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ANIMAL BREEDING NOTES 

CHAPTER 10 

BEST LINEAR UNBIASED PREDICTION 

 

Derivation of the Best Linear Unbiased Predictor (BLUP) 

Let 

 y = [y1 y2 ... yn] be an observable random vector, and 

 g = [g1 g2 ... gp] be an unobservable random vector, 

where y and g are jointly distributed. 

Assume that:  

(1) The joint distribution of y and g as well as the means of y and g are unknown, and  

(2) All variances and covariances are known. 

Let 
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where 

 X = known incidence matrix relating records to elements of β, and 

 β = vector of unknown constants (fixed effects). 

The E[g] was set to zero to retain the property of maximization of the probability of correct 

pairwise ranking, shown for the BLP and for the BP under normality. 

We want to predict 

 w = Kβ + Lg, 
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where K is a matrix of estimable contrasts and L is also a matrix of contrasts, using 

 ŵ  = a + By, 

where vector a and matrix B are chosen so that they minimize the mean square error of 

prediction (MSEP), i.e., they minimize 

    E[(a + By B Kβ B Lg) A (a + By B Kβ B Lg)], 

where A is any s.p.d. matrix, subject to the restriction E[ ŵ ] = E[w], i.e., 

    E[a + By] = E[Kβ + Lg] 

      a + BXβ = Kβ + 0 

      a = 0, and 

       BX = K. 

The resulting best linear unbiased predictor (BLUP) of w is: 

      ŵ   = Kβ + LCV
B1

(y B Xβ), 

where 

      β  = (XV
B1

X)
B
XV

B1
y 

      = GLS of β, 

    Kβ = Best Linear Unbiased Estimator (BLUE) of the set of estimable 

functions Kβ in the model y = Xβ + ε, y ~ (Xβ, V), and 

 LCV
B1

(y B Xβ)  = L ĝ ,    the BLUP of Lg. 

Thus, the BLUP of w is: 

       ŵ   = Kβ + L ĝ . 

Proof: 

First, a brief explanation of Lagrange multipliers, a procedure used to impose restrictions when 



 [10-3] 
 

 

maximizing or minimizing a linear function. This procedure will be used in the derivation of 

BLUP.  Lagrange multipliers can be applied to a scalar, vector, or matrix.  For example: 

[1] Scalar Lagrange multiplier 

Restriction: ax = b → λ (ax B b) 

[2] Vector of Lagrange multipliers 

 Restrictions:  
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 →  λ1 (a1x1 B b1) + λ2 (a2x2 B b2) 

[3] Matrix of Lagrange multipliers 

 Restrictions:  
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   = tr {T (AX B B)} 

   = λ11 (a11x1 B b11) + λ21 (a21x1 B b21) + λ12 (a12x2 B b12) + λ22 (a22x2 B b22) 

A matrix of Lagrange multipliers will be used in the derivation of BLUP below. 

The joint distribution of y and w is: 
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Minimize 

  L = E[(a + By B Kβ B Lg)A(a + By B Kβ B Lg)] + tr(2MA(BX B K)), 

where 2MA = 2T = matrix of Lagrange multipliers and M = TA
B1

.  The matrix A
B1

 exists 

because A is s.p.d. 
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  L = E[aAa + aABy B aAKβ B aALg 

    + yBAa + yBABy B yBAKβ B yBALg 

    B βKAa B βKABy + βKAKβ + βKALg 

    B gLAa B gLABy + gLAKβ + gLALg] 

    + tr(2MA(BX B K)) 

  L = aAa + aABXβ B aAKβ B 0 

    + βXBAa + tr(BABV) + βXBABXβ B βXBAKβ B tr(BALC) B 0 

    B βKAa B βKABXβ + βKAKβ + 0 

    B 0 B tr(LABC) + 0 + 0 + tr(LALG) + 0 

    + tr(2MABX) B tr(2MAK) 

 

 
a

L




 = 2Aa + 2ABXβ B 2AKβ = 0 

       a + BXβ = Kβ 

         a = Kβ B BXβ 

 
M’

L




 = 2ABX B 2AK  = 0 

       BX  = K 

        a = BXβ B BXβ 

        a = 0 

 
B

L




 = 2Aa βX + 2ABV + 2ABXββX B 2AKββX B 2ALC + 2AMX = 0 

However, a = 0 and multiplication by ½ A
-1

 gives 
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    BV + BXββX B KββX B LC + MX = 0 

In addition, because K = BX,  

   BV + BXββX B BXββX B LC + MX  = 0 

Thus, because of the constraint K = BX, the BLUP of Lg will be invariant to β. 

