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 ANIMAL BREEDING NOTES 

 CHAPTER 12 

ESTIMATION, ESTIMABILITY AND SOLVING THE MIXED MODEL EQUATIONS 

WHEN THEY ARE NOT FULL-RANK 

 

Methods of Estimation 

Three methods of estimation are described here:  

1) Generalized least squares,  

2) Maximum likelihood, and  

3) Best linear unbiased estimation. 

Consider the general linear model: 

  y = Xβ + ε 
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where 

 y = [y1 y2 ... yn]is a vector of observations, 

 β = [β1 β2 ... βI]is a vector of unknown fixed effects, 

 ε = [ε1 ε2 ... εn]is a vector of residual effects, i.e., ε = (y B Xβ), 

 X = [X1 X2 ... XI)is a known incidence matrix relating elements of y to elements of β. 

 

Generalized Least Squares (GLS) 

We want to estimate β based on y, using an estimator that minimizes the generalized sum of squares 
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of deviations of the observations from their expected values.  Let β be such an estimator.  Thus, we 

want β to minimize 

  εVB1ε = (y B Xβ)VB1(y B Xβ) 

with respect to β.  The resulting GLS estimator of β is: 

  β = (XVB1X)BXVB1y 

Proof: 

  L  (y B Xβ)VB1(y B Xβ) 

  L = yVB1y B yVB1Xβ B βXVB1y + βXVB1Xβ 

 


L  = B2XVB1y + 2XVB1Xβ = 0 

   β = (XVB1X)BXVB1y 

Note that if VB1 = Iσ2, the GLS estimator of β becomes: 

   β = (XX)BXy 

which is called the ordinary least squares (OLS) estimator of β.  The OLS can also be obtained 

by minimizing 

  (y B Xβ)(y B Xβ) 

with respect to β. 

 

Maximum Likelihood (ML) 

Assuming normality: 

  




































 

 V V 

 V V 
  ,

 0 

 X 
    MVN  

  

y  


~  

Thus, the ε's are assumed to be normally distributed with mean zero and covariance matrix V.  The 
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β will be estimated by maximizing the likelihood function of the sample of observations represented 

in vector y.  The likelihood function of y (i.e., the function of parameters β and V given a data 

vector y; Searle et al., 1992, pg. 79) is: 

  L = L(β, V | y) = )(2 2
n


 VB2 exp{B2(y B Xβ)VB1(y B Xβ)} 

Maximizing L with respect to β yields the ML estimator (MLE) of β, i.e., β, where 

  β = (XVB1X)BXVB1y 

Proof: 

Maximizing  = log L is equivalent to maximizing L because both functions are continuous and 

increasing and have the same maximum given by β.  Thus, 

    = B
2
n log 2π B 2logV B 2(yVB1y B yVB1Xβ B βXVB1y + βXVB1Xβ) 



  = BXVB1y + XVB1Xβ = 0 

      β = (XVB1X)BXVB1y 

 

Best Linear Unbiased Estimation (BLUE) 

Given 
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and Kβ estimable, we want to estimate Kβ using an estimator (Kβ) that: 

  (i) It is linear in y, i.e., 

  Kβ = a + By 

 (ii) It has minimum mean square error of estimation, i.e., Kβ is chosen to minimize: 
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  E[(Kβ B Kβ)(Kβ B Kβ)] = E[(a + By B Kβ)(a + By B Kβ)] 

(iii) It is unbiased, i.e., 

  E[Kβ] = E[a + By] = Kβ 

    = a + BXβ  = Kβ 

  a = 0 and  BX = K   (BX B K) = 0 

The resulting BLUE of Kβ is: 

  Kβ = K(XVB1X)BXVB1y 

Proof: 

Minimize L with respect to a, B and M, where  

 L = E[(a + By B Kβ)(a + By B Kβ) + tr(2M(BX B K)) 

where 2M is a matrix of Lagrange multipliers. 

