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ANIMAL BREEDING NOTES
CHAPTER 13

GENETIC COVARIANCES BETWEEN INDIVIDUALS

Genotypic Variance in a Random Mating Population

The theory of genotypic effects and genotypic variances in a random mating population presented
here is based on a development by Kempthorne (1955b).

Assumptions

(@) An arbitrarily large number of loci (n).

(b) An arbitrarily large number of alleles per locus (r;).

(c) Random segregation and random allocation of alleles (i.e., no linkage) during meiosis.

(d) Random mating.

Let the total number of alleles in the populationbe T = Z ri-

i=1
Genotypic mean

Let the ordered genotype of an individual be

Aljls AZst Anjns
Aljm' Azjzu' A”jnu'

where

allele j at locus c in the sire gamete

2,
8
|

A, allele j" at locus c in the dam gamete

If we consider all alleles in a population that can occupy each one of the n loci an individual
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possesses and their frequencies within each locus, then we can construct a genotypic array. The

genotypic array of the population can be visualized by expanding the following expression:
6] 2 r2 2 r 2
[Z plj Alj] [Z pgj Asz e [Z pnj Aan
=t =1 j=1

where

Ajj allele j at locus i

pij = frequency of allele Aj
The total effect of each genotype represented in this array will be the sum of: 1) the individual
effects of all alleles, 2) the effects of all possible interactions between pairs of alleles, 3) the effects
of all possible interactions among 3 alleles, 4) etc. Thus, the total genotypic effect can be thought
of as being a factorial design problem, where the total genotypic value of an individual will be
the sum of a mean (the population mean), 2n main effects (the genetic effects of the 2n alleles
in an individual) plus the effects of all possible interactions among these 2n main effects.

Let the population mean be

2 2 2
H= (Z P Alil (Z Pz AZJ‘] (Z Py An,-]
= =1 j=1

i 2
“ = H ( pij Aij]
1

i= j:

where

Ajj genotypic value of allele j at locus i
pij = frequency of allele Aj

Notice that the notation Ajj is being used for 2 purposes:
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1) to identify an allele within a locus in the genotypic array, and

2) to define the genetic value of an allele when determining the genotypic value of an animal.

Genotypic deviations

Let u.m be the difference between the genetic effect of a specific allele m in a particular locus ¢

(Acm) and the mean of all alleles at this locus (p, = Z P Agi) 1€,

=t
I'c
Uem = Acm — Z P Aci
=1

Uem = Acem— M,
This intralocus difference (ucm) is the basic deviation which all genetic effects rely on. Notice

that, by the definition of ucy,, the mean of all intralocus differences is zero, i.e.,

zc Pem Uem = ZC Pem (Acm - zc pcj A )
m=1 m=1 j=1

ZC Pem Acm — ZC Pem ZC pcj A
m=1 m=1 =1

W= (DK,
=0
Consider now the following sets of deviations:

[1] The deviation of the genotypic value of allele cj from the mean of all alleles in locus c,

averaged over the values of all possible genotypes at all loci in the population.
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am = (A —b) b | [T
acmz(Acm_uc)uc %J
He
dem = (MJH_“
M

[13-4]

: 2
= (Acm - z pcj ch] (z pcj ACJJ . ( pij Aijj
j=1 i1 ! =1

[2] The product of the deviations of two alleles within locus ¢, cm and cm’, from the mean of all

alleles in locus c, averaged over the values of all possible genotypes at all loci in the population.

dem dem’ — (Acm - ZC pq ACJJ [Acm' - Zcpcj ACJJ
=1

=1

dem dem’ = (Acm_uc) (Acm’_“c) ]:L[u?

i#C

n

{10

dem Aem’ = (Acm Acn = Acm M — He Acnr + ui ) ( % ]

Acm
He

Acm’
He

Acm
He

acm acm‘

()52 )|

Acn
]ﬂ + p
He

[3] The product of the deviation of allele cm located at locus ¢ from the mean of all alleles in locus

c times the deviation of allele ¢’'m’ located at locus c’, averaged over the values of all possible

genotypes at all loci in the population.
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Ic re e n li 2
dem dem’ = (Acm - Z pcj ch] [ 21 pcj ch ] [Ac’m’ - z pc’j Ac’jj( z pcj' ch’ \] 1_1[ (z pij Aij]
= 1= =1 =1 =1

