_{Y}(y) d y \\
& =E[X]+E[Y]
\end{aligned}
$$

Thus,

$$
\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{E}\left[\mathrm{X}_{\mathrm{i}}\right]
$$

If X and Y are independent, then the expectation of the product of (any) functions $g(X)$ and $h(Y)$ is:

$$
\mathrm{E}[\mathrm{~g}(\mathrm{X}) \mathrm{h}(\mathrm{Y})]=\mathrm{E}[\mathrm{~g}(\mathrm{X})] \mathrm{E}[\mathrm{~h}(\mathrm{Y})]
$$

Proof:
Suppose that X and Y are jointly continuous with density $\mathrm{f}(\mathrm{x}, \mathrm{y})$. Then,

$$
\begin{aligned}
E[g(X) h(Y)] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) f(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) h(y) f(x) f(y) d x d y \\
& =\int_{-\infty}^{\infty} g(x) f(x) d x \int_{-\infty}^{\infty} h(y) f(y) d y \\
& =E[g(X)] E[h(Y)]
\end{aligned}
$$

The covariance of two random variables \mathbf{X} and \mathbf{Y}, i.e., $\operatorname{cov}(\mathbf{X}, \mathbf{Y})$, is defined by:

$$
\begin{aligned}
\operatorname{cov}(\mathrm{X}, \mathrm{Y}) & =\mathrm{E}[(\mathrm{X}-\mathrm{E}[\mathrm{X}])(\mathrm{Y}-\mathrm{E}[\mathrm{Y}])] \\
& =\mathrm{E}[\mathrm{XY}]-\mathrm{XE}[\mathrm{Y}]-\mathrm{E}[\mathrm{X}] \mathrm{Y}+\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]] \\
& =\mathrm{E}[\mathrm{XY}]-\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]-\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]+\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}] \\
& =\mathrm{E}[\mathrm{XY}]-\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}]
\end{aligned}
$$

Remark: If \mathbf{X} and \mathbf{Y} are independent, then $\operatorname{cov}(\mathbf{X}, \mathbf{Y})=\mathbf{0}$. The converse is not true.
The variance of a sum of random variables, $X_{1}+X_{2}+\ldots+X_{n}$, is equal to:

$$
\operatorname{var}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{var}\left(\mathrm{X}_{\mathrm{i}}\right)+2 \sum_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{cov}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)
$$

Proof:
Consider two random variables, X and Y ,

$$
\begin{aligned}
\operatorname{var}(\mathrm{X}+\mathrm{Y})= & \mathrm{E}\left[(\mathrm{X}+\mathrm{Y}-\mathrm{E}[\mathrm{X}+\mathrm{Y}])^{2}\right] \\
= & \mathrm{E}\left[((\mathrm{X}-\mathrm{E}[\mathrm{X}])+(\mathrm{Y}-\mathrm{E}[\mathrm{Y}]))^{2}\right] \\
= & \mathrm{E}\left[(\mathrm{X}-\mathrm{E}[\mathrm{X}])^{2}\right]+\mathrm{E}[(\mathrm{X}-\mathrm{E}[\mathrm{X}])(\mathrm{Y}-\mathrm{E}[\mathrm{Y}])] \\
& +\mathrm{E}[(\mathrm{Y}-\mathrm{E}[\mathrm{Y}])(\mathrm{X}-\mathrm{E}[\mathrm{X}])]+\mathrm{E}\left[(\mathrm{Y}-\mathrm{E}[\mathrm{Y}])^{2}\right] \\
= & \operatorname{var}(\mathrm{X})+2 \operatorname{cov}(\mathrm{X}, \mathrm{Y})+\operatorname{var}(\mathrm{Y})
\end{aligned}
$$

By induction we get the result above.
Also, note that:

$$
\operatorname{var}(\mathrm{X}-\mathrm{Y})=\operatorname{var}(\mathrm{X})-2 \operatorname{cov}(\mathrm{X}, \mathrm{Y})+\operatorname{var}(\mathrm{Y})
$$

Conditional expectation

The conditional expectation of \mathbf{X} given $\mathbf{Y}=\mathbf{y}$ is:

$$
E[X \mid Y=y]=\sum_{x: p(x)>0} x P\{X=x \mid Y=y\}
$$

$$
=\sum_{x: p(x)>0} x p_{X} \mid Y(x \mid y) \quad \text { for all } y \text { such that } p_{Y}(y)>0
$$

for the discrete case
and

$$
\mathrm{E}[\mathrm{X} \mid \mathrm{Y}=\mathrm{y}]=\int_{-\infty}^{\infty} \mathrm{xf}(\mathrm{x} \mid \mathrm{y}) \mathrm{f}(\mathrm{x} \mid \mathrm{y}) \mathrm{dx} \quad \text { provided that } \mathrm{f}_{\mathrm{Y}}(\mathrm{y})>0
$$

for the continuous case

The conditional expectation of $\mathbf{g}(\mathbf{X})$ given $\mathbf{Y}=\mathbf{y}$ is:

$$
\mathrm{E}[\mathrm{~g}(\mathrm{X}) \mid \mathrm{Y}=\mathrm{y}] \quad=\sum_{\mathrm{x}: \mathrm{p}(\mathrm{x})>0} \mathrm{~g}(\mathrm{x}) \mathrm{px\mid y}(\mathrm{x} \mid \mathrm{y}) \quad \text { for the discrete case }
$$

and

$$
E[g(X) \mid Y=y] \quad=\int_{-\infty}^{\infty} g(x) f_{X \mid Y}(x \mid y) d x \quad \text { for the continuous case }
$$