Now we solve for B in the following set of equations: 

   BV + MX  = LC            (1) 

     BX  = K             (2) 

From (1), 

      B = LCV
B1

 B MXV
B1

        (3) 

Substituting the expression of B in (3) for B in (2) yields, 

  LCV
B1

X B MXV
B1

X  = K 

        M = BK(XV
B1

X)
B
 + LCV

B1
X(XV

B1
X)

B
 

Using this expression for M in (3) gives: 

  B = LCV
B1

 + K(XV
B1

X)
B
XV

B1
 B LCV

B1
X(XV

B1
X)

B
XV

B1
 

  ŵ  = a + By 

  ŵ  = K(XV
B1

X)
B
XV

B1
y + LCV

B1
(y B (XV

B1
X)

B
XV

B1
y) 

  ŵ  = Kβ + L ĝ , the BLUP of w. 

where 

  β = (XV
B1

X)
B
XV

B1
y,  the GLS of β. 

From the model y = Xβ + ε,  y  (Xβ,V), 

  Kβ = BLUE of Kβ,  and 

  ĝ   = CV
B1

(y B Xβ),  the BLUP of g. 
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The expectations of Kβ and ĝ  are: 

     E[Kβ] = Kβ 

  E[ ĝ ] = CV
B1

(Xβ B Xβ) 

    = 0 

 

Translation invariance of Best Linear Unbiased Predictor 

Definition:  a predictor ŵ  = a + By is translation invariant if 

    a + By = a + B(y + Xt)  for any vector t. 

Theorem:  The BLUP of Lg, i.e., L ĝ , is translation invariant to the value of β. 

Proof:   

Minimize: 

     L = E[(a + B(y + Xt) B Kβ B Lg)A(a + B(y + Xt) B Kβ B Lg)] 

      + tr(2MA(BX B K)) 

But, 

     E[y + Xt] = Xβ + Xt 

    = X(β + t) 

    = Xβ
*
,  for β

*
 = (β + t) 

Thus,  

L =  aAa + aABXβ
*
 B aAKβ

*
 B 0 

+ β
*
XBAa + tr(BABV) + β

*
XBABXβ

*
 B β

*
XBAKβ

*
 B tr(BALC + 0) 

+ β
*
KAa B β

*
KABXβ

*
 + β

*
KAKβ

*
 + 0 

B 0 B tr(LABC + 0) + 0 + tr(LALG + 0) 
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+ tr(2MABX B 2MAK) 

 
a

L




 = 2Aa + 2ABXβ

*
 B 2AKβ

*
  = 0 

          a = Kβ
*
 B BXβ

*
 

 
’ M

L




 = 2XBA B 2KA = 0 

       BX  = K 

        a = BXβ
*
 B BXβ

*
 

        a = 0 

 
B

L




 = 2ABV + 2ABXβ

*
β

*
X B 2AKβ

*
β

*
X B 2ALC + 2AMX = 0 

But K = BX, thus 

        BV + BXβ
*
β

*
X B BXβ

*
β

*
X B LC + MX = 0 

 The BLUP of Lg will be invariant to β because β
*
 was eliminated from this equation due to 

the restriction BX = K. 