[E2

dem Acm = (Acm —H, )UC (AC’m’ —H )Uc’ H Uiz
i=1

i#C
i=c’

dcem dem = ( Acm Acm — Acm Mo —H, Acm — M He )uc He ( u?_LZ )

c Mc’

Acm Ac’m’ Acm cm’
acmac’m‘:(_jL JU—(_JU—(A JU"‘U
uc uc’ p‘c U'c’
[4] The product of the deviation of allele cm located at locus ¢ from the mean of all alleles in locus

¢ times the deviation of allele ¢’'m’ located at locus ¢’ times the deviation of allele ¢’'w’ located at

locus ¢’, averaged over the values of all possible genotypes at all loci in the population.

Ic re e n li 2

dcm demrdew = (Acm - z pcj ch) [le pcj ACJJ [Ac’m’ - z DC',- Ac’j} (Ac’w’ - z pcj' ch’] H[ pi,- Aij]

=1 = =1 =1 i= | j=1
i=c’

dem dom Aow = ( Acm— H ) H ( Acm — He ) ( Acw — He ) H p‘lz
i=1

i#c
i#C’

dcm dcm’ Acw = ( Acm M, —H )( Acw Acw — Acm He —He Acw + ui )( # J
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w52 ) 52 52 - (5 52 - (5 B2 )
uc uc’ p‘c’ uc uC' uc p‘c’
_(MJ[AC'W’JH+(Acm]u+(Ac’m’Ju+(Ac'w’]“_u
He Ko Hc M M

[5] The product of the deviation of allele cm located at locus ¢ from the mean of all alleles in locus

c times the deviation of allele cw located at locus ¢ times the deviation of allele ¢'m’ located at
locus ¢’ times the deviation of allele c’'w’ located at locus c’, averaged over the values of all

possible genotypes at all loci in the population.

Ic e re n fi 2
dcm dew Aom’ Aow = [Acm - z pcj ch} {ACW - Zl pcj ACJ'] [Ac’m’ - Z pcvj Ac’jj (Ac’w’ - Z pcjv ch’J H [Z pij AijJ
= i= j=1 j=1

=1 i=1
i#C
i=C’

dem dew Ao'm’ Ae'w = ( Acm — M ) ( Acw — M. ) ( Acm — He ) ( Acw — H ) H plz
i=1

i%C
i=c’

dem Aew Aom’ Aow = (Acm Acw - Acm uc - uc Acw + uz ) (Ac‘m’ Ac’w‘ - Ac’m’ “c’ - “c’ Ac’w‘ + “(2; ) ( l,];ilz ]
c M
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_ [ Acm J( Acw J( Ac’m’ J( Ac’w’ j _ ( Acm j[ Acw j[ Ac’m’ ]
dem Aew de'm’ de'w’ T - — — M S — Mt
p’c p’c p’c’ pc’ p’c p’c p’c’
_ M M [Acwju _[Acm [Ach(Acw]u _(A\CWJ(ACH]J(ACWJ“
uc l"lc l"lc‘ “‘c uc’ uc’ uc l"lc‘ uc’
(e ek (b ()
I"lc I“lc u‘c I"lc’ uc I"lc’ UC I"lc’
+ Acw Ac‘w' Ju + [ Ac‘m‘ J( Ac‘w' Ju
K He He He
Lkl (e
I"lc uc I"lc’ p‘c’

[6] And so on, until considering all the deviations of individual alleles from their means at all loci,

and all possible combinations of products of these allelic deviations within and across loci.

Genotypic effects

If all deviations due to all single alleles that can occupy the 2n loci of an individual, and all
deviations due to products of deviations of two, three, ..., 2n alleles are added, it can be shown that
the resulting expression is Ay A --. A, A2A2 - Az, oo AnniAzz --- Aoy, - HOwever, out
of the T available alleles in the population, only 2 alleles per locus, and only 2n alleles per
genotype, are assumed to be randomly sampled to construct the genotype of an animal. The
randomness of the process of generating genotypes stems from the following assumptions: 1)
random segregation and random allocation of alleles during meiosis (heretofore Mendelian
sampling), which implies that each allele within a gamete is inherited independently of any other,

and 2) random mating, i.e., male and female gametes will join at random to form zygotes.
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Consequently, 1) the genotype of each animal can be considered to be the result of 2n random
occurrences, and 2) the probability that an individual gets a particular allele at a given locus will be
given by the frequency of occurrence of that allele at the specified locus in the population, i.e.,
(Ay) = pij. Furthermore, as a consequence of the random process of genotype formation, and
because genotypic deviations were defined as functions of intralocus deviations (whose means
are zeroes), each one of the genotypic deviations is an occurrence of an independent random
variable with mean zero, and variance equal to the sum of the expected values of the square
of each possible deviation of this type in the population. Genetic effects corresponding to the
deviations and products of deviations 1 to 5 above are now described.
[1] Additive genetic effect of an individual (A): sum of the 2n additive deviations of an animal

