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ANIMAL BREEDING NOTES 

CHAPTER 9 

BEST LINEAR PREDICTION 

 

Derivation of the Best Linear Predictor (BLP) 

Consider: 

  y = [y1 y2 ... yn], an observable random vector, and 

  g = [g1 g2 ... gp], an unobservable random vector. 

The vectors y and g are jointly distributed.  If the joint distribution of y and g is unknown or 

mathematically intractable, but the means and variances of y and g and the covariance between y 

and g are known, g can be predicted using the best linear predictor (BLP) of g with respect to y.  

Thus, g is predicted using 

  ĝ  = a + By, 

where the vector a and the matrix B are chosen such that they minimize the mean square 

error of prediction (MSEP), i.e., they minimize 

  E[(a + By B g) A (a + By B g)], 

where A is any s.p.d. matrix. 

Let 
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Then, minimizing the MSEP with respect to the vector a and the matrix B yields ĝ , the BLP 

of g, where 
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  ĝ  = μg + CVB1(y B μy). 

Proof:  First, the following theorem (based on theorem 1, Searle, 1971, pg. 55) is needed. 

Theorem: 

Let y and g be two random vectors, where 
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Then, 

(a)  E[yAg] = tr(AC) + μyAμg, 

(b)  E[yAy] = tr(AV) + μyAμy, and 

(c) E[gAg] = tr(AG) + μgAμg. 

Proof of Theorem: 

(a)  cov(g,y) = C 

     = E[gy] B μgμy 

    E[gy]  = C + μgμy 

Because yAg is a scalar, it equals its own trace, thus 

 E[yAg]  = E[tr(yAg)] 

     = E[tr(Agy)] 

     = tr(E[Agy]) 

     = tr(AE[gy]) 

     = tr(A[C + μgμy]) 

     = tr(AC) + tr(Aμgμy) 

     = tr(AC) + μyAμg 
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(b)   V  = E[yy] B μyμy 

  E[yy]  = V + μyμy 

    E[yAy] = tr(AE[yy] 

     = tr(AV) + μyAμy 

(c)  G   = E[gg] B μgμg 

    E[gg]  = G + μgμg 

   E[gAg]  = tr(AE[gg]) 

     = tr(AG) + μgAμg 

Proof of BLP of g: 

E[(a + By B g)A(a + By B g)] 

  = E[aAa + aABy B aAg + yBAa + yBABy B yBAg B gAa B gABy + gAg] 

 = E[aAa + 2aABy B 2aAg + yBABy B 2yBAg + gAg],   because quadratic 

forms are scalars, 

 = aAa + 2aABμy B 2aAμg + tr(BABV) + μyBABμy B 2tr(BAC) B 2μyBAμg + 

tr(AG) + μgAμg 

   ≡ L 

a
L


  = 2Aa + 2ABμy B 2Aμg = 0 

     a + Bμy  = μg 

       a = μg B Bμy 

B
L


  = 2Aaμy + ABV + ABV + ABμyμy + ABμyμy B 2AC B Aμyμy = 0 

because: 
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B
 (2aABμy)  = 

B
 tr(2aABμy) 

      = 
B
 tr(2BμyaA) 

      = 2Aaμy 

 
B
 tr(BABV)  = ABV + ABV 

 
B
 (μyBABμy) = 

B
 tr(μyBABμy) 

      = 
B
 tr(BABμyμy) 

      = ABμyμy + ABμyμy 

 
B
 tr(BAC)  = AC 

 
B
 (2μyBAμg) = 

B
 tr(2BAμgμy) 

      = 2Aμgμy 

But A = A and V = V.  Thus, 

B
L


  =  2Aaμy + 2ABV + 2ABμyμy B 2AC B 2Aμgμy = 0 

       aμy + BV + Bμyμy B C B μgμy = 0 

            (a + Bμy B μg)μy + BV  = C 

Also, because  a = μg B Bμy, 

  (μg B Bμy + Bμy B μg)μy + BV  = C 

         BV  = C 
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          B = CVB1 

          a = μg B CVB1μy 

Substituting these expressions for a and B in ĝ  = a + By yields        

  ĝ  = μg B CVB1μy + CVB1y 

  ĝ  = μg + CVB1(y B μy) , the BLP of g. 

 

Properties of the Best Linear Predictor 

[1]  E[ ĝ ] = E[μg + CVB1(y B μy)] 

    = μg + CVB1(μy B μy) 

    = μg 

    = E[g] 

  the BLP is unbiased even though unbiasedness was not required in its derivation, and 

  the BLP minimizes the error variance of prediction (EVP) of ĝ , because E[ ĝ B g] = 0. 