Remark: the conditional expectation of a sum of random variables is equal to the sum of the conditional expectations of the individual random variables, i.e.,

$$
\mathrm{E}\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}} \mid Y=y\right]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{E}\left[\mathrm{X}_{\mathrm{i}} \mid Y=y\right]
$$

Computing probabilities by conditioning
Let E be an arbitrary event and define an indicator random variable X by

$$
X= \begin{cases}1 & \text { if E occurs } \\ 0 & \text { if E does not occur }\end{cases}
$$

Then,

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] \quad & =(1) * \mathrm{P}(\mathrm{X}=\mathrm{E})+(0) * \mathrm{P}(\mathrm{X} \neq \mathrm{E}) \\
& =\mathrm{P}(\mathrm{E})
\end{aligned}
$$

$$
\begin{aligned}
E[X \mid Y=y] & =P\{X=E \mid Y=y\}+P\{X \neq E \mid Y=y\} \\
& =P\{E \mid Y=y\}
\end{aligned}
$$

Using the formulae for computation of expectations by conditioning above we get:

$$
P(E) \quad=\sum_{x: p(x)>0} P\{E \mid Y=y\} P\{Y=y\} \quad \text { if } Y \text { is discrete }
$$

and

$$
P(E)=\int_{-\infty}^{\infty} P\{E \mid Y=y\} f_{Y}(y) d y \quad \text { if } Y \text { is continuous }
$$

Example 1: Let X and Y be independent random variables with densities $f_{X}(x)$ and $f_{Y}(y)$. Compute $\mathrm{P}\{\mathrm{X}<\mathrm{Y}\}$.

$$
\begin{aligned}
P\{X<Y\} & =\int_{-\infty}^{\infty} P(X<Y \mid Y=y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P(X<y \mid Y=y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P(X<y) f_{Y}(y) d y \quad \text { by independence } \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{y} f_{X}(x) d x\right] f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} F_{X}(y) f_{Y}(y) d y
\end{aligned}
$$

Remark: If X and Y are not independent, then

$$
\begin{aligned}
P\{X<Y\} & =\int_{-\infty}^{\infty} P(X<y \mid Y=y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{y} f_{X \mid Y}(x \mid y) d x\right] f_{Y}(y) d y
\end{aligned}
$$

$$
=\int_{-\infty}^{\infty} F_{X \mid Y}(x \mid y) f_{Y}(y) d y
$$

Example 2: Let X and Y be independent random variables. Find the distribution of $\mathrm{X}+\mathrm{Y}$, i.e., find $\mathrm{P}\{\mathrm{X}+\mathrm{Y}<\mathrm{a}\}$. Condition X on Y .

$$
\begin{aligned}
P\{X+Y<a\} & =\int_{-\infty}^{\infty} P\{X+Y<a \mid Y=y\} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P\{X+y<a \mid Y=y\} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P\{X<a-y \mid Y=y\} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} P\{X<a-y\} f_{Y}(y) d y \quad \text { by independence } \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{a-y} f_{X}(x) d x\right] f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y
\end{aligned}
$$

If X and Y are not independent

$$
\begin{aligned}
P\{X+Y<a\} & =\int_{-\infty}^{\infty} P\{X<a-y \mid Y=y\} f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty}\left[\int_{-\infty}^{a-y} f_{X \mid Y}(x \mid y) d x\right] f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} F_{X \mid Y}(a-y \mid y) F_{Y}(y) d y
\end{aligned}
$$

Computing expectations by conditioning

Sometimes it is easier to compute the expectation of a random variable by conditioning it on another. Let $\mathrm{E}[\mathrm{X} \mid \mathrm{Y}]$ be the function of a random variable X , whose value at $\mathrm{Y}=\mathrm{y}$ is $\mathrm{E}[\mathrm{X} \mid \mathrm{Y}=$ $y]$. Note that $\mathrm{E}[\mathrm{X} \mid \mathrm{Y}]$ is itself a random variable.