 L = E[aa + aBy B aKβ + yBa + yBBy B yBKβ B βKa B βKBy 

    + βKKβ + tr(2M(BX B K))] 

 L = aa + 2aBXβ B 2aKβ + trBBV + βXBBXβ B 2βXBKβ B βKKβ 

    + tr(2MBX B 2MK) 

     
a
L


   = 2a + 2BXβ B 2Kβ = 0 

     a + BXβ  = Kβ 

   
’ M

L


  = 2XB B 2K = 0 

    XB = K 

    BX   = K 

Substituting BX = K in the equation for a yields: 
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  a + BXβ  = Kβ 

    a = Kβ B BXβ 

    a = BXβ B BXβ 

    a = 0 

B
L


  = 2aβX + 2BV + 2BXBβX B 2KββX B 2MX  = 0 

But 

  a = 0  and  BX = K, 

Thus, 

  0 + BV + KββX B KββX + MX = 0 

 We need to solve the following set of equations for M and B: 

  BV + MX = 0          (1) 

  BX   = K          (2) 

From (1), 

  B = BMXVB1          (3) 

From (3) and (2), 

  BMXVB1X = K  

    M = BK(XVB1X)B       (4) 

From (4) and (3), 

  B = K(XVB1X)BXVB1        (5) 

 the BLUE of Kβ is: 

  Kβ = a + By 

  Kβ = 0 + K(XVB1X)BXVB1y 
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  Kβ = K(XVB1X)BXVB1y 

 

Properties of Kβ, the BLUE of Kβ. 

[1] E[Kβ]  = E[K(XVB1X)BXVB1y] 

    = K(XVB1X)BXVB1Xβ 

    = Kβ 

     Kβ is unbiased. 

Note: unbiasedness was required for the BLUE of Kβ, but not for the GLS of Kβ. 

[2] var(Kβ) = K(XVB1X)BXVB1 cov(y, y)VB1X(XVB1X)BK 

    = K(XVB1X)BK 

[3] var(Xβ) = X(XVB1X)BX 

[4] cov(Xβ, y) = X(XVB1X)BXVB1cov(y, y) 

    = X(XVB1X)BX 

    = var(Xβ) 

[5] cov(Xβ, ε) = X(XVB1X)BXVB1cov(y, y B βX) 

    = X(XVB1X)BX 

    = var(Xβ) 

    = cov(Xβ, y) 

[6] cov(Xβ, ̂ ) = cov(Xβ, y B βX) 

    = cov(Xβ, y) B cov(Xβ, βX) 

    = var(Xβ) B var(Xβ) 

    = 0 
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Estimability and estimable functions 
 

The general linear model is: 

  y = Xβ + ε 

  y  (Xβ, V) 

Estimability:  an element of β or a linear combination of the elements of β is estimable if it can be 

estimated unbiasedly. 

Estimable function:  a linear function of the elements of β is estimable if it is identical to a linear 

function of the expected values of the vector of observations y.   

Thus, 

 Kβ is estimable  TE[y] 

      TXβ 

      K = TX 

Properties of estimable functions 

[1] The expected value of an observation is estimable. 

 Proof: 

 By definition Kβ = TXβ.  Thus, for one record: 

  Kβ  = [1  0 ... 1  0 ... 1]β 

  TXβ = [1  0 ... 0] β 
   

 1  0   1  0   1 
















 

  TXβ = [1  0 ... 1  0 ... 1]β 

  TXβ = Kβ 

[2] Linear combinations of estimable functions are estimable. 
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 Proof: 

  Kβ is estimable 

  Kβ  = TXβ 

 Consider LKβ, 

  L(Kβ) = L(TXβ) 

  K*β  = T*Xβ 

  LKβ is estimable. 

[3] The general form of a set of estimable functions is K = TX. 

 Proof: 

 By definition,  Kβ = TXβ, 

 Kβ is estimable  K = TX 

 the general form of K = TX indicates that a linear function of the β's will be estimable if 

and only if the corresponding row of K is in the row space of X. 