(i.e., sum of the average genotypic effects of the 2n alleles of an animal).

n = number of additive contributions to the genotypic value of an animal coming
from the sire and dam gametes
as = deviation due to the allele occupying locus k in the sire gamete (= average
genotypic effect of this allele)
ag« = deviation due to the allele occupying locus k in the female gamete (= average
genotypic effect of this allele)

The expected value of A is:
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E[A] = E z ak * z adk:|
L k=1 k=1

k=1 k=1
= E[ask]+zE[adk]
k=1 k=1
But,
Elas] = E (MJM - u}
M
= chm[Ascm Ju _ chmu
m=1 H, m=1
= (&]u - (n
M
=0
and

Efas] = EH%’“]M - u}

= Zcpcm{w}l - Cchmu
m=1 m=1

He

[ﬁju — @)p
H,

Thus,
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E[A] = 0

The variance of A is:

var(A) = var[z a + Y, adkj
k=1 k=1

Because male and female gametes are uncorrelated in a random mating population,

n n
var( Z Ask J+var( Z ddk j
k=1 k=1

var (A)

var(A) = > var(ax) + 2 Zn: Zn: cov (ay» as)

k=1 k=1 k’>k
+ var (ag ) + 2 z Z cov (au, au)
k=1 k=1 k’>k
But loci were assumed to be independent of one another, thus the covariance between additive
genetic effects between different loci in both male and female gametes is zero. In algebraic
terms,
cov (ask’ ask') = E [ask ask'] - E [ask]E [ask']

= E [ask ask'] - (O) (O)

= EE [ask ask' | k, ]

= E [E [ask]ask']

= E [ (0) ask']

=0

Thus,
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var(A) = Zn: var (ag ) + nz var (ag. )

_ E[ask]+gE[ask]

k=1

2
- OA
[2] Dominance genetic effect of an individual (D): sum of the n dominance deviations of an

animal.

D = i dk
k=1
where
n = number of contributions to the genotypic value of an animal due to intralocus
interactions, and
di = ascade
= product of deviations of alleles occupying locus ¢ in the gametes of the sire and

the dam.

The expected value of D is:

E[D] = E{idk}

k=1

= z E[dk]

n
k=1
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But,
E[k] - E (MJ(MJH_(M]H_£AW]“+“
uc uc uc uC
B fc c Acm Acw _ Acm _ Aﬂ
= ;pcm leme . ]( n ju ( n Ju ( . ju +H}
_ (&](&]u—(u°(1)Ju—((1)“°JH+(1)(1)U
He J\H He He
= H-H-H+U
=0
Thus,
E[D] = i(O)
=0

The variance of D is:

var(z d, j

n
k=1

var (D)

kzn; var (d, ) + ZZn: Zn: cov(d,, d,)

k=1 k'>k
By the assumption of independence among loci, the covariance between dominance deviations

is zero, i.e.,



[13-13]
cov(d,,d) = E[dd.] - E[d,]E[d ]

= El[d,d.]- (0)(0)

<
QD
=
—~~
O
~
Il
M-
—_—
m
o
=N
e
|
—~~
o
~—
N —

I
M-
m
o
=~ N
el

= ObD
[3] Additive x Additive genetic effect of an individual (AA): sum of the 4[n(n - 1)/2] different

additive x additive deviations of an animal.
Naa
AA = Z dadk
k=1

where
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Q
>
1

4[n(n - 1)/2]

number of contributions to the genotypic value of an animal due to

interlocus additive x additive interactions.

aag dem de'm’

product of the deviations of one allele located at locus ¢ and another
allele housed at locus c¢’, where both alleles may be from the same gamete (male or
female) or from different gametes.

