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ANIMAL BREEDING NOTES 

CHAPTER 14 

THE MATRIX OF ADDITIVE RELATIONSHIPS AND ITS INVERSE 

 

Assumptions 

(a) n loci, n arbitrary, 

(b) ri alleles per locus, ri arbitrary, and 

(c) no linkage. 

Breeding Value 

Genetic value of an individual based on the mean genotypic value of its progeny.  Because parents 

pass on their genes (not their genotypes) to their progeny, the mean genotypic value of their 

progeny is determined by the average effects of the parent's alleles (Falconer, 1981, pg. 106).  

Thus, by definition, the breeding value of animal x for a single trait is: 

 ux  = as + ad                     [1] 

where 

ux  = random variable representing the breeding value of individual x for a trait. 

 as  = random variable representing the sum of the average effects of all alleles 

affecting a trait coming from the gamete of the sire of animal x, i.e., 

as = aδ k sk

2n

1=k

 , ask belongs to the sire of animal x, n = number of loci, and δk is a 

Kronecker delta, i.e., δk = 0 or 1; δk will be zero (2n/2) times and one (2n/2) times, 

because a random sample of only 2 of the male alleles is being passed on to 

individual x.   



 [14-2] 
 

 ad = random variable representing the sum of the average effects of all alleles 

affecting a trait, coming from gamete of the dam of animal x, i.e., 

   ad  = aδ dkk

2n

1=k

 , adk belongs to the dam of animal x, n = number of loci. 

Because average genetic effects are defined as deviations from the average gene at each locus, i.e., 

from A  p   =  μ jcjc

r

1=c

j

c

 , the expected value of ux is: 

    E[ux]  =  a + a E ds  

    =    a E + a E ds  

    =    a E + a E ds kk
  

    =       locus|a  E    E +  locus|a  E   E ds kk
  

    = 0 + 0  

    = 0  

The variance of ux is: 

 var(ux)  = var(as + ad) 

    = var(as) + var(ad) + 2 cov(as,ad) 

By conditioning on the breeding values of the sire (us) and the dam (ud) of animal x, the 

var(ux) becomes: 

 var(ux)  = var(E[as│us]) + E[var(as│us)] 

     + var(E(ad│ud]) + E[var(ad│ud)] 

     + 2 cov(E[as│us], E[ad│ud])  + 2 E[cov(as│us, ad│ud)] 

But as is the average effect of 2 of the alleles affecting the trait in the sire, i.e., as = 2us. 
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Thus, 

 E[as│us] = E[2 us │ us] 

    = 2 us  [Breeding Value of the sire] 

Applying a similar argument to ad yields: 

 E[ad│ud] = 2 ud  [Breeding Value of the dam] 

Thus, 

 var(E[as│us]) = var(2 us) 

     = 3 var(us) 

     = 3 ass σA
2 

     = 3 (1 + Fs) σA
2  [var(Breeding Value of the sire)] 

and 

 var(E[ad │ ud])  =  3 (1 + Fd) σA
2  [var(Breeding Value of the dam)] 

What is E[var(as│us)]?   

 E[var(as│us)] = var (as) B var(E[as│us]) 

But 

 var(as) =  







  a  δ   var  kk

2n

1=k

 

Also, because, by definition, 

 







  a  var k

2n

1=k

 = σA
2 

then, 

 var(as) = 2 σA
2 
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Thus, 

 E[var(as │ us)]  = 2 σA
2 B 3 (1 + Fs) σA

2 

      = 3 σA
2 B 3 Fs σA

2 

      = 3 (1 B Fs) σA
2  [var(Mendelian sampling in the sire)] 

Similarly, for the dam of animal x, E[var(ad │ ud)] is: 

 E[var(ad │ ud)]  = 3 σA
2 B 3 Fd σA

2 

      = 3 (1 B Fd) σA
2  [var(Mendelian sampling in the dam)] 

The covariance terms of var(ux) are: 

 2 cov(E[as │ us],E[ad │ ud]) = 2 cov(2 us, 2 ud)   

         = 2 cov(us, ud) 

         = 2 asd σA
2    [2*cov(BV sire, BV dam)] 

         = Fx σA
2   

 

The value of 2 E[cov(as │ us, ad │ ud)] = 0 because the sire and the dam random samples of 2 of 

their respective set of alleles are taken independently of each other, i.e., there is no connection 

between the formation of sire gametes and dam gametes (biological fact).  This biological 

rationale can be shown as follows.  On one hand, adding the components of var(ux) excluding 2 

E[cov(as │ us, ad │ ud)], yields: 

 var(ux)  = 3 (1 + Fs) σA
2 + 3 (1 B Fs) σA

2 

     + 3 (1 + Fd) σA
2 + 3 (1 B Fd) σA

2 

     + Fx σA
2 + 0 

 var(ux)  = 2 σA
2 + 2 σA

2 + Fx σA
2 
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 var(ux)  = (1 + Fx) σA
2 

On the other hand, we know that: 

 var(ux)   = axx σA
2  

= (1 + Fx) σA
2  

 cov(as │ us, ad │ ud) must necessarily be equal to zero. 