[4] If Kβ is estimable, then Kβ is invariant to the value of β. 

 Proof: 

  Kβ  = K(XVB1X)BXVB1y 

  Kβ = TX(XVB1X)BXVB1y 

But  (XVB1X)BXVB1y is invariant to (XVB1X)B 

  Kβ is invariant to β 

Also, note that 

  E[Kβ] = E[TXβ] 

    = TX(XVB1X)BXVB1Xβ 
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    = TXβ regardless of the value of β when Kβ is estimable. 

[5] The BLUE of the estimable function Kβ is Kβ. 

 Proof:  See derivation of BLUE. 

 

Checking for estimability 

[1] Given a set of linear functions of the elements of β, i.e., Kβ, look for a set of linear 

combinations of the expected values of records TE[y].  If Kβ is estimable, then 

  Kβ = TE[y] for some T, 

i.e., 

  kiβ is estimable    kiβ = tiE[y], 

by properties [1] and [2] of estimable functions; otherwise kiβ is not estimable. 

[2] If (XVB1X)B and (XVB1X) are available, then Kβ is estimable if 

  K(XVB1X)B(XVB1X) = K 

by properties [3] and [4] of estimable functions. 

Note that if K = I, 

  K(XVB1X)B(XVB1X) = E[β] 

which may be of interest to determine what linear combinations of the β's are contained in β. 

[2.1] If 

  (XVB1X)B = 
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   E[β] =  
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But X2 is a linear combination of the columns of X1, i.e., X2 = X1L. 

   E[β] =  
00
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[2.2] If 
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Examples of estimable functions 

[1] Models with a general mean and a single fixed effect. 

 yij = μ + ai + εij 

 y  (μ + ai, σ) and  cov(εij,εij)  0 
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[1.1] μ + ai is estimable. 

 Proof:  E[yij] = μ + ai 

[1.2] ai B ai is estimable. 

 Proof:  [1 B1] 

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y E 

 y E 

j’i’

ij

][

][
     μ + ai B μ B ai = ai B ai 

[1.3] μ is not estimable and the ai are not estimable. 

 Proof:  there is not a t such that tE[yij] = μ or ai . 

[2] Models with a general mean and two fixed effects. 

 yijk = μ + ai + bj + εijk 

 y  (μ + ai + bj, σ)  and cov(εijk, εijk)  0 . 

[2.1] μ + ai + bj is estimable. 

 Proof:  E[yijk] = μ + ai + bj 

[2.2] ai B ai is estimable. 

 Proof: 

  [1 B1]

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 y E 

jk’i’

ijk

][

][
 =  μ + ai + bj B μ B ai B bj 

       =  ai Bai 

[2.3] bj B bj is estimable. 

 Proof: 

  [1 B1]
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       =  bj B bj 

[2.4] Non-estimable functions are: 

 (a) μ 

 (b) ai 

 (c) bj 

 (d) μ + ai 

 (e) μ + bj 

[3] Models with a general mean, two fixed effects and an interaction between these two 

fixed effects. 

  yijk = μ + ai + bj + abij + εijk 

  y  (μ + ai + bj + abij, σ)  and cov(εijk, εijk)  0 . 

[3.1] μ + ai + bj + abij is estimable. 

 Proof: 

  E[yijk] = μ + ai + bj + abij 

[3.2] (ai B ai) + (abij B abij) is estimable. 

 Proof: 

  [1 B1]
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y E 

 y E 

jk’i’

ijk

][

][
 =  μ + ai + bj + abij B μ B ai B bj B abij 

       =  (ai B ai) + (abij B abij) 

[3.3] (bj B bj) + (abij B abij) is estimable. 

 Proof: 
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  [1 B1]
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  =  μ + ai + bj + abij B μ B ai B bj B abij 

       =  (bj Bbj) + (abij B abij) 

[3.4] (ai B ai) + (bj Bbj) + (abij B abij) is estimable. 