[2]   var( ĝ )  = cov( ĝ , ĝ ) 

     = cov(CVB1y, yVB1C) 

     = CVB1VVB1C 

     = CVB1C 

[3]  cov( ĝ , g) = cov(CVB1y, g) 

     = CVB1C 

     = var( ĝ ) 

[4]  var( ĝ  B g)  = var( ĝ ) B 2cov( ĝ , g) + var(g) 
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      = var( ĝ ) B 2var( ĝ ) + var(g) 

      = var(g) B var( ĝ ) 

      = G B CVB1C 

[5]  Let   g~  = BP of g  and  ĝ  = BLP of g. 

Then, 

  var( ĝ  B g)  = var( g~  B g)  + var( ĝ  B g~ ) 

Proof: 

  var( ĝ  B g)  = Ey[var(( ĝ  B g)  y)] + var(E[ ĝ  B g)  y]) 

= Ey[var( ĝ   y) + var(g  y) B 2cov(( ĝ   y),(g  y))]  

       + var( ĝ  B E[g  y]) 

But ( ĝ   y) = (μg + CVB1(y B μy)  y) is a constant, thus 

  var( ĝ  B g)  = Ey[var(g  y)] + var( ĝ  B g~  ) 

      = var( g~  B g)   }  EVP of BP 

       + var( ĝ  B g~ )  }  variance due to the nonlinearity of the BP of g~  

 The var( ĝ  B g~ ) is the price paid for limiting the BP to linear functions only. 

[6]  The BLP maximizes r( ĝ , g) in the class of linear predictors (a + By). 

Proof: 

  r( ĝ , g)  = [var( ĝ )]2 [var(g)]B2 

      = [var(g) B var( ĝ  B g)]2 [var(g)]B2 

But ĝ  , the BLP of g, minimizes the EVP, i.e., it minimizes var( ĝ  B g), thus, 
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  as var( ĝ  B g) → 0 

  r( ĝ , g)  → [var(g)]2[var(g)]B2 

      → I 

  BLP maximizes r( ĝ , g) in the class of (a + By) predictors. 

[7]  Under multivariate normality, 

   Ey[g ĝ ]  = Eg[gy]  = ĝ   

 Proof: 
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  Ey[g ĝ ] = μg + CVB1C(CVB1C)B1( ĝ   B Ey[ ĝ ]) 

     = μg + (μg + CVB1(y B μy) B μg) 

     = μg + CVB1C(y B μy) 

     = ĝ  the BLP of g 

     = Eg[gy]  the BP of g under normality. 

This is called the “strong property of the BP and the BLP of g under normality”, because it 

has direct bearing upon their property of correct pairwise ranking. 

[8]  Under normality, the ranking on ĝ , the BLP (and the BP) of g, maximizes the 

probability of correct pairwise ranking. 

Proof: 

Let mg be a contrast of two gi's, i.e., gi B gi. 

Then, 
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  Probability {correct ranking} = P{mg > 0m ĝ  > 0}  + P{mg < 0m ĝ  < 0} 

But 
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Thus, 
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and 

  Ey[mgm ĝ ] = mμg + mCVB1Cm (mCVB1Cm)B1 (m ĝ  B Ey [m ĝ ]) 

      = mμg + (mμg + mCVB1(y B μy) B mμg) 

      = m ĝ     the BLP of mg under normality, 

      = mEg[gy]    the BP of mg under normality. 

Thus, the probability of correct pairwise ranking depends on two factors: 

 (a)  mμg  and 

 (b)  mCVB1(y B μy). 

To maximize the probability of correct pairwise ranking is equivalent to maximizing the correlation 

between mg and m ĝ  with the condition that mμg = 0.  This implies that all μg are equal, e.g., all 

animals come from the same population, hence μg is the same for all of them. 
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But the BLP (and the BP) of g maximizes r(g, ĝ ), and r(mg, ĝm) = m r(g, ĝ ) m.  

Consequently, the BLP (and the BP) of g also maximizes r(mg, ĝm). 

Thus, the BLP (and the BP) of g under normality maximizes the probability of correct pairwise 

ranking for all pairs (gi,gi) when the means of the {gi} are the same. 

 

Disadvantages of the Best Linear Predictor 

(1) It requires E[g] and E[y].  In Animal Breeding it has been assumed that all animals to be 

evaluated belong to the same population.  Consequently, E[g] has been assumed to be equal 

to a zero (any constant would be appropriate because its value does not affect the ranking of 

the BLP), and E[y] = Xβ, where X is a known incidence matrix and β is a fixed known 

vector.  However, β is usually unknown, thus, the usual procedure has been to estimate Xβ 

from the data and then compute the BLP of g as if X β̂  = Xβ. 

(2) It requires the variances and covariances, which in many instances are unknown.  The usual 

strategy has been to compute these covariances from the data or to take them from the 

literature and then compute the BLP as if  V̂  = V and  Ĉ  = C. 

(3) Computational problems arise in cases of multiple cross-classified data with large number of 

unbalanced and(or) missing subclasses.  The BLP cannot be used with large unbalanced data 

sets.  Examples of problems are the computation of a large nondiagonal VB1 and of vector β. 
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