The expected value of AA is:

m
Il

Naa
E {z aak }
k=1

N

Z“ E [aak

k=

[y

Ac’m’ )“_[MJH (Acm Ju+u
uc’ uc uc

_ (uc](&ju_(w)}u_ (1)ucju+(1)(1)H
e )\ He He K

= H-H-H+}

= 0

Thus,
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Naa

Z (0)

E[AA]

=0

The variance of AA is:

Naa
var(AA) = var(z aak]
k=1
Naa Naa  Naa
= Z var (aa, ) + 2 Z z cov (aax, aa)
k=1 k=1 k>k

By the assumption of independence among loci, the covariance between additive x additive

deviations is zero, i.e.,

E [aa aac] — E[aa]E [aax ]

cov (aax, aax)

= E[aax aac] - (0)(0)

cov (aax, aac) E IE[aak aax | K]

= f‘[ E laa.] aax }

= E[(0) aa]

Thus,



[13-16]

Naa

qu: var (aay )

var (AA)

Naa

= > (Ela? |- (Elaac]?)

= E(E[aai]—(o)z)

= ZE[aaﬁ]

k=1

2
= OaAA

[4] Additive x Dominance genetic effect of an individual (AD): sum of the 2[n(n - 1)] different
additive x dominance deviations of an animal.
Nad
AD = z adxk

k=1

where

£
I

2[n(n-1)]

number of contributions to the genotypic value of an animal due to

interlocus additive x dominance interactions

a-dk dem Ae’m’ de'w’

product of the deviations of one allele located at locus c times the
deviations of the two alleles located at locus c’, where the allele at locus ¢ may
come from the male or the female gamete, and one of the alleles at locus ¢’ come
from the male gamete and another one from the female gamete.

The expected value of AD is:
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E [AD]

Il
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But,

)

(

L < < Acm Ac’m’ Ac’w’
E d = cm cm’ c’w’

()
(e e

Eladd = H-p-p-p+p+p+p-p

Thus,
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Il
~—
(=)
N

E[AD]

The variance of AD is:
Nad
var (AD) = var(z adkj
k=1
Nad Nad Nad
= Y var(ade) + 2> > cov(ad, ad)
k=1 k=1 k>k
By the assumption of independence among loci, the covariance between additive x dominance

deviations is zero, i.e.,

E [adk ade] — E [ad]E [adi]

cov (ady, ad)

= Elady ade] - 0)(0)

cov (adk, ade) = EIE[adk ade | K]

K

= E [IE [adk] adk}

= kE[(O) adk']

Thus,
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var (AD)

> var (adx )

Nad

= > (Efct] - (Efag )
= Y (Efad?] - (0F)
= ZE[adﬁ]

2
— OAD
[5] Dominance x Dominance genetic effect of an individual (DD): sum of the n(n - 1) different

dominance x dominance deviations of an animal.

Ndd

DD = dek
k=1
where
Nad = n(n—l)

number of contributions to the genotypic value of an animal due to
interlocus dominance x dominance interactions.

ddy

dem Aew de'm’ Ae'w’

product of the deviations of the two alleles located at locus ¢ times the
deviations of the two alleles located at locus ¢’, where one of the alleles at both loci
c and ¢’ come from the male gamete and another one from the female gamete.

The expected value of DD is:
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|

Nad
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E [ddk] = chpcm chpcw Zc: pc’m’ ZC: pc’w’
m=1 w=1 m’=1 w’=1

( Acm ] ( Acw ] ( Ac’m’
“c uc uc’
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FEHEIE
()
()
(e

Elddd = M-M-M-M-pH P o g

=0
Thus,
Ndd
E[DD] = > (0)
k=1
=0

The variance of DD is:

Nad
var(DD) = var(z ddkj
k=1
Nad Ndd  Nad
= S var(dd )+ 23 Y cov(dde. dde)
k=1 k=1 k’>k

)
Ju
e

)

By the assumption of independence among loci, the covariance between dominance x
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dominance deviations is zero, i.e.,

E [dd dde] — E [ddi]E [ddw ]

cov (ddx. dd)
= E[dd« ddi] - (0)(0)

= IKE'IE[ddk dd | k’]

= 5[ |kz[ddk] ddk,}

= €[(0) dds]

Thus,

Ndd

z var (ddy )

k=1

var (DD)

Ndd

= > (Elock] - (Efoa]¥)

Ndd

=Y (Efacz] - (0F)

k=1

Ndd

= Y Elde? ]

k=1
= oo
[6] Additive x additive x additive, additive x additive x dominance, additive x dominance x
dominance, dominance x dominance x dominance, additive x additive x additive x additive,

etc. All other interaction effects will:

(@) be equal to the sum of their respective individual deviations within an individual,
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(b) have expectation equal to zero,
(c) variance equal to the sum of the squares of their individual deviations, and
(d) be uncorrelated to all other genetic effects.
The total number of deviations contributing to the genotype of an animal is (2°" - 1), where

the 1 corresponds to the mean of the population.