 Proof: 
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       =  (ai Bai) + (bj Bbj) + (abij B abij) 

[3.5] (ai Bai) + 
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(abij B abij) is estimable. 

 Proof: 
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
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
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1 j 
 (abij B abij) 

[3.6] Non-estimable functions are: 

 (a) μ 

 (b) ai 

 (c) bj 
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 (d) abij 

 (e) μ + ai, μ + bj, μ + abij 

 (f) ai B ai, bj B bj, abij B abij 

[4] Models with a general mean and two fixed effects, one nested within the other. 

  yijk = μ + ai + bij + εijk   

  yijk  (μ + ai + bij, σ)  and cov(εijk, εijk)  0 . 

[4.1] μ B ai + bij is estimable. 

 Proof:  E[yijk] = μ + ai + bij 

[4.2] (ai B ai) + (bij B bij) is estimable. 

 Proof: 

  [1 B1]
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[4.3] (bij B bij) is estimable. 

 Proof: 
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[4.4] (ai B ai) + (bij B bij) is estimable. 

 Proof: 
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       = (ai B ai) + (bij B bij) 

[4.5] 
I

1 = i

(bij B bij) is estimable. 

 Proof: 

  [1 B1]
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y   E 

 y   E 

’ k’ij 

I

=1i

ijk

I

=1i

 = μ + 
I

1 = i

ai + 
I

1 = i

bij B μ B 
I

1 = i

ai B
I

1 = i

bij 

        = 
I

1 = i

(bij B bij) 

[4.6] non-estimable functions are: 

 (a) μ 

 (b) ai 

 (c) bij 

 (d) μ + ai, μ + bij 

 (e) ai B ai, bij B bij 

[5] Models with a general mean and a subclass mean.  

  yijk  = μ + cij + εijk 

  yijk   (μ + cij, σ), and cov(εijk, εijk)  0 . 

[5.1] μ + cij is estimable. 

 Proof: E[yijk] = μ + cij 

[5.2] (cij B cij) is estimable. 

 Proof: 
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  [1 B1]













 

y E 

 y E 

’ jk’ i

ijk

][

][
 = μ + cij B μ B cij 

       = (cij B cij) 

[5.3] (cij B cij) is estimable. 

 Proof: 

  [1 B1]













 

y E 

 y E 

’ k’ij 

ijk

][

][
 = μ + cij B μ B cij 

       = (cij B cij) 

[5.4] non-estimable functions are: 

 (a)  μ 

 (b)  cij 

 

Solving the MME when the matrix X is not full columnBrank 

Consider the example on weaning weight analyzed earlier, but now assume that the progeny in the 

two herds were weaned at two different ages. 

  Sires   

Herd Age 1 2 3 Herd  age sum Herd sum 

1 1 

2 

248 

256 

296 

282 

265 

274 

809 

812 

 

1621 

2 1 260 300 295 855  
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2 252 285 290 827 1682 

Sire sum 1016 1163 1124 Total sum = 3303 

 

Age 1 2 

Age sum 1664 1639 

 

Let the equation for a record be: 

 yijkl = μ + herdi + agej + sirek + residualijkl. 

In matrix notation, the corresponding linear model is: 

 y = [1  X1  X2]



















 a 

h  

μ  

 + Zs + e 

or, 

 y = Xb + Zs + e 

where 

 X = [1  X1  X2] 

 b = [μ  h  a] 

and 

 

































































































 

 σI0| σI 

 0 G | GZ’ 

----|---------- 

 σI  ZG| σI  +  ZGZ’

 , 

 0 

 0 

----

 Xb 

   

 e 

 s 

---

y  

2
e

2
e

2
e

2
e

. 
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Note: If age-of-calf-at-weaning effects are present in the weaning weight records, then (h1 B h2), 

the estimate of (h1 B h2) from the model without age at weaning, may be biased. 