Then,

$$
\mathrm{E}[\mathrm{X}]=\mathrm{E}_{\mathrm{Y}}[\mathrm{E}[\mathrm{X} \mid \mathrm{Y}]]
$$

Thus, for a discrete random variable

$$
E[X]=\sum_{x: p(x)>0} E[X \mid Y=y] P(Y=y)
$$

and for a continuous random variable

$$
E[X]=\int_{-\infty}^{\infty} E[X \mid Y=y] f_{Y}(y) d y
$$

Proof: For X and Y continuous,

$$
\begin{aligned}
\int_{-\infty}^{\infty} E[X \mid Y=y] f_{Y}(y) d y & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{X} \mid Y(x \mid y) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty} x\left[\int_{-\infty}^{\infty} f(x, y) d y\right] d x \\
& =\int_{-\infty}^{\infty} x f_{X}(x) d x \\
& =E[X]
\end{aligned}
$$

Animal Breeding example (continued)

The variance of the genetic values of chromosomes from bull $\mathrm{B}, \operatorname{var}(\mathrm{X})$, is:

$$
\begin{aligned}
\operatorname{var}(\mathrm{X}) & =\mathrm{E}\left[\mathrm{X}^{2}\right]-(\mathrm{E}[\mathrm{X}])^{2} \\
\mathrm{E}\left[\mathrm{X}^{2}\right] & =\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}^{2} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(10)^{2}(0.2)+(20)^{2}(0.5)+(30)^{2}(0.3) \\
& =490
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{E}[\mathrm{X}] & =21 \\
\Rightarrow \quad \operatorname{var}(\mathrm{X}) & =490-(21)^{2} \\
& =490-441 \\
& =49
\end{aligned}
$$

Similarly, the variance of the genetic values of chromosomes from cow C , $\operatorname{var}(\mathrm{Y})$, is:

$$
\begin{aligned}
\mathrm{E}\left[\mathrm{Y}^{2}\right] & =(10)^{2}(0.3)+(20)^{2}(0.5)+(30)^{2}(0.2) \\
& =410
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{E}[\mathrm{Y}] & =19 \\
\Rightarrow \quad \operatorname{var}(\mathrm{Y}) & =410-(19)^{2} \\
& =410-361 \\
& =49
\end{aligned}
$$

The $\operatorname{cov}(\mathrm{X}, \mathrm{Y})$ is:

$$
\begin{aligned}
\operatorname{cov}(\mathrm{X}, \mathrm{Y})= & \mathrm{E}[\mathrm{XY}]-\mathrm{E}[\mathrm{X}] \mathrm{E}[\mathrm{Y}] \\
\mathrm{E}[\mathrm{XY}]= & \sum_{\mathrm{i}=1}^{3} \sum_{\mathrm{j}=1}^{3} \mathrm{x}_{\mathrm{i}} \mathrm{y}_{j} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}\right) \\
= & (10)(10)(0.06)+(10)(20)(0.15)+(10)(30)(0.09) \\
& +(20)(10)(0.10)+(20)(20)(0.25)+(20)(30)(0.15) \\
& +(30)(10)(0.04)+(30)(20)(0.10)+(30)(30)(0.06)
\end{aligned}
$$

$$
\begin{aligned}
& =399 \\
\operatorname{cov}(\mathrm{X}, \mathrm{Y}) & =399-(21)(19) \\
& =399-399 \\
& =0 \quad \text { as expected because of the independence of } \mathrm{X} \text { and } \mathrm{Y}
\end{aligned}
$$

The $\operatorname{var}(\mathrm{X}+\mathrm{Y})$ is:

$$
\begin{aligned}
\operatorname{var}(\mathrm{X}+\mathrm{Y}) & =\operatorname{var}(\mathrm{X})+\operatorname{var}(\mathrm{Y})+2 \operatorname{cov}(\mathrm{X}, \mathrm{Y}) \\
& =49+49+2(0) \\
& =98
\end{aligned}
$$

and the $\operatorname{var}(\mathrm{X}-\mathrm{Y})$ is:

$$
\begin{aligned}
\operatorname{var}(\mathrm{X}-\mathrm{Y}) & =49+49-2(0) \\
& =98 \\
& =\operatorname{var}(\mathrm{X}+\mathrm{Y}) \quad \text { because } \mathrm{X} \text { and } \mathrm{Y} \text { are independent }
\end{aligned}
$$

The $E[X \mid Y=y]$ for $y=10,20,30$, are computed using the formula:

$$
E[X \mid Y=y]=\sum_{i=1}^{3} x_{i} p_{x \mid Y\left(x_{i} \mid y\right)}
$$

The conditional probability mass function of $X \mid Y$ is:

x_{i}	$\mathrm{p}_{\mathrm{X} \mid \mathrm{Y}(\mathrm{x} \mid 10)}$	$\mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid 20)$	$\mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x} \mid 30)$
10	$(0.06 / 0.3)=0.2$	$(0.10 / 0.5)=0.2$	$(0.04 / 0.2)=0.2$
20	$(0.15 / 0.3)=0.5$	$(0.25 / .05)=0.5$	$(0.10 / 0.2)=0.5$
30	$(0.09 / 0.3)=0.3$	$(0.15 / 0.5)=0.3$	$(0.06 / 0.2)=0.3$

$$
\mathrm{E}[\mathrm{X} \mid \mathrm{Y}=10]=(10)(0.2)+(20)(0.5)+(30)(0.3)
$$

$$
\begin{aligned}
& =21 \\
& =E[X \mid Y=20] \\
& =E[X \mid Y=30] \\
& =E[X] \quad \text { because } X \text { does not depend on } Y
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\mathrm{E}[\mathrm{Y} \mid \mathrm{X}=10] & =\mathrm{E}[\mathrm{Y} \mid \mathrm{X}=20] \\
& =\mathrm{E}[\mathrm{Y} \mid \mathrm{X}=30] \\
& =\mathrm{E}[\mathrm{Y}] \\
& =19 \\
\operatorname{Var}(\mathrm{X} \mid \mathrm{Y}=10) & =\mathrm{E}\left[(\mathrm{X} \mid \mathrm{Y}-\mathrm{E}[\mathrm{X} \mid \mathrm{Y}])^{2}\right] \\
& =\mathrm{E}\left[(\mathrm{X} \mid \mathrm{Y})^{2}\right]-(\mathrm{E}[\mathrm{X} \mid \mathrm{Y}])^{2}
\end{aligned}
$$

