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ANIMAL BREEDING NOTES 

CHAPTER 8 

BEST PREDICTION 

 

Derivation of the Best Predictor (BP) 

Let g = [g1 g2 ... gp] be a vector of unobservable random variables jointly distributed with an 

observable random vector y = [y1 y2 ... yn]. 

We want to predict g using y.  Let h(y) denote the predictor, i.e., if y is observed to be equal to y , 

then h( y ) will be the prediction for g.  Also, we want to choose the function h such that h(y) tends 

to be close to g.  One possible criterion for closeness is to choose h(y) such that it minimizes the 

mean square error of prediction (MSEP), i.e., we want 

  E[(h(y) B g) G (h(y) B g)] → 0 

where G is any symmetric positive definite matrix, e.g., G = cov (g, g).  Under this criterion the 

best predictor (BP) of g is: 

  h(y) = E[g│y]  ≡ ĝ   

the conditional mean of g given y. 

Proof: 

E[(h(y) B g) G (h(y) B g)]  =   gy (h(y) B g) G (h(y) B g) f(y,g) dg dy 

        = dy f(y) dg] y)|f(g g)  (h(y)G g)’  (h(y)[ gy   

 to minimize the E[] with respect to h(y) requires to minimize only the integral over g (in 

brackets), because minimizing for each y implies minimizing over all y's, so: 
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  dg y)|f(g g)  (h(y)G  g)’  (h(y) 
h(y) g 


   

    =  dg y)|(g f g)  (h(y)G  g)’  (h(y) 
h(y)g 



  

    =  dg y)|f(g Gg)g’ + Gg2h(y)’  Gh(y)h(y)’ 
h(y)g 



  

    = 0    dg y)|f(g 2Gg)  (2Gh(y)g   

    2G h(y) g f(g│y) dg = 2G g g f(g│y) dg 

But g f(g│y) dg = 1, 

    h(y) = g gf(g│y)dg = E[g│y]  =  ĝ  

    the BP of g,  ĝ   = Eg[g│y], the conditional mean of g given y. 

Remarks: 

(1)  ĝ  = E[g│y] hold for all density functions, and 

(2)  ĝ  = E[g│y] does not depend on G. 

 

Two useful results and an alternative proof for BP of g = E[g│y]. 

(a) Expectation of a quadratic form 

Let xpx1 be a random vector and bpx1 be one of its realized vectors, where b is a vector other than the 

mean vector μpx1.  Then, the expected value of the ellipsoid centered at b can be written as: 

  Ex[(x B b)A(x B b)] = tr (A var(x)) + (μ B b)A(μ B b) 

where A is any s.p.d. matrix. 

Proof: 
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Ex[(x B b)A(x B b)] = Ex[(x B μ+μ B b)A(x B μ+μ B b)] 

= Ex[(x B μ)A(x B μ) + (μ B b)A(μ B b)] 

Since a quadratic form is a scalar, it equals its own trace, thus, 

  Ex[(x B b)A(x B b)] = Ex tr[A(x B μ)(x B μ)] + Ex[(μ B b)A(μ B b)] 

        = tr[A Ex[(x B μ)(x B μ)]] + (μ B b)A(μ B b) 

        = tr(A var(x)] + (μ B b)A(μ B b) 

(b) Computation of variances by conditioning 

Let xpx1 be a random vector and μpx1 its mean vector.  If the vector x is conditioned on another 

random vector y, then, the variance of x can be written as the sum of the expected variance of x 

given y plus the variance of the expected value of x given y, i.e, 

  var(x)  =  Ey[varx(x│y)] + vary(Ex[x│y]) 

Proof: 

  var(x) = E[(x B μ)(x B μ)] 

    = Ey[E[(x B μ)(x B μ)│y]] 

    = Ey[E[(x B E[x│y] + E[x│y] B μ)(x B E[x│y] + E[x│y] B μ)│y]] 

= Ey[E[(x B E[x│y](x B E[x│y]│y] 

     + 2E[(x B E[x│y])(E[x│y] B μ)│y] 

     + E[(E[x│y] B μ)(E[x│y] B μ)│y]] 

The first term of var(x) is the expected variance of x given y: 

    = Ey[E[xx│y] B 2(E[x│y])2 + (E[x│y])2] 