To build the MME we need: 

[1] XX  =   X   X   1  

 ’ X 

 ’X 

 ’ 1

21

2

1

















  

 

 XX  = 



















 X’X X’X ’1X 

 X’X X’X ’1X 

 X’ 1 X’ 1 ’1 1

22122

21111

21 

 

 XX  = 

















































2

1

22212

12111

2121

n||

0n||Sym

||

nn|n|

nn|0n|

||

nn|nn|n

 

 XX  = 

































6||
06||

||
33|6|
33|06|

||
66|66|12

Sym
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[2] XZ  =  Z

 ’X 

 ’X 

 ’ 1

2

1















  

 

 XZ  = 
















 Z’X 

 Z’X 

 Z’ 1

2

1

 

 

 XZ  = 













































 n  n  n 

 n  n  n 

----------------

 n  n  n 

 n n  n 

----------------

 n  n  n 

232221

131211

322212

312111

321

  

 XZ  = 



































 2  2  2 

 2  2  2 

---------

 2  2  2 

 2  2  2 

---------

 4  4  4 

 

[3] Xy  = 



















y ’X 

y ’X 

y ’ 1

2

1
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 Xy  = 













































 y 

 y 

---- 

 y 

 y 

----

 y 

2

1

2

1

 

 Xy  = 



































 1639 

 1664 

------ 

 1682 

 1621 

------

 3303 

 

[4] ZZ + GB1σe
2  = 



























 σg  +  n  g  g 

 g  σg  +  n  g 

 g   g  σg  +  n 

2
e

33
3

2313

232
e

22
2

12

13122
e

11
1

 

 ZZ + GB1σ e
2  = 



















 17.78  +  4.0     

 3.56-  17.78  +  4.0   

 3.56-  3.56-  17.78  +  4.0 

 

[5] Zy  = 

























 y 

 y 

 y 

3

2

1
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 Zy  = 



















 1124 

 1163 

 1016 

 

Note: (ZZ + GB1σ) and Zy are the same as in the model without age at weaning effects. 

The MME are: 





































































































































































































 y 

 y 

 y 

---

 y 

 y 

----

 y 

 y 

----

 y 

  

 ŝ 

 ŝ 

 ŝ 

--

a

a

--

 h 

 h 

--

μ 

 

 σgn  |  |  |  

 g σgn |  |  |  

 g g σgn|  |  |  

------------|----|----|--

 n n n|n  |  |  

 n n n|0 n |  |  

-------------|----|----|--

 n 2n n|n n |n  |  

 n n n|nn |0 n |  

------------|----|----|--

 n n n|n n |n n |n 

3

2

1

2

1

2

1

3

2

1

2

1

2

1

2
e

33
1

232
e

22
1

13122
e

11
1

2322212

1312111

32221222212

31211112111

3212121










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



























































































































































 1124 

 1163 

 1016 

---

 1639 

 1664 

----

 1682 

 1621 

----

 3303 

  

 ŝ 

 ŝ 

 ŝ 

--

a

a

--

 h 

 h 

--

 μ 

 

 21.78 3.56- 3.56-|2 2 |2 2 |4  

 3.56- 21.78 3.56-|2 2 |2 2 |4  

 3.56- 3.56- 21.78|2 2 |2 2 |4  

------------|----|----|--

 2 2 2|6 0 |3 3 |6  

 2 2 2|0 6 |3 3 |6  

-------------|----|----|--

 2 2 2|3 3 |6 0 |6  

 2 2 2|3 3 |0 6 |6  

------------|----|----|--

 4 4 4|6 6 |6 6 |12 

3

2

1

2

1

2

1











 

To solve for the vector of unknowns in the MME, first we need to know the rank of the LHS.  If the 

LHS is not full rank we will need to put constraints on the solutions to solve the MME. 

Notice that: 













  G  +  Z’  ZX’  Z

 Z’ X X’ X 
 rank

2
e

1


  +   
 X’  Z

 X’ X 
 rank  =  
























2
e

1G  +  Z’  Z

 Z’ X 
 rank  

          +    X’ X  rank  =   
2
e

1G  +  Z’  Z rank   

          +    X  rank  =    G  +  Z’  Z rank 2
e

1


 . 