We now solve for B in the set of equations: 

     BV + MX  = LC            (1) 

       BX  = K             (2) 

From (1), 

        B = LCV
B1

 B MXV
B1

        (3) 

From (3) and (2), 

  LCV
B1

X B MXV
B1

X  = K 

        M = BK(XV
B1

X)
B
 + LCV

B1
X(XV

B1
X)

B
    (4) 
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From (4) and (3), 

    B = LCV
B1

 + K(XV
B1

X)
B
XV B LCV

B1
X(XV

B1
X)

B
XV

B1
 

    ŵ  = a + By 

    ŵ  = Kβ + L ĝ , 

where 

     β  = (XV
B1

X)
B
XV

B1
y,    GLS of β for y ~ (Xβ

*
,V), 

  Kβ = BLUE of Kβ
*
 (not invariant to the value of β),  and 

  L ĝ  = LCV
B1

(y B Xβ),    the BLUP of Lg. 

 The BLUP of Lg, L ĝ , is invariant to the value of β, i.e., L ĝ  is translation invariant. 

The translation invariance of the BLUP of Lg results as a consequence of the restriction BX = K.  

Thus, the constraint BX = K causes the BLUP of Lg to be translation invariant as well as it 

insures its unbiasedness. 

Notation: 

Let 

  ĝ   = CP y 

where 

  P  = V
B1

 B V
B1

X(XV
B1

X)
B
XV

B1
 

Remarks: 

(1)  PX  = V
B1

X B V
B1

X 

    =  0 

(2)  XP = XV
B1

 B XV
B1
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    = 0 

(3)  PVP = (I B V
B1

X(XV
B1

X)
B
X)(V

B1
 B V

B1
X(XV

B1
X)

B
XV

B1
) 

    = V
B1

 B V
B1

X(XV
B1

X)
B
XV

B1
 + V

B1
X(XV

B1
X)

B
XV

B1
 

     B V
B1

X(XV
B1

X)
B
XV

B1
X(XV

B1
X)

B
XV

B1
 

    = V
B1

 B V
B1

X(XV
B1

X)
B
XV

B1
 

    = P 

(4)  PV  = I B V
B1

X(XV
B1

X)
B
X 

(5)  PVPV = (I B V
B1

X(XV
B1

X)
B
X)(I B V

B1
X(XV

B1
X)

B
X) 

    = I B V
B1

(XV
B1

X)
B
X B V

B1
X(XV

B1
X)

B
X 

     + V
B1

(XV
B1

X)
B
XV

B1
X(XV

B1
X)

B
X 

    = PV, i.e., PV is idempotent. 

 

Properties of the Best Linear Unbiased Predictor. 

[1]  E[ ŵ ] = E[w]  by definition (this was a requirement for ŵ ) 

  E[ ŵ ] = E[Kβ + LCV
B1

(y B Xβ)] 

    = Kβ + LCV
B1

(Xβ B Xβ) 

    = Kβ 

    = E[w] 

[2]  var(Xβ) = X(XV
B1

X)
B
XV

B1
 var(y) V

B1
X(XV

B1
X)

B
X 

     = X(XV
B1

X)
B
XV

B1
 VV

B1
X(XV

B1
X)

B
X 

     = X(XV
B1

X)
B
X 

[3]  var(Kβ) = K(XV
B1

X)
B
XV

B1
 var(y) V

B1
X(XV

B1
X)

B
K 
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     = K(XV
B1

X)
B
K. 

[4]  cov(Xβ, y) = X(XV
B1

X)
B
XV

B1
 var(y) 

      = X(XV
B1

X)
B
X 

      = var(Xβ) 

[5]  var(L ĝ ) = LCP var(y) PCL 

     = LCPVPCL 

     = LCPCL 

     = LCV
B1

CL B LCV
B1

X(XV
B1

X)
B
XV

B1
CL 

[6]  cov(Xβ, ĝ L) =  X(XV
B1

X)
B
XV

B1
 var(y) PCL 

       =  X(XV
B1

X)
B
XV

B1
VPCL 

       =  X(XV
B1

X)
B
XV

B1
CL B X(XV

B1
X)

B
XV

B1
X(XV

B1
X)

B
XV

B1
CL 

       =  0 

[7]  var( ŵ ) =  var(Kβ + L ĝ ) 

     =  var(Kβ) + var(L ĝ )  by [6] 