For instance, the $\operatorname{var}(\mathbf{X} \mid \mathbf{Y}=\mathbf{1 0})$ is:

$$
\begin{aligned}
\operatorname{var}(\mathrm{X} \mid \mathrm{Y}=10) & =\mathrm{E}\left[(\mathrm{X} \mid \mathrm{Y}=10)^{2}\right]-(\mathrm{E}[\mathrm{X} \mid \mathrm{y}=10])^{2} \\
& =\sum_{\mathrm{i}=1}^{3} \mathrm{x}^{2} \mathrm{p} X \mid \mathrm{Y}(\mathrm{x} \mid 10)-\left(\mathrm{E}[\mathrm{X} \mid \mathrm{y}=10)^{2}\right. \\
& =\left[(10)^{2}(0.2)+(20)^{2}(0.5)+(30)^{2}(0.3)\right]-(21)^{2} \\
& =490-441 \\
& =49 \quad \text { because } \mathrm{X} \text { is independent of } \mathrm{Y}
\end{aligned}
$$

The $\mathrm{E}[\mathrm{X}]$ computed as $\mathrm{E}_{\mathrm{Y}}[\mathrm{E}[\mathrm{X} \mid \mathrm{Y}]]$ is:

$$
\begin{aligned}
E[X] & =\sum_{j=1}^{3} E\left[X \mid y_{j}\right] p_{Y}\left(y_{j}\right) \\
& =\sum_{j=1}^{3}\left[\sum_{i=1}^{3} x_{i} p_{X \mid Y}\left(x_{i} \mid y_{j}\right)\right] p_{Y}\left(y_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & {[(10)(0.2)+(20)(0.5)+(30)(0.3)](0.3) } \\
& +[(10)(0.2)+(20)(0.5)+(30)(0.3)](0.5) \\
& +[(10)(0.2)+(20)(0.5)+(30)(0.3)](0.2) \\
= & {[21](0.3)+[21](0.5)+[21](0.2) } \\
= & {[21][0.3+0.5+0.2] } \\
= & 21
\end{aligned}
$$

The $P(X=10)$ computed as $P(X=10 \mid Y=y)$ is:

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}=10) & =\sum_{\mathrm{j}=1}^{3} \mathrm{p}_{\mathrm{X} \mid \mathrm{Y}}(\mathrm{x}=10) \mathrm{p}_{\mathrm{Y}}\left(\mathrm{y}_{\mathrm{j}}\right) \\
& =(0.06 / 0.3)(0.3)+(0.10 / 0.5)(0.5)+(0.04 / 0.2)(0.2) \\
& =0.06+0.10+0.04 \\
& =0.20
\end{aligned}
$$

Expectation and covariances of random vectors

1) The expectation of a random vector $\mathbf{x}_{\mathrm{n} \times 1}$ is defined to be the vector of expectations of its elements, i.e., $\mathrm{E}[$ each random variable in x$]$,

$$
\mathrm{E}[\mathrm{x}]=\mathrm{E}\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{E}\left[\mathrm{x}_{1}\right] \\
\mathrm{E}\left[\mathrm{x}_{2}\right] \\
\vdots \\
\mathrm{E}\left[\mathrm{x}_{\mathrm{n}}\right]
\end{array}\right] \equiv \mu
$$

2) Let x be a random vector with $E[x]=\mu$. Then, the covariance matrix of vector x is V, and it is defined as:

$$
V=E\left[(x-\mu)(x-\mu)^{\prime}\right]
$$

$$
\begin{aligned}
& \mathrm{V}=\mathrm{E}\left[\left[\begin{array}{c}
\left(\mathrm{x}_{1}-\mu_{1}\right) \\
\left(\mathrm{x}_{2}-\mu_{2}\right) \\
\vdots \\
\left(\mathrm{x}_{\mathrm{n}}-\mu_{\mathrm{n}}\right)
\end{array}\right]\left[\begin{array}{lll}
\left(\mathrm{x}_{1}-\mu_{1}\right) & \left(\mathrm{x}_{2}-\mu_{2}\right) & \cdots \\
\left.\left(\mathrm{x}_{\mathrm{n}}-\mu_{\mathrm{n}}\right)\right]
\end{array}\right]\right. \\
& \mathrm{V}=\left[\begin{array}{ccc}
\mathrm{E}\left[\left(\mathrm{x}_{1}-\mu_{1}\right)^{2}\right] & \cdots & \mathrm{E}\left[\left(\mathrm{x}_{1}-\mu_{1}\right)\left(\mathrm{x}_{\mathrm{n}}-\mu_{\mathrm{n}}\right)\right] \\
\vdots & \ddots & \vdots \\
\mathrm{E}\left[\left(\mathrm{x}_{\mathrm{n}}-\mu_{\mathrm{n}}\right)\left(\mathrm{x}_{1}-\mu_{1}\right)\right] & \cdots & \mathrm{E}\left[\left(\mathrm{x}_{\mathrm{n}}-\mu_{\mathrm{n}}\right)^{2}\right]
\end{array}\right] \\
& \mathrm{V}=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 \mathrm{n}} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 \mathrm{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{\mathrm{n} 1} & \sigma_{\mathrm{n} 2} & \cdots & \sigma_{\mathrm{nn}}
\end{array}\right]
\end{aligned}
$$