But   G  +  Z’  Z 2
e

1


  is always full rank, thus to find the rank of the LHS we only need to 

determine the rank of   X’ X . 
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 rank   X’ X  = rank

































 6 0|3 3|6  

 0 6|3 3|6  

----|----|--

 3 3|6 0|6  

 3 3|0 6|6  

----|----|--

 66|6 6|12 

 = 3, 

i.e., there are only 3 independent columns (or rows) in [XX], because:  

(1) the first column is equal to the sum of the second and third columns, and 

(2) the sum of the second and third columns is equal to the sum of the fourth and fifth columns.  

Thus, we need to impose constraints on the solutions to solve for the fixed effects in the MME. 

Constraints on the solutions 

[1] Set some solutions equal to zero.  This implies that the columns and rows of the LHS and 

the element of the RHS corresponding to these solutions are zeroed out. 

  
    






































   X’ X   

 of Rank 
    

   X’ X   

 of Order 
    

 zero to equal  set

  solutionsof Number 
 

Also, the solutions set to zero are chosen such that the 

  
    

























   X’ X   

 of Rank 
    

   X’ X   in left 

 equations of Number 
 

For instance, set  μ = h1 = 0 in the example.   

Then, the vector of solutions is equal to: 
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


































































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







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
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









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

























































































































 0.9079   

 2.4474   

 3.3553-  

--------

 268.0833 

 272.2500 

--------

 10.1667  

 0 

--------

 0 

  

 1124 

 1163 

 1016 

----

 1639 

 1664 

----

 1682 

 0 

----

 0 

 

 21.78 3.56- 3.56-|2 2|2 0|0 

 3.56- 21.78 3.56-|2 2|2 0|0 

 3.56- 3.56- 21.78|2 2|2 0|0 

------|----|----|-- 

 2 2 2|6 0|3 0|0 

 2 2 2|0 6|3 0|0 

------|----|----|--

 2 2 2|3 3|6 0|0 

 0 0 0|0 0|0 0|0 

------|----|----|--

 0 0 0|0 0|0 0|0 

  

 ŝ 

 ŝ 

 ŝ

--

a 

a 

--

h

h

--

μ -

3

2

1

2

1

2

1

 

Let K = 















































 ’k 

 ’k 

 ’k 

 ’k 

  

 0 1- 0 1 0 

 1- 1 0 0 0 

 0 0 1- 1 0 

 0 0 0 0 1 

4

3

2

1

 

Are the {kib} estimable? 

kib is estimable      ki[B11XX + B12ZX] = ki, where B11 and B12 are submatrices of the inverse 

of the LHS, i.e., 

 

































 σG  +  Z’  ZX’  Z

 Z’ X X’ X 
    

 B ’B 

 B B 
2
e

1
2212

1211
. 

Thus, 

K[B11XX + B12ZX] 



 [12-25] 
 


























































































 

 6 0 3 3 6 

 0 6 3 3 6 

 3 3 6 0 6 

 3 3 0 6 6 

 6 6 6 6 12 

  

 0.28  0.12  0.17- 0 0 

 0.12  0.28  0.17- 0 0 

 0.17- 0.17- 0.33  0 0 

 0 0 0 0 0 

 0 0 0 0 0 

   

 0 1- 0 1 0 

 1- 1 0 0 0 

 0 0 1- 1 0 

 0 0 0 0 1 

  =   

      




























































 

 2 2 2 2 4 

 2 2 2 2 4 

 2 2 2 2 4 

  

 0.03- 0.03- 0.03- 

 0.03- 0.03- 0.03- 

 0 0 0 

 0 0 0 

 0 0 0

  +      

















































 1 0 0 1 1 

 0 1 0 1 1 

 0 0 1 1- 0 

 0 0 0 0 0 

 0 0 0 0 0 

  

 0 1- 0 1 0 

 1- 1 0 0 0 

 0 0 1- 1 0 

 0 0 0 0 1 

  =   























 0 1- 0 1- 1- 

 1- 1 0 0 0 

 0 0 1- 1 0 

 0 0 0 0 0 
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 k2b and k3b are estimable, and 

 k1b and k4b are not estimable: 

 (1) k1b estimates nothing, and 

 (2) k4b is an estimate of B(μ + h1 + a1). 