Genotypic value of an individual
The genotypic value of an individual (G) is equal to the sum of the genotypic mean plus all (22" -

1) genotypic effects.

Ndg

n n N Naa Na
G = p+ [Zask + Zako F3 0+ Yaa t ade Y dd + ..
k=1 k=1 k=1 k=1 k=1 k=1

u+A+D+AA+ AD + DD + ...
The expected value of G is:

E[G] = n+0+0+0+0+0+..

=

The variance of G is:

var (G)

n n Ng Naa Nad Ndd
(zE[askh ze[ask]J e SEl] + Skl + SER] + SEaa] + ..
k=1 k=1 k=1 k=1 k=1 k=1

2 2 2 2 2
= oa tobptoa T oap T o0 T -
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A better notation from a computational viewpoint is to use two subscripts instead of letters. The

first subscript indicates the number of additive genetic effects, and the second one the number of
dominance genetic effects. For example, 610> = 6a% 601> = Gp%, Oo2” = GAA%, G11° = OAD%, O02° =

opp, ete. Thus, the variance of G is:

2 2 2 2 2 2
o6 = ow tToutonwtontont..

n n
2
Gij

i=0 j=0

j*i>1
Thus, the variance of the genotypic value of an individual is the sum of the expected values of

the square of (2" - 1) deviations.

Genetic Relationships Among Individuals
[1] Coefficient of coancestry (Malécot's coefficient de parenté): probability that a random
allele at a random locus in one individual is identical by descent to a random allele taken from the

same random locus in another individual. For example, consider the following pedigree:

J ? d ?
A B C D
djp do b1 bz C1C d1 d2
N Ve N
E F
€162 f1 f2
N e
d
G
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rer = Va[P(e1=f1) + Pler=1,) + P(e2=f)) + P(ez=1,)]
It can be shown (Falconer, 1981, pg. 81) that
rer = Va[rac + rap+ Iec + Iep]
Also, the coefficient of coancestry of an individual with itself, e.g., the probability that two
gametes taken at random from individual G carry identical alleles is:
ree= Ya[P(@1=91) + P(01=02) + P(92=091) + P(92=02) ]
regc= Va[l+ Fg + Fg +1]
recc= V2 (1+Fg)
where
Fc = coefficient of inbreeding of individual G.
The coefficient of coancestry between individuals of different generations, e.g., rec, is equal to:
rec = Y2[rac + rec]
[2] Additive relationship between two individuals: probability that the two alleles at a random
locus are identical by descent in two individuals. This is a measure of the fraction of genes which
are identical by descent in two individuals. The additive relationship between individuals E and F
IS:
agr = Ye[P(er=1) + P(er=f)] + %[P(e2=11) + P(e;=1)) ]
agr = Y2[P(e1=1) + P(e1=F) + P(e2=11) + P(ex=1) ]
= agF = 2IeF
The relationship of an animal with itself (e.g., G) is:
acc= V2[P(01=01) + P(01=02) ] + "2[P(g2=01) + P(92=02) ]

acc= Ye[l+Fg]+'2[Fc+1]
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asc= 1+Fg
= asc= 2lee
The relationship of an animal with itself is also called the coefficient of inbreeding of an
individual, and it is defined as the probability that the two alleles at a random locus in individual X

are identical by descent, i.e.,

PX, =X;) = X [0y @+F,)]

I:X
where

Fx

coefficient of inbreeding of animal X,

2 = probability of transmission of an allele across 1 generation,

n: = number of generations between the sire of X and a common ancestor A,
n, = number of generations between the dam of X and a common ancestor A, and
Fa = coefficient of inbreeding of common ancestor A.

In terms of the coefficient of coancestry:
Fx =rsp

where
S =sireof X, and
D =damof X.