Animal Breeding example (continued)

Let $x=\left[\begin{array}{l}X \\ Y\end{array}\right]=\left[\begin{array}{l}x_{1} \\ \mathrm{X}_{2}\end{array}\right]$
(a) $\mathrm{E}[\mathrm{x}]=\left[\begin{array}{l}\mathrm{E}[\mathrm{X}] \\ \mathrm{E}[\mathrm{Y}]\end{array}\right]=\left[\begin{array}{l}\mathrm{E}\left[\mathrm{x}_{1}\right] \\ \mathrm{E}\left[\mathrm{x}_{2}\right]\end{array}\right]=\left[\begin{array}{l}21 \\ 19\end{array}\right]=\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]$
(b) $\quad \mathrm{V}=\left[\begin{array}{cc}\mathrm{E}\left[\left(\mathrm{x}_{1}-\mu_{1}\right)^{2}\right] & \mathrm{E}\left[\left(\mathrm{x}_{1}-\mu_{1}\right)\left(\mathrm{x}_{2}-\mu_{2}\right)\right] \\ \mathrm{E}\left[\left(\mathrm{x}_{2}-\mu_{2}\right)\left(\mathrm{x}_{1}-\mu_{1}\right)\right] & \mathrm{E}\left[\left(\mathrm{x}_{2}-\mu_{2}\right)^{2}\right]\end{array}\right]$
$\mathrm{V}=\left[\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22}\end{array}\right]$
$\mathrm{V}=\left[\begin{array}{cc}49 & 0 \\ 0 & 49\end{array}\right]$
(c) $E\left[x_{1} \mid x_{2}\right]=\sum_{x_{1}: p\left(x_{1}\right)>0} x_{1} p_{x_{\mid} \mid X_{2}}\left(x_{1} \mid x_{2}\right) \quad$ for the discrete case

$$
\mathrm{E}\left[\mathrm{x}_{1} \mid \mathrm{x}_{2}\right]=\int_{-\infty}^{\infty} \mathrm{x}_{1} \mathrm{f}_{\mathrm{x}_{1} \mid \mathrm{X}_{2}}\left(\mathrm{x}_{1} \mid \mathrm{x}_{2}\right) \mathrm{dx}_{1} \quad \text { for the continuous case }
$$

$$
\mathrm{E}\left[\mathrm{x}_{1} \mid \mathrm{x}_{2}=20\right]=(10)(0.2)+(20)(0.5)+(30)(0.3)=21
$$

(d) $\operatorname{var}\left(\mathrm{x}_{1} \mid \mathrm{x}_{2}=20\right)=\left\{\left[(10)^{2}(0.2)+(20)^{2}(0.5)+(30)^{2}(0.3)\right]-(21)^{2}\right\}$

$$
\begin{aligned}
& =490-441 \\
& =49
\end{aligned}
$$

3) Let x be an $n \times 1$ random vector, i.e., $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, where the $\left\{x_{i}\right\}$ are the realized values of the set of random variables $\left\{\mathrm{X}_{\mathrm{i}}\right\}$, then the cumulative distribution function (c.d.f.) of the random vector x is the joint c.d.f.

$$
\begin{aligned}
P\left\{X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{n} \leq x_{n}\right\} & =F\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\int_{-\infty}^{x_{1}} \int_{-\infty}^{x_{2}} \cdots \int_{-\infty}^{x_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1}, d x_{2}, \ldots, d x_{n}
\end{aligned}
$$

where

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\frac{\partial^{\mathrm{n}}}{\partial \mathrm{x}_{1} \partial \mathrm{x}_{2} \cdots \partial \mathrm{x}_{\mathrm{n}}} \mathrm{~F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

and

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \geq 0 \text { for }-\infty \leq \mathrm{x}_{\mathrm{i}} \leq \infty \text { and for all } \mathrm{i} \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{dx}, \mathrm{dx}_{2}, \ldots, \mathrm{dx}_{\mathrm{n}}=1
\end{aligned}
$$