[8]  cov(L ĝ , gL)  = LCP cov (y, g)L 

       =  LCPCL 

       = LCV
B1

CL B LCV
B1

X(XV
B1

X)
B
XV

B1
CL 

       = var(L ĝ ) 

[9]  var(L( ĝ  B g))  = var(L ĝ ) + var (Lg) B 2 cov(L ĝ , gL) 

       = var(Lg) B var(L ĝ ) 

       = LGL B LCPCL 
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       = L[G B CPC]L 

       = L[G B CV
B1

C + CV
B1

X(XV
B1

X)
B
XV

B1
C]L 

  var(L( ĝ  B g))  = L[G B CV
B1

C]L + LCV
B1

X(XV
B1

X)
B
XV

B1
CL 

  var(L( ĝ  B g))  = PEV of BLP + var(LCV
B1

Xβ) 

  var(L( ĝ  B g))  = var(BP B Lg)   } PEV of E[g│y] (lower bound) 

        + var(BLP B BP)  } departure from linearity of E[g│y] 

          + var(LCV
B1

Xβ) } variance due to the estimation of β 

Remark:  

   var(L( ĝ  B g))  =  var(Lg) B var(L ĝ ) 

    var(L ĝ )  = var(Lg) B var(L( ĝ  B g)) 

 [10] var( ŵ  B w) =  var(Kβ + L ĝ  B Kβ B Lg) 

      =  var(Kβ + L( ĝ  B g)) 

      =  var(Kβ) + var(L( ĝ  B g)) B cov(Kβ, gL) B cov(Lg, βK) 

      =  K(XV
B1

X)
B
K + L[G B CPC]L B K(XV

B1
X)

B
XV

B1
CL  

         B LCV
B1

X(XV
B1

X)
B
K 

[11] The BLUP maximizes the correlation between ŵ  and w in the class of linear 

predictors (a + By) invariant to β (i.e., translation invariant) with BX = K ≡ 0. 

Proof: 

   r( ŵ , w)  = [cov( ŵ , w)][var( ŵ ) var(w)]
B2

. 

   cov( ŵ , w) = cov(Kβ + L ĝ , βK + gL) 

       = cov(Kβ, gL) + cov(L ĝ , gL) 
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       = cov(Kβ, gL) + var(L ĝ ) 

       = var(L ĝ )    because K ≡ 0 

   var( ŵ )  = var(Kβ) + var(L ĝ ),    from BLUP property [7] 

       = var((L ĝ )   if K ≡ 0 

Thus, 

   r( ŵ , w)  = r(L ĝ , gL),    if K ≡ 0 

       = [var(L ĝ )]
2

 [var(Lg)]
B2

 

       = [var(L ĝ ) / var(Lg)]
2

 

       = [[var(Lg) B var(L( ĝ  B g))] / var(Lg)]
2

,    by BLUP property [9] 

       = [I B [var(L( ĝ  B g)) / var(Lg)] ]
2

 

Thus, because the BLUP of w minimizes var(L( ĝ  B g) when K ≡ 0, it also maximizes r( ŵ ,w) = 

r(L ĝ , gL) when K ≡ 0, i.e., 

   as var(L( ĝ  B g))  →  0 

    r( ŵ , w)   →  I 

[12] Assuming normality, 
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If K ≡ 0, 
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[12.1] Xβ is the maximum likelihood estimator (MLE) of Xβ, thus, ŵ , the BLUP of w under 

normality, is the MLE of E[w│y]. 

Proof: 

   w = Kβ + Lg 

   








































 

 GL’ L  ’ C 

 C  V 
  ,

 ’ K 

 X 
    MVN  

  w

y  




~  

  E[w│y] = Kβ + LCV
B1

(y B Xβ) 

But, K = BX, 

   E[w│y] =  BXβ + LCV
B1

(y B Xβ). 

Because Xβ is the MLE of Xβ, by the invariance property of MLE, 

   ŵ  = BXβ + LCV
B1

(y B Xβ) 

   ŵ  =  Kβ + LCV
B1

(y B Xβ) 

is the MLE of E[w│y]. 