The estimates of k2b and k3b are: 
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3

2
. 

[2] Set some solutions, or the sum of some solutions, to zero using Lagrange Multipliers.  

Here, equations are added to the MME, thus the order of the MME is larger than in procedure [1]. 

The MME with Lagrange multipliers is: 

  





































 





















 0 

y ’  Z

y ’ X 

    

 γ̂

 ŝ

h 

  

 0 0 ’ L 

 0 σG  +  Z’  ZX’  Z

 L Z’ X X’ X 

2
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1 . 

If μ and h were set to zero the matrix L would be: 

 L = 












 0 0 0 1 0 

 0 0 0 0 1 
, 

and if  0  a   h j

2

1 =j 
i

2

1 = i

  , then L would be: 

 L = 












 1 1 0 0 0 

 0 0 1 1 0 
.  

 

[2.1] The solution vector of the MME, for the constraint μ = h1
o = 0, is equal to: 
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K[B11XX + B12ZX] = 
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 k2b and k3b are estimable, but k1b and k4b are not.  Again, k1b estimates nothing, and 

k4b is an estimate of B(μ + h1 + a1). 

The values of the estimable functions are: 
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2
. 

Note that the same solutions for b were obtained by setting μ and h directly and through Lagrange 

multipliers. 

[2.2] The solution vector of the MME, for the constraint 0  a   h j

2

1=j
i

2

1 = i

  , is equal to: 
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K[B11XX  | B12ZX] 
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 k2b and k3b are estimable, and 

 k1b and k4b are not estimable: 

 (1) k1b is an estimate of [μ + 0.5(h1 + h2) + 0.5(a1 + a2)], and 

 (2) k4b is an estimate of [0.5(h1 B h2) + 0.5(a2 B a1)]. 

The values of the estimable functions k2b and k3b are: 
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Remarks 

[1] The estimable function (h1 B h2) had the same value in models 1 (without age at weaning 

effects) and model 2 (with age at weaning effects) because the bias due to ignoring age at weaning 

effects in model 1 was zero, i.e., [1 B1] [B11X1X2] = 0, where B11 belongs to  (LHS)B for model 1. 
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Proof that (h1
° B h2

°) from model 1 is unbiased. 

 
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 k2[B11X1X2] = [1 B1]
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 0.68751 0.68751 

 0.68751 0.68751 
 

     = [0] 

 (h1
° B h2

°) is an unbiased estimate of (h1 B h2) in this particular case. 

 MSE (h1
° B h2

°) = var(h1
° B h2

°) + [bias (h1
° B h2

°)]2 

     = var(h1
° B h2

°) + 0 

     = var(h1
° B h2

°) 

[2] The BLUP of s, ŝ  , was the same in model 1 (without age at weaning effects) and in model 

2 (with age at weaning effects).  This occurred because the bias in model 1, due to ignoring age at 

weaning effects, was zero, i.e.,  

 B12X1X2 + B22ZX2 = 0, 

where B12 and B22 are submatrices of the (LHS)B from model 1. 

Proof that the  iŝ  from model 1 are unbiased 

[B12X1X2 + B22ZX2] 
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 the {si} are unbiased. 

 

Summary Table 

 (h1
° B h2

°) SE(h1
° B h2

°)) a1
° B a2

° SE(a1
° B a2

°) 

μ = h1
° = 0 B10.17 5.38 4.17 5.38 

Lagrange: μ = h1
° = 0 B10.17 5.38 4.17 5.38 

0  a   h j

2

1 = j
i

2

1 = i

   B10.17 5.38 4.17 5.38 
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