    = Ey[varx(x│y)] 

The second term of var(x) is equal to zero: 
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    = 2Ey[(E[(x│y])2 B E[x│y]μ B (E[x│y])2 + E[x│y]μ] 

    = 0 

The third term of var(x) is the variance of the expected value of x given y: 

    = Ey[(E[(x│y])2 B E[x│y]μ B μ(E[x│y]) + μμ] 

    = Ey[(E[(x│y] B μ)(E[x│y] B μ)] 

    = Ey[vary(Ex[x│y])] 

    = vary(Ex[x│y]) 

(c) Alternative proof for BP of g = E[g│y] 

The MSEP of h(y) can be written, using result (a), as follows: 

  Ey[(h(y) B g)G(h(y) B g)]  = tr G {Ey[(h(y) B g)(h(y) B g)]} 

          = tr G {var(h(y) B g) 

           + (Ey[h(y] B g)(Ey[h(y) B g)]} 

By result (b) 

  var(h(y) B g) = Ey[varg((h(y) B g)│y)] + vary(Eg[(h(y) B g)│y]) 

where 

  Ey[varg((h(y) B g)│y)] = Ey[varg(g│y)],  and 

  vary(Eg[(h(y) B g│y]) = vary(h(y) B Eg[g│y]) 

because h(y)│y is a constant. 

Thus, 

  var(h(y) B g) = Ey[var(g│y)] + var(h(y) B Eg[g│y]), 

and the MSEP of h(y) is: 

  Ey[(h(y) B g)G(h(y) B g)]  = tr G {Ey[varg(g│y)] + varg(h(y) B Eg[g│y]) 
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              + (Ey[h(y)] B g)(Ey[h(y)] B g)]} 

Because the first and the third terms of the MSEP of h(y) are constants, to minimize the MSEP of 

h(y) we only need to minimize: 

  var(h(y) B Eg[g│y]) 

i.e., we want this term to go to zero. 

Clearly, 

  var(h(y) B Eg[g│y]) = 0 if  h(y) = Eg[g│y] 

  the MSEP of h(y) is minimized if h(y) is equal to the conditional mean of g given y, and 

  the BP of g is E[g│y] ≡ ĝ . 

As a consequence of h(y) being equal to E[g│y] we have that: 

(i)   (Ey[h(y) B g])(Ey[h(y) B g]) = Ey[(Eg[h(y) B g] Eg[h(y) B g])│y] 

          = Ey[(h(y) B Eg[g│y]) (h(y) B Eg[g│y])] 

          = 0 when h(y) = Eg[g│y] 

  the BP of g is unbiased. 

(ii)  Ey[(h(y) B g)(h(y) B g)] = tr{var(h(y) B g)} 

         = tr{Ey[var(g│y)]} when h(y) = Eg[g│y] 

  the MSEP  of h(y) = the error variance of prediction (EVP) of h(y). 

 

Properties of the best predictor 

[1]  Ey[ ĝ ] = Ey[Eg[g│y]] = E[g] 

  the BP is unbiased although it was not a condition in its development 

  the BP minimizes the error variance of prediction (EVP) of ĝ  because E[ ĝ  B g] = 0. 
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[2] var( ĝ  B g)  = Ey[var(g│y)] 

Proof: 

  var( ĝ  B g) = Ey[( ĝ  B g)( ĝ  B g)] 

     = Ey[ ĝ ĝ  B ĝ g  B g ĝ  + gg] 

     = Ey[Eg│y[( ĝ ĝ  B ĝ g  B g ĝ  + gg)│y]] 

     = Ey[Eg[g│y] Eg[g│y] B Eg[g│y] Eg[g│y] B Eg[g│y] Eg[g│y] + Eg[gg│y]] 

     = Ey[Eg[gg│y] B Eg[g│y] Eg[g│y]] 

     = Ey[varg(g│y)] 

 the EVP of ĝ  is the weighted average of the variances of the elements of random vector g 

over all possible realizations of random vector y. 