The marginal density function of the last ($\mathbf{n}-\mathbf{k}$) $\mathrm{x}^{\prime} \mathrm{s}$ is $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ after integrating out the first k x's, i.e., the marginal of $x_{k+1}, x_{k+2}, \ldots, x_{n}$ is:

$$
\mathrm{g}\left(\mathrm{x}_{\mathrm{k}+1}, \mathrm{x}_{\mathrm{k}+2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}+1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{dx}_{1} \ldots \mathrm{dx}_{\mathrm{k}}
$$

The conditional distribution of the first k x's given that last ($\mathbf{n}-\mathbf{k}$) \mathbf{x} 's is the ratio of

$$
\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \mid \mathrm{x}_{\mathrm{k}+1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\frac{\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)}{\mathrm{g}\left(\mathrm{x}_{\mathrm{k}+1}, \mathrm{x}_{\mathrm{k}+2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)}
$$

The expected value of $\mathbf{x}^{\mathbf{m}}$, i.e., $\mathrm{E}\left[\mathrm{x}_{\mathrm{i}}{ }^{\mathbf{m}}\right]$, is

$$
\mathrm{E}\left[\mathrm{x}_{\mathrm{i}}^{\mathrm{m}}\right]=\mathrm{x}_{\mathrm{i}}^{\mathrm{m}} \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{dx}_{1}, \mathrm{dx}_{2}, \ldots, \mathrm{dx}_{\mathrm{n}}
$$

If $m=1$, then $E\left[X_{i}\right]=\mu_{i}$.
The covariance between variables \mathbf{i} and \mathbf{j}, i.e., $\sigma_{i j}=E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right)\right]$ is:

$$
\sigma_{i j}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) f\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{1}, d x_{2}, \ldots, d x_{n}
$$

Similar expressions for $E\left[x_{i}^{m} \mid x_{k+1}, \ldots, x_{n}\right]$ and $E\left[\left(x_{i}-\mu_{i}\right)\left(x_{j}-\mu_{j}\right) \mid x_{k+1}, \ldots, x_{n}\right]$ can be written using $f\left(x_{1}, \ldots, x_{k} \mid x_{k+1}, \ldots, x_{n}\right)$ instead of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in the two previous formulae.

Expectations and covariances of normal random variables and vectors
A) Let X be a normal random variable. Then, X is normally distributed with parameters μ and σ^{2}.

Proof (Ross, 1976):
The density function of normal variable X is given by:

$$
\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-(\mathrm{x}-\mu)^{2} / 2 \sigma^{2}} \quad-\infty<\mathrm{x}<\infty
$$

The expectation of X is:

$$
E[X]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \mathrm{xe}^{-(\mathrm{x}-\mu)^{2} / 2 \sigma^{2}} \mathrm{dx}
$$

Replacing x by $[(x-\mu)+\mu]$ and letting $y=(x-\mu)$,

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \mathrm{ye}^{-(\mathrm{y})^{2} / 2 \sigma^{2}} \mathrm{dy}+\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \mu \mathrm{e}^{-(\mathrm{x}-\mu)^{2} / 2 \sigma^{2}} \mathrm{dx} \\
& \mathrm{E}[\mathrm{X}]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \mathrm{ye}^{-(\mathrm{y})^{2} / 2 \sigma^{2}} \mathrm{dy}+\mu \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

where $f(x)$ is the normal density. The first integral is zero by symmetry, and the second integral is equal to $\mu(1)$. Thus,

$$
\begin{aligned}
& \mathrm{E}[\mathrm{X}]=0+\mu(1) \\
& \mathrm{E}[\mathrm{X}]=\mu
\end{aligned}
$$

The variance of X is:

$$
\mathrm{E}\left[(X-\mu)^{2}\right]=\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty}(x-\mu)^{2} \mathrm{e}^{-(x-\mu)^{2} / 2 \sigma^{2}} d x
$$

Letting $y=(x-\mu) / \sigma$ yields:

$$
\begin{aligned}
\mathrm{E}\left[(\mathrm{X}-\mu)^{2}\right] & =\frac{\sigma^{2}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{y}^{2} \mathrm{e}^{-\mathrm{y}^{2} / 2} \mathrm{dy} \\
& =\frac{\sigma^{2}}{\sqrt{2 \pi}}\left[-\left.\mathrm{y}^{-\mathrm{y}^{2} / 2}\right|_{-\infty} ^{\infty}+\int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{y}^{2} / 2} \mathrm{dy}\right] \quad \text { by integration by parts } \\
& =\sigma^{2} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{y}^{2} / 2} \mathrm{dy} \\
& =\sigma^{2}
\end{aligned}
$$

B) Let $\mathrm{Z}=(\mathrm{X}-\mu) / \sigma$. Then, Z is a standard normal random variable with $\mu=0$ and $\sigma^{2}=1$, and its density function is:

$$
\mathrm{f}(\mathrm{Z})=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{z}^{2} / 2} \quad-\infty<\mathrm{x}<\infty
$$

The c.d.f. of Z is:

$$
\Phi(\mathrm{Z})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\mathrm{x}} \mathrm{e}^{-\mathrm{z}^{2} / 2} \mathrm{dz}
$$

and

$$
\Phi(-\mathrm{Z})=1-\Phi(\mathrm{Z}) \quad-\infty<\mathrm{x}<\infty
$$

Remark:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{Z}}(\mathrm{a}) & =\mathrm{P}\left\{\frac{\mathrm{x}-\mu}{\sigma} \leq \frac{\mathrm{a}-\mu}{\sigma}\right\} \\
& =\Phi\left(\frac{\mathrm{a}-\mu}{\sigma}\right)
\end{aligned}
$$