Sewall Wright's coefficient of relationship

axy

R = T—o—
XY [axxaw]/

Remark: In anoninbred population axx = ayy = 1, thus, Rxy = axy.
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[3] Dominance relationship between two individuals: probability that both alleles at a random
locus in two individuals are identical by descent. For instance, the dominance relationship
between E and F is:

der= P(er=frandey;=1,;) + P(e;=frande; =1)

der= P(er=T1) P(e=1) + P(e2=11) P(e1 = 1)

der = Taclep + lapfec
= Oder= V4 (aacasp + aapasc)

Remark: The dominance relationship of an animal with itself is:

dec = P(ei=e))P(e2=¢ey) + P(e1=ey) P(ex=¢y)
dec = (1)) + (ras) (Tas)

- dec = 1+ (rae)’

- desc = 1+ (Fo)

= dec = 1+ Y%(ame)

[4] Additive x additive relationship between two individuals: probability that individual
alleles at two random loci in two individuals are identical by descent. Because of the assumption
that loci segregate independently, the additive x additive relationship between two individuals is
equal to the square of the additive relationship between two individuals. For instance, the additive
x additive relationship between E and F is:

dadgrp = (aEF)2

(2rer)’

dagr
[5] Additive x dominance relationship between two individuals: probability that individual

alleles at one random locus, and both alleles at another random locus in two individuals are
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identical by descent. Because loci are assumed to segregate independently, the additive x
dominance relationship between two individuals is equal to the product of the additive relationship
times the dominance relationship between two individuals. For instance, the additive x dominance

relationship between E and F is:

ader = (agr) (der)
= ader = (2ree) (racrep * ranfec)
= ader = (aer) [V (@aca@sp + aapasc)]

[6] Dominance x dominance relationship between two individuals: probability that both
alleles at two random loci in two individuals are identical by descent. Because loci are assumed
to segregate independently, the dominance x dominance relationship between two individuals is
equal to the square of the dominance relationship between two individuals. For instance, the

dominance x dominance relationship between E and F is:

ddee = (dEF)2
ddee = (racrep+ rADrBC)2
= ddgr = [Y4 (aacaep + aapasc)]’

[7] Relationships due to higher order interactions between two individuals are functions of
(i.e., products of) additive and dominance relationships.

For example, the additive x additive x additive relationship between E and F is:

(2ree)’?

(aer)’

ddagr

= ddagf
and the additive x additive x dominance relationship between E and F is:

aadgr = (erF)2 (racrep + rapfec)
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— aader = (aer)’ [4 (Bac@ep + aapdec)]

Genetic Covariances Among Related Individuals (n loci and r; alleles per locus)

These covariances can be found by conditioning them on a random variable X whose outcomes
include all types of genotypic effects. All the outcomes of random variable X are defined to
occur by descent, i.e., all probabilities require equality (i.e., identity) by inheritance from a
common ancestor. Thus, the possibility of two alleles being equal by chance (i.e., alike in state) is
not one of these outcomes. Various outcomes and their probabilities are defined in a Table below.
The animals used in this Table are E (with parents A and B) and F (with parents C and D). The
first subscript of each allele (i,j,k) denotes a random locus, and the second subscript (1,2) is

random allele 1 or 2 within random locus i,j, or k.

Outcome X Meaning of outcome x P(X =X) P(X=x)
1 [(ex = fi) or (&2 = fi)] agr e
or [(eix = fir) or (eiz = fix)]
by descent
2 [(ex = fu) and (eiz = )] 4 (8acaao + aapdsc) der
or [(eir = fiz) and (ei2 = fir)]
by descent
3 [(ei1 = fir) or (€11 = fi2)] (aer)(agr) (aee)”
or [(ei2 = fiz) or (ei2 = fi2)]
and
[(ej1 = fia) or (ej1 = Ti2)]
or [(ej2 = fj1) or (ej2 = fi2)]
by descent
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Outcome x Meaning of outcome x P(X =X) P(X =X)
4 [(eir = fiy) or (ei1 = fix)] (ar) [+ (aacasp + aapasc)] (aeF)(der)
or [(eiz = fil) or (eiz = fiz)]
and
[(ej = f1) and (ej2 = fi2)]
or [(ej1 = fi2) and (g2 = fj1)]
by descent
5 [(ei = fir) and (ei2 = )] [+ (aacasp + aapdsc)] ()’
or [(ei = fiz) and @iz = fi)] [4 (aacasp + aapdsc)]
and
[(ej1 = fjx) and (ej2 = fi2)]
or [(ej1 = fip) and (e = fjs)]
by descent
6 [(eir = fiy) or (ei1 = fix)] (aer)(aer)(aer) (aEF)3
or [(eiz = fiy) or (ej2 = fi)]
and
[(j1 = fjz) or (&1 = fj2)]
or [(e2 = fjn) or (g2 = fi2)]
and
[(ex1 = fix) OF (€K1 = fi2)]
or [(ekz = fkl) or (ekz = sz)]
by descent
7 [(eir = fir) Or (ei1 = fix)] (aer)(aer) (aEF)Z(dEF)