[3] var( ĝ ) = vary(Eg[g│y]) 

Proof: 

var( ĝ ) = Ey[varg( ĝ │y)] + vary(E[ ĝ │y]) 

    = Ey[varg(Eg[g│y])] + vary(Eg[g│y]) 

    = Ey[0] + vary(Eg[g│y]) 

    = vary(Eg[g│y]) 

  the var( ĝ ) is equal to the variance of the expected value of g given y. 

[4] var(g) = Ey[varg(g│y)] + vary(Eg[g│y]) 

  var(g) = var( ĝ  B g) + var( ĝ )    by [2] and [3] 

  var( ĝ  B g)  = var(g) B var( ĝ ) 

[5]  cov( ĝ , g) = var( ĝ ) 
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Proof: 

Version 1: 

  var( ĝ  B g)  =  var( ĝ ) + var(g) B 2 cov( ĝ , g) 

But, 

  var( ĝ  B g)  =  var(g) B var( ĝ ) 

Thus, 

  var(g) B var( ĝ ) =  var( ĝ ) + var(g) B 2 cov( ĝ , g) 

      cov( ĝ , g)  =  var( ĝ ) 

Version 2: 

  cov( ĝ , g)  = E[ ĝ g] B E[ ĝ ]E[g] 

      = E[ ĝ g] B (E[ ĝ ])2    by [1] 

and 

  E[ ĝ g]   =  gy ĝ g fyg(y,g) dg dy 

      =   dy (y)f  dg y)(g f g   g yyggy |ˆ _  

      =  y ĝ E[g│y] fy(y) dy 

      =  y ĝ ĝ  fy(y) dy 

      = E[ ĝ ĝ ] 

  cov( ĝ , g)  = E[ ĝ ĝ ] B (E[ ĝ ])2 

  cov( ĝ , g)  = var( ĝ ) 

[6]  r( ĝ , g) = [cov( ĝ , g)][var( ĝ ) var(g)]B2 
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Note:  if var(g) and var( ĝ ) are positive definite (Property (6), Chapter 4), there are orthogonal 

matrices L and M, such that  

  [var(g)]B2 = diag{(λgi)B2}L 

and 

  [var( ĝ )]B2 = diag{(λ iĝ )B2}M, 

where the λgi and the λ iĝ  are the eigenvalues of the matrices var(g) and var( ĝ ) and L and M are the 

corresponding matrices of eigenvectors.  But, 

  cov( ĝ , g)  = var( ĝ ) 

thus, 

  r( ĝ , g)  = [var( ĝ )]2 [var(g)]B2 

     = diag








g
g

i

i



 ˆ
LM 

 if the eigenvalues of var( ĝ ) and var(g) are the same, M, the inverse of the orthogonal matrix 

M, will also be the inverse of L, i.e., M = L, 

  r( ĝ , g) will be an identity matrix, and 

 r( ĝ , g) is maximized if the sets of eigenvalues of the var( ĝ ) and var(g) matrices are 

identical. 

Also, recall that 

  var( ĝ )  = var(g) B var( ĝ  B g) 

  r( ĝ , g) = [var(g) B var( ĝ  B g)]2 [var(g)]B2 

Squaring both sides yields 
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  r( ĝ , g) r( ĝ , g) = var(g) / var(g) B var( ĝ  B g) / var(g) 

       = I B var( ĝ  B g) / var(g) 

and taking square roots of both sides gives 

  r( ĝ , g) = [I B var( ĝ  B g) / var(g)]B2 

 

     = I,    if var( ĝ  B g) = 0 

  because the BP minimizes var( ĝ  B g), it also maximizes r( ĝ ,g). 

[7] var( ĝ  B g)  = [I B r( ĝ , g) r( ĝ , g)] var(g) 

Proof: 

  var( ĝ  B g)  = var(g) B var( ĝ ) 

      = [[var(g)[var(g)]B1 B var( ĝ )[var(g)]B1] var(g) 

But  r( ĝ , g) = [var( ĝ )]2[var(g)]B2, thus 

      var( ĝ  B g)  = [I B r( ĝ , g) r( ĝ , g)] var(g) 

[8]  Selection rules: 

[8.1] Cochran's rule:  select all animals in a population whose 

  iĝ  = E[gi│yi] ≥ t 

where t is a truncation point chosen such that 

   P{gi  =  E[gi│yi]  ≥  t}  =  s 

where s is the selected fraction of the population, and  yi =  [y1i y2i ... yni]. 