[12.2] Under normality, and with K ≡ 0, 

(a) E[w│ ŵ ] = E[Lg│L ĝ ] = L ĝ  

Proof: 

  E[Lg│L ĝ ] = 0 + LCPCL(LCPCL)
B
(L ĝ  B E[L ĝ ]) 

      = I(L ĝ  B L[0]) 

      = L ĝ  

(b) var(w│ ŵ )  = var(Lg│L ĝ ) = var(L( ĝ  B g)) 

Proof: 



 [10-14] 
 

 

  var(Lg│L ĝ )  = LGL B LCPCL(LCPCL)
B
LCPCL 

       = LGL B LCPCL 

       = var(Lg) B var(L ĝ ) 

       = var(L( ĝ  B g))    from BLUP property [9] 

(c) The ranking on ŵ  when K  ≡  0, i.e., the ranking on L ĝ , maximizes the probability of correct 

pairwise ranking for all pairs {Lgi, Lgi} in the class of translation invariant linear predictors 

with mean zero, i.e., with E[L ĝ ] = 0. 

Proof: 

Let t(Lg) be a contrast between two sets of g's, i.e., Lgi B Lgi. Then, 

  P{correct ranking}  = P{t(Lg) > 0│t(L ĝ ) > 0} + P{t(Lg) < 0│t(L ĝ ) < 0} 

But E[tLg] = 0.  Thus, to maximize P{correct pairwise ranking} is equivalent to maximizing the 

correlation between t(Lg) and t(L ĝ ), i.e., 

    


































 t ) L’ g    ,gL’ ( rt’  

  

 ) t L’g    ,) g(L’t’  ( r 
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 ranking 
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MaximizingMaximizing

ˆ

ˆ

 

But, by BLUP property [11], L ĝ  maximizes r(Lg, ĝ L).  Thus, L ĝ  also maximizes the 

probability of correct pairwise ranking in the class of translation invariant linear predictors with 

zero mean. 

[12.3] Assuming normality, K  0 and L = I, the BLUP of w = g is equal to the BP of g based 

on Ty, for T chosen such that E[Ty] = 0. 
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Proof: 

Consider a matrix of linear contrasts, T, of rank n B rank(X), satisfying: 

(i)  TX = 0  T is in the null space of X, 

  T is in the orthogonal complement of the column space of X, 

(ii)  TT = T, and 

(iii)  TT = I. 

One such T is: 

  T = I B X(XV
B1

X)
B
XV

B1
 

Under normality, 

  








































 

G   ’ C 

 C  V 
  ,

 0 

 X 
    MVN  

 g 

y  
~  

 

Here we need to know β.  However, we can consider linear contrasts of the elements of β, e.g., T
*
, 

such that T
*
Xβ = 0, which implies that T

*
X must be zero because β ≠ 0.  Thus, consider T, 

   E[Ty]  = TE[y] 

      = TXβ 

      = (I B X(XV
B1

X)
B
XV

B1
)Xβ 

      = Xβ B X(XV
B1

X)
B
XV

B1
Xβ 

      = Xβ B Xβ 

      = 0 

Thus, 
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G   T’ C 

 C’ T  VT’ T 
  ,

 0 

 0 
     MVN  

 g 

y ’ T 
~  

and 

   E[g│Ty] = CT(TVT)
B1

Ty 

But the BLUP of g is: 

     ĝ  = CPy 

where 

   P = V
B1

 B V
B1

X(XV
B1

X)
B
XV

B1
 

Then, 

   E[g│Ty] = CT(TVT)
B1

Ty 

      = ĝ ,  the BLUP of g, 

and 

  var(g│Ty)  = G B CT(TVT)
B1

TC 

      = var( ĝ  B g),  the EVP of g. 