or [(eiz = fil) or (eiz = fiz)]

and
[(ejx = fjr) or (ej1 = fi2)]

or [(ej2 = fjr) or (ej2 = fi2)]
and

[(ex1 = fka) and (ex2 = fi)]

or [(ex1 = fi2) and (ex2 = fi1)]
by descent

[Va(aacaep + aapasc)]
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Outcome x

Meaning of outcome x

P(X =X)

P(X=X)

[(eir = fi) or (i = fi2)]
or [(ei2 = fiz) or (ei2 = fi2)]
and
[(&j2 = fjz) and (2 = fi2)]
or [(en = fiz) and (ejz = fir)]
and
[(ex1 = fk1) and (ex2 = fi2)]
or [(ex1 = fk2) and (ex2 = fi1)]
by descent

(aer) [+ (aacasp + aapasc)]
[a (aacasp + aapasc)]

(aer) (der)’

[(ei1 = fir) and (ej2 = fix)]
or [(eil = fiz) and (eiz = fil)]
and
[(6j2 = fj2) and (ej2 = fi2)]
or [(ej1 = fiz) and (ej2 = fi)]
and
[(ex1 = fk1) and (ex2 = fi2)]
or [(ex1 = fi2) and (ex2 = fi1)]
by descent

[ (aacasp + aapasc)]
[a (aacasp + aapasc)]
[ (aacasp + aapasc)]

(der)®

Let the genotypes of individuals E and F be Gg and Gg, where

Ge =

and

M+ A + De + AAce + ADe + DDe + ...

Ndd

2n Ng Naa Nag
W+ Y am + Dde + D aae + 2 adex + D dde * ...
k=1 k=1 k=1 k=1 k=1

W+ Ar + D + AAr + ADr + DDk + ...

Ndd

2n N Naa Na
W+ D ant deFk + Y aaw * Zd:adFk + dde + -
k=1 k=1 k=1 k=1 k=1
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The covariance between Gg and Gk is:

cov(Ge, Ge) = cov(Ae, Ar) + cov(De, De) + cov(AA:, AA:)

+ cov( ADe, AD¢ ) + cov(DDe, DDf ) + -

which is equal to

2n 2n Ng Ng Naa Naa
cov (Ge, Ge) = COVKZaEk, Zapkj + COV(ZdEk, dek] + COV[ZaaEk, Zaapk]
k=1 k=1 k=1 k=1 k=1 k=1

k=1

Nagd Nad Ndd Ndd
+ COV(;&dEk’ ZadFk] + Cov(éddEk! ;ddFk] t ..

by independence among the various genotypic effects. Furthermore, because loci are assumed

to segregate independently,

2n Nd Naa
COV(GE’ GF) = ZCOV(aEkv aFk) + ZCOV(dEk, dFk) + ZCOV(aaEk, aaFk)
k=1

k=1 k=1

Nad Ndd

+ ZCOV(adEkn adpk) + ZCOV(ddEk, ddFk) to
k=1 k=1

Conditioning each covariance on random variable X yields:

COV(aEkl aFk) E[COV(aEkv aArk | X:XI )] + COV(E[aEk | X:Xl ], E[aFk | X:X1 ])

_ 2
= A Oa T 0

2
der, Oa

coV(dex» dee) = Efcov(dec, drc | X=%,)] + cov(E[dex | X=%, |, Eldec | X=x,])
= dEFk cSZDk + O

2
= dEFk Opy



cov (aaEk ' aaFk)
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E[cov (aaec, aar | X=X, )] + cov(E[aaec | X=X, |, E [aar | X=X;])
Ader, G/Z-\Ak +0

2
dder, Oaax

COV(adEk, adFk) = E[COV(adEk, adex | X=X4)] + COV(E[adEk | X=X, ]' E[adFk | X=X, ])

cov (ddec, dde)