Remarks: 

(1) Cochran's rule requires the assumption that the cumulative distribution function of iĝ  (i.e., 
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E[gi│yi]) is continuous and monotone such that for any selected fraction s, 0 < s < 1, there is 

only one t that satisfies P{ iĝ  ≥ t} = s. 

(2) If the (gi,yi) sampled are IID, then selection of animals based on the E[gi│yi] = iĝ  

maximizes Es(g), the expected genetic value of the animals in the selected fraction s. 

  Note that IID means that: 

  (a)  animals must have the same amount and type of information, and 

  (b)  animals must be unrelated. 

[8.2] Fernando's rule:  Select s individuals out of the n animals in the population using  

  ĝ  = E[g│y], where g = [g1 g2 ... gn], and y = [y11 y12 ... ynqn]. 

Remarks: 

(1) Fernando's rule makes no assumptions on: 

(a) the distribution of (g│y), i.e., it holds for any distribution, and 

(b) the quality and quantity of information for individual, i.e., animals may have unequal 

information and they can be related. 

(2) Selection of s out of n animals using ĝ  = E[g│y] maximizes Es(g), the expected genetic 

value of the s selected individuals. 

[9] Drawback of BP:  How to compute it? 

Must know: 

(a) The conditional distribution of (g│y), and 

(b) The parameters of the distribution. 

However, when the joint distribution of (g, y) is multivariate normal, the form of the BP 

simplifies greatly.  In such case, 
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(a) The conditional mean of u is linear in y, 

(b) The only parameters needed are the first and second moments, and 

(c) BP is identical computationally to the best linear prediction (BLP). 

Thus, assume 
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Thus, 

  (g│y)  MVN {μg + CVB1(y B μy), G B CVB1C} 

  ĝ   = μg + CVB1(y B μy)  under normality. 

 

Properties of the best predictor under normality 

[1]  Ey[ ĝ ] = Ey[μg + CVB1(y B μy)] 

    = μg + CVB1(μy B μy) 

    = μg 

    = E[g]    ("weak property of BP"). 

[2]  E[g│ ĝ ] =  Eg[g│y] = ĝ  

Proof: 
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 cov( ĝ , g)  = cov(CVB1y, g) 

     = CVB1C 
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   Ey[g│ ĝ ]  = μg + CVB1C(CVB1C)B1 ( ĝ  B Ey[ ĝ ]) 

     = μg + (μg + CVB1(y B μy) B μg) 

     = μg + CVB1(y B μy) 

     = Eg[g│y] 

     = ĝ      ("strong property of BP"). 

[3]  var( ĝ  B g)  = var(g) B var( ĝ ) 

      = G B CVB1C 

[4]  var( ĝ )  = var(μg + CVB1(y B μy)) 

     = CVB1VVB1C 

     = CVB1C 

[5]  cov( ĝ , g)  = cov(CVB1y, g) 

      = CVB1C 

      = var( ĝ ) 

[6]  r( ĝ , g) = [var( ĝ )]2 [var(g)]B2 

     = [CVB1C]2 [G]B2 

[7]  var( ĝ  B g)  = [I B CVB1CGB1]G 

 

References 

Cochran, W. G. 1951.  Improvement by means of selection.  Proc. Second Berkeley Symp. Math. 

Stat. and Prob., pp 449-470. 

Fernando, R. L. and D. Gianola. 1986.  Optimal properties of the conditional mean as a selection 



 [8-13] 
 

criterion.  Theor. Appl. Genet. 72:822-825. 

Quaas, R. L. 1986.  Personal Communication.  Animal Science 720, Cornell University, Ithaca, NY. 

Searle, S. R. 1973.  Derivation of prediction formulae.  Mimeo BU-482-M, Biometrics Unit, 

Cornell University, Ithaca, NY. 

Searle, S. R. 1974.  Prediction, mixed models and variance components.  In: Proc. Conf. Reliability 

and Biometry, Tallahassee, Florida.  F. Proschan and R.J. Serfling (Ed.), SIAM, 

Philadelphia, Pennsylvania.  (Mimeo BU-468-M, Biometrics Unit, Cornell Univ, Ithaca, 

NY, 1973). 