Now suppose that: 

     P =  T(TVT)
B1

T 

But  P was defined to be: 

     P =  V
B1

 B V
B1

X(XV
B1

X)
B
XV

B1
 

Thus,  

  T(TVT)
B1

T =  V
B1

 B V
B1

X(XV
B1

X)
B
XV

B1
 

    V
B1

  =  T(TVT)
B1

T B V
B1

X(XV
B1

X)
B
XV

B1
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    I  =  VT(TVT)
B1

T B X(XV
B1

X)
B
XV

B1
 

or, 

    I  =  H1 + H2 

    I  = H 

where 

  H1 =  VT(TVT)
B1

T 

  H2 = X(XV
B1

X)
B
XV

B1
 

  H = H1 + H2 

But for H to be equal to I, it must be idempotent and nonsingular.  Thus, it needs to be proven that 

H
2
 = H, and that H is nonsingular of rank n. 

(a) Show that H is idempotent, i.e., show that: 

  (H1 + H2)
2
  = (H1H1 + H1H2 + H2H1 + H2H2) = (H1 + H2) 

Thus, 

    H1H1 = VT(TVT)
B1

TVT(TV
B1

T)
B1

T 

      = H1, 

    H2H2 = X(XV
B1

X)
B
XV

B1
X(XV

B1
X)

B
XV

B1
 

      = H2, 

    H1H2 = VT(TVT)
B1

TX(XV
B1

X)
B
XV

B1
 

      = 0,    because TX = 0, and 

    H2H1 = X(XV
B1

X)
B
XV

B1
VT(TVT)

B
TX 

      = 0,    because XV
B1

VT = XT = 0. 

   (H1 + H2)
2
 = (H1 + 0 + 0 + H2) 
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      = H1 + H2 

      = H 

   H is idempotent. 

(b)  Show that H is nonsingular and that rank (H) = n 

   rank (H) = tr(H1 + H2), because H is idempotent, 

      = tr(H1) + tr(H2) 

      = rank (H1) + rank (H2) 

      = rank (T) + rank (X) 

      = (nBrank (X)) + rank (X) 

      = n 

   H is full rank. 

But the only nonsingular idempotent matrix is the identity matrix.  Thus, H = I. 

  T(TVT)
B1

T = P 

  E[g│Ty]  = CT(TVT)
B1

Ty 

      = CPy 

      = ĝ   

      = BLUP of g when TX = 0 

  var(g│Ty)  = G B CT(TVT)
B1

TC 

      = G B CPC 

      = var( ĝ  B g) 

      = EVP of g when TX = 0 

  Under normality, the BLUP of g is equal to the BP of g based on Ty, for T such that 
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E[Ty] = 0. 

[12.4] Under normality and K ≡ 0, the BLUP of w = Lg is equal to the BP of Lg based on 

LTy, for T chosen such that E[Ty] = 0, i.e., 

  BLUP of Lg = BP of E[LgLTy], for T such that E[Ty] = 0, by [12.3]. 

[12.5] Under normality, K ≡ 0 and L = I, the BLUP of w = g maximizes the Es[gs] when the 

selection rule is to pick out s out of n individuals. 

Proof: 

 (i) BLUP of g  = E[g│Ty], for T such that E[Ty] = 0,  by [12.3] 

      =  BP of g based on Ty. 

 (ii) The BP of g based on Ty maximizes the Es[gs] when s out of n individuals are chosen 

using ĝ  = E[g│Ty]. 

Thus, because 

 ĝ  =  E[g│Ty] = BLUP of g under normality 

 under normality, the BLUP of g maximizes Es[gs] when the rule is to select s out of n 

individuals based on ĝ . 

[12.6] Under normality, K ≡ 0, L = I, and  

(i) animals have the same amount and type of information, and 

(ii) animals are unrelated, 

the BLUP of w = g maximizes Es[gs] when the selection rule is to select all individuals 

whose BLUP of g is larger than a truncation value t, i.e., Es[gs] maximizes the mean genetic 

value of the animals in the selected fraction s, where s = P{ iĝ ≥ t}. 
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Proof: 

  BLUP of g  = E[g│Ty] for T such that E[Ty] = 0,    by BLUP property [12.3] 

      = BP of g given Ty. 

But BP of g given Ty maximizes Es[gs] over the selected fraction s  BLUP of g also does it 

because BLUP of g = E[g│Ty]. 
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