Thus,

ader, Gi\Dk +0
ader, Gi\Dk
E[COV(ddEk, dde | X:XS)] + COV(E[ddEk | X=X, ], E[ddFk | X=Xs ])

2
ddEFk Opoe T 0

2
dd EFc ODD«

Naa

2n Nd
cov (GE ! GF) = Z aEr, 0/25\1( + Z dEFk Gék + Z Ader, Gi\Ak
k=1 k=1

But,

Fk

EF

adg

ad
dd

EF
ER,

etc., thus,

Fe
EF¢
Adgr,

ad
dd

EFe

EFRe

k=1

Nad Ndd

2 2
+ zadEFk Cape T zddEFk opp. t
k=1 k=1

= ag forall kk' combinations
= dg forall kk combinations
= aag forall k k' combinations
= adg forall kk combinations

dd.. forall k k'combinations
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2n Ng Naa
cov (GE , GF) = Z aer Gik + Z der Gék + Z daer G,ZAAk
k=1 k=1 k=1

Nad Ndd

2 2
+ zadEF Capx T deEF oppe T
k=1 k=1

Naa

2n Ng
cov (GE! GF) = aEFZGik + dEFZGZDk + aaEFZcf\Ak
k=1 k=1 k=1

Nad Ndd

2 2
+ adEFZGADk + ddEFZGDDk + ..
k=1 k=1
COV(GE) GF) = aer oa T der 00 T A3er Gaa

2 2
+ ader oap t dder opp T -

In terms of the two-subscript notation,

cov (GE’ GF) = ae o t der oo T ader O%
+ ader oi1 + dder o2 * -
aer 0120 + der 0(2)1 + (aEF)2 Ggo
+ (aEF)(dEF) on + (dEF)2 Goy T ...

)' (dee)’ of

I

™M

:_'MJ
@
m

Finally, the covariance matrix of a vector of genotypic values, i.e., cov(g, g’), is a function of
matrices of additive and dominance relationships, and Hadamard products of elements of these

matrices, times their appropriate variances.
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cov(g, g') = Ach+ Dk + A#A 65
+ A#D o} + D#D o3, + ...
= Z (élEF)i (dEF)j of
i=0 j=0
jti>1
where
g = vector of animal genotypic values,

A = matrix of additive genetic relationships,
D = matrix of dominance relationships, and

# = Hadamard product (Searle, 1982, pg. 49).
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APPENDIX

Tabular Method to compute additive relationships
The tabular method is based on the fact that the additive relationship between two individuals is
equal to the average of the relationships of one of them and the parents of the other one, e.g.,

agr = V2[aec + aep),
or, in terms of coefficients of coancestry,

ree = Ve[fec + ep)

Proof: See Van Vleck (1974).

Steps of the Tabular Method

(1) Include all animals in the pedigree in order of birth date, oldest first.

(2) Write the sequential numbers of the animals in order of birth on the side and on top of the table.

(3) Write the sequential numbers of the known parents across the top, above their progeny.

(4) Put a 1 on the diagonal cells of the table. Add the coefficient of inbreeding to the diagonal cells
of the animals in the base generation. Also, enter the relationships among base animals if
known, otherwise, set these off diagonal cells to zero.

(5) Compute the coefficient of inbreeding of the first animal with two known parents.

(6) Compute all the offdiagonal entries of the row in (5), by adding 2 times the entry
corresponding to parent 1 plus 'z times the entry corresponding to parent 2, in the same row.

(7) Write the row values in the corresponding column entries.

(8) Repeat steps (5), (6) and (7) until the last animal.



Numerical example

Additive relationships

Animal - - - A B A CD D

A B E C D X \Y/
A 1 0 Y2 2 2 Va
B 0 1 0 Va Vs Va Ya
E 0 0 1 0 0 0 4
C 1y A 0 1 o e Ya
D 2 Iz 0 V2 1 Ya Ve
X n a 0 2 2 1+ Ya 8
V Va Va 1y Va V2 % 1

Dominance relationships

dCD

dex

dCV

dXV

Ya(apndse + 8aBaBA)

Ya(L* 1+ 0 * 0)

Va

Ya(aacasp + aapdsc)

Ya[(2)(V2) + (2)(2)]

12

a(aapase + aaedsD)

va[(2)(0) + (0)(V2)]

0

Ya(acpape + acedpp)
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va[(2)(0) + (0)(1)]
0
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