C) Multivariate normal random variables

(c1) The random vector $\mathrm{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ has a multivariate normal distribution with vector of means $æ$ and covariance matrix V , i.e., $\mathrm{x} \sim \operatorname{MVN}(\mu, \mathrm{V})$, if its density function is:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{e^{-1 / 2(x-\mu)^{\prime} V^{-1}(x-\mu)}}{(2 \pi)^{\frac{n}{2}}|V|^{1 / 2}}
$$

where matrix V is positive definite.
Let

$$
\begin{aligned}
& \mathrm{x}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right] \\
& \mathrm{x}_{1}^{\prime}=\left[\begin{array}{lll}
\mathrm{x}_{1} & \ldots & \mathrm{x}_{\mathrm{k}}
\end{array}\right] \\
& \mathrm{x}_{2}^{\prime}=\left[\begin{array}{lll}
\mathrm{x}_{\mathrm{k}+1} & \ldots & \mathrm{x}_{\mathrm{n}}
\end{array}\right]
\end{aligned}
$$

Then,

$$
\mu=\left[\begin{array}{l}
\mu_{1} \\
\mu_{2}
\end{array}\right]
$$

and

$$
\mathrm{V}=\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{12}^{\prime} & V_{22}
\end{array}\right]
$$

(c2) The marginal density function of \mathbf{x}_{1} is:

$$
\mathrm{g}\left(\mathrm{x}_{1}\right)=\mathrm{g}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)
$$

$$
=\frac{\exp \left[-1 / 2\left(x_{1}-\mu_{1}\right)^{\prime} V_{11}^{-1}\left(x_{1}-\mu_{1}\right)\right]}{(2 \pi)^{\frac{k}{2}}\left|V_{11}\right|^{1 / 2}}
$$

and the marginal density function of $\mathbf{x} \mathbf{2}$ is:

$$
\begin{aligned}
\mathrm{g}\left(\mathrm{x}_{2}\right) & =\mathrm{g}\left(\mathrm{x}_{\mathrm{k}+1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\frac{\exp \left[-1 / 2\left(\mathrm{x}_{2}-\mu_{2}\right)^{\prime} \mathrm{V}_{22}^{-1}\left(\mathrm{x}_{2}-\mu_{2}\right)\right]}{(2 \pi)^{\frac{\mathrm{n}-\mathrm{k}}{2}}\left|V_{22}\right|^{1 / 2}}
\end{aligned}
$$

Note that the marginal densities of the multivariate normal distribution are themselves multivariate normal.
(c3) The conditional density function of x_{1} given x_{2} is:

$$
\begin{aligned}
f\left(x_{1} \mid x_{2}\right) & =\frac{f(x)}{g\left(x_{2}\right)} \\
& =\frac{\exp \left\{-1 / 2\left[(x-\mu)^{\prime} V^{-1}(x-\mu)-\left(x_{2}-\mu_{2}\right)^{\prime} V_{22}^{-1}\left(x_{2}-\mu_{2}\right)\right]\right\}}{(2 \pi)^{\frac{k}{2}}\left(|V| /\left|V_{22}\right|\right)^{1 / 2}}
\end{aligned}
$$

In terms of partitioned matrices, V^{-1} is equal to:

$$
\mathrm{V}^{-1}=\left[\begin{array}{cc}
\mathrm{W}_{11} & -\mathrm{W}_{11} \mathrm{~V}_{12} \mathrm{~V}_{22}^{-1} \\
-\mathrm{V}_{22}^{-1} \mathrm{~V}_{12}^{\prime} \mathrm{W}_{11} & \mathrm{~V}_{22}^{-1}+\mathrm{V}_{22}^{-1} \mathrm{~V}_{12}^{\prime} \mathrm{W}_{11} \mathrm{~V}_{12} \mathrm{~V}_{22}^{-1}
\end{array}\right]
$$

where

$$
\mathrm{W}_{11}=\left(\mathrm{V}_{11}-\mathrm{V}_{12} \mathrm{~V}_{22^{-1}} \mathrm{~V}_{12^{\prime}}\right)^{-1}
$$

Then, the exponent in $f\left(x_{1} \mid x_{2}\right)$ becomes:
$\left[\left(x_{1}-\mu_{1}\right)^{\prime} \quad\left(x_{2}-\mu_{2}\right)^{\prime}\right]\left[\begin{array}{cc}\mathrm{W}_{11} & -\mathrm{W}_{11} \mathrm{~V}_{12} \mathrm{~V}_{22}^{-1} \\ -\mathrm{V}_{22}^{-1} \mathrm{~V}_{12}^{\prime} \mathrm{W}_{11} & \mathrm{~V}_{22}^{-1}+\mathrm{V}_{22}^{-1} \mathrm{~V}_{12}^{\prime} \mathrm{W}_{11} \mathrm{~V}_{12} \mathrm{~V}_{22}^{-1}\end{array}\right]\left[\begin{array}{l}\left(\mathrm{x}_{1}-\mu_{1}\right) \\ \left(\mathrm{x}_{2}-\mu_{2}\right)\end{array}\right]-\left(\mathrm{x}_{2}-\mu_{2}\right)^{\prime} \mathrm{V}_{22}^{-1}\left(\mathrm{x}_{2}-\mu_{2}\right)$
and simplifies to:

$$
\left[\left(\mathrm{x}_{1}-\mu_{1}\right)^{\prime} \quad\left(\mathrm{x}_{2}-\mu_{2}\right)^{\prime}\right]\left[\begin{array}{c}
\mathrm{I} \\
-\mathrm{V}_{22}^{-1} \mathrm{~V}_{12}^{\prime}
\end{array}\right] \mathrm{W}_{11}\left[\begin{array}{ll}
\mathrm{I} & -\mathrm{V}_{12} \mathrm{~V}_{22}^{-1}
\end{array}\right]\left[\begin{array}{l}
\left(\mathrm{x}_{1}-\mu_{1}\right) \\
\left(\mathrm{x}_{2}-\mu_{2}\right)
\end{array}\right]
$$

which is equal to:

$$
\left[\left(\mathrm{x}_{1}-\mu_{1}\right)-\mathrm{V}_{12} \mathrm{~V}_{22}^{-1}\left(\mathrm{x}_{2}-\mu_{2}\right)\right]^{\prime} \mathrm{W}_{11}\left[\left(\mathrm{x}_{1}-\mu_{1}\right)-\mathrm{V}_{12} \mathrm{~V}_{22}^{-1}\left(\mathrm{x}_{2}-\mu_{2}\right)\right]
$$

By the Laplace expansion of a determinant (Searle, 1966, pg. 74-76 and 95-96)

$$
\begin{aligned}
|\mathrm{V}| & =\left|\begin{array}{ll}
V_{11} & V_{12} \\
V_{12}^{\prime} & V_{22}
\end{array}\right| \\
|\mathrm{V}| & =\left|\begin{array}{cc}
\mathrm{V}_{11} & \mathrm{~V}_{12} \\
\mathrm{~V}_{12}^{\prime} & \mathrm{V}_{22}
\end{array}\right|\left[\left.\begin{array}{cc}
\mathrm{I} & 0 \\
\mathrm{~V}_{22}^{-1} \mathrm{~V}_{12}^{\prime} & \mathrm{I}
\end{array} \right\rvert\,\right. \\
|\mathrm{V}| & =\left|\left[\begin{array}{ll}
\mathrm{V}_{11} & \mathrm{~V}_{12} \\
\mathrm{~V}_{12}^{\prime} & \mathrm{V}_{22}
\end{array}\right]\left[\begin{array}{cc}
\mathrm{I} & 0 \\
-\mathrm{V}_{22}^{-1} \mathrm{~V}_{12}^{\prime} & \mathrm{I}
\end{array}\right]\right| \\
|\mathrm{V}| & =\left|\mathrm{V}_{22}\right|\left|\mathrm{V}_{11}-\mathrm{V}_{12} \mathrm{~V}_{22}^{-1} \mathrm{~V}_{12}^{\prime}\right| \\
\Rightarrow \quad|\mathrm{V}| & =\left|\mathrm{V}_{22}\right|\left|\mathrm{W}_{11}^{-1}\right|
\end{aligned}
$$

Thus,

$$
\mathrm{f}\left(\mathrm{x}_{1} \mid \mathrm{x}_{2}\right)=\frac{\exp \left\{\left[\left(\mathrm{x}_{1}-\mu_{1}\right)-\mathrm{V}_{12} \mathrm{~V}_{22}^{-1}\left(\mathrm{x}_{2}-\mu_{2}\right)\right]^{\prime} \mathrm{W}_{11}\left[\left(\mathrm{x}_{1}-\mu_{1}\right)-\mathrm{V}_{12} \mathrm{~V}_{22}^{-1}\left(\mathrm{x}_{2}-\mu_{2}\right)\right]\right\}}{(2 \pi)^{\frac{k}{2}}\left|\mathrm{~W}_{11}^{-1}\right|^{1 / 2}}
$$

\Rightarrow The conditional distribution is also multivariate normal, i.e.,

$$
x_{1} \mid x_{2} \sim \operatorname{MVN}\left[\mu_{1}+V_{12} V_{22^{-1}}\left(x_{2}-\mu_{2}\right), W_{11^{-1}}\right]
$$

or,

$$
x_{1} \mid x_{2} \sim \operatorname{MVN}\left[\mu_{1}+V_{12} V_{22^{-1}}\left(x_{2}-\mu_{2}\right), V_{11}-V_{12} V_{22^{-1}} V_{12}{ }^{\prime}\right]
$$

References

Ross, S. 1976. A First Course in Probability. Macmillan Publishing Co., Inc., NY.
Searle, S. R. 1971. Linear Models. John Wiley and Sons, Inc., NY.