 

Equivalent model for the breeding value of an animal for a single trait 

According to Henderson (1985), models that have the same first and second moments are linearly 

equivalent, i.e., linearly equivalent models have the same expected values and mean square errors. 

Thus, an equivalent model to the single trait breeding value model, i.e., 

  ux = as + ad 

 E[ux] = 0 

 var(ux) =  (1 + Fx) σA
2 

is: 

 ux =  2 us + 2 ud + 2 εs + 2 εd               [2] 

where 

 ux = breeding value of animal x (random), 

 us = breeding value of sire s (random), 

 ud = breeding value of dam d (random), 

εs = Mendelian sampling occurring during gametogenesis in sire s (random), and 

 εd = Mendelian sampling occurring during gametogenesis in dam d (random). 

The Mendelian sampling terms εs and εd are independent from each other and independent 
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from the breeding values.  All random variables have expected values equal to zero, i.e.,  

   E[ux] = 0 

and 

  var(ux)  = var(2 us + 2 ud) + var(2 εs) + var(2 εd) 

where 

  var(2 us + 2 ud) = var(2 us) + var(2 ud) + 2 cov(2 us, 2 ud) 

       = 3 (1 + Fs) σA
2 + 3 (1 +Fd) σA

2 + Fx σA
2 

       = [2 + 3(Fs + Fd) + Fx] σA
2 

       = 2 σA
2 + Fx σA

2 + 3 Fs σA
2 + 3 Fd σA

2 

Thus, to obtain var(ux) = (1 + Fx) σA
2, we need the variance of var(2 εs) + var(2 εd) to be equal to 

(2 σA
2 B 3 Fs σA

2 B 3 Fd σA
2).  But the sampling process during gamete formation 

(Mendelian sampling) in the male and female gametes is completely independent of one 

another.  Thus, any loss of variation during the process of gamete formation due to (i) the 

inbreeding of the male occurs only in the male gamete, and (ii) the inbreeding of the female 

occurs only in the female gamete.  Consequently,  

   var(2 εs) = 3 σA
2 B 3 Fs σA

2 

      = 3 (1 B Fs) σA
2, and 

   var(2 εd) = 3 σA
2 B 3 Fd σA

2 

      = 3 (1 B Fd) σA
2 

and  

   var(ux)  = (1 + Fx) σA
2 

For the analysis of a single population only, a simpler equivalent model can be written.  Let 
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  φ = 2 εs + 2 εd 

Then, 

  ux  =  2 us + 2 ud + φ                [3] 

 E[ux]   = 0 

 var(ux)  = var(2 us + 2 ud) + var (φ) 

where 

 var(2 us + 2 ud) = [2 + 3(Fs + Fd) + Fx] σA
2 

 var(φ)    = [2 B 3(Fs + Fd)] σA
2 

Hence, 

 var(ux)  = (1 + Fx) σA
2 

Remarks:  var(φ) = var(2 εs) + var(2 εd) represents the variability that exists among 

gametes in the sire and in the dam.  Thus, it is affected negatively by the level of inbreeding 

in the sire (Fs) and dam (Fd) and it is independent of the level of inbreeding of the individual 

(Fx). 

 

Derivation of the rules to compute the inverse of the additive relationship matrix directly 

Model [3] can be generalized to include not only the case when both parents are identified, but also 

the cases when only the sire, only the dam or neither parent is known. 

The unidentified parents are assumed to be non-inbred and unrelated among themselves and to 

all other identified animals in the population, just like base animals. 

Base animals are those which all other animals in the population descend from.  They are assumed 

to be unrelated and non-inbred. 

The extended version of model [3] with animals ordered such that parents precede progeny (e.g., 
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by birth date), in matrix notation, is: 

  u = 2 P u + φ                   [4] 

where 

u = vector breeding values of animals where parents precede progeny; 

P = lower triangular matrix relating parents to progeny.  A row of P contains ones in the  

  columns corresponding to the known parents and zeroes elsewhere.  Thus, a row of 

P contains: 

(i)  two 1's if both parents are known, 

(ii)  one 1 if either the sire or the dam of an animal is known, 

(iii)   zeroes if both parents are unknown; 

  φ = vector of independent random variables representing: 

 (i) Mendelian sampling in the sire and in the dam, if both parents of animal i are 

known, i.e., 

        φi = 2 εs + 2 εd 

    (ii) Mendelian sampling in the sire and the dam plus: 

     (a) the breeding value of the dam, if only the sire of animal i is known, i.e., 

        φi = 2 ud + 2 εs + 2 εd 

     (b) the breeding value of the sire, if only the dam animal i is known, i.e., 

        φi = 2 us + 2 εs + 2 εd 

    (iii)   the breeding value of animal i if neither its sire nor its dam are known, i.e., 

        φi = ui 

From [4] we can see that: 

  (I B 2 P) u = φ 
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  u = (I B 2 P)B1 φ 

 E[u] = (I B 2 P)B1 E[φ] 

   = 0 

  var(u) = (I B 2 P)B1 var(φ) (I B 2 P)B1 

     var(u) = (I B 2 P)B1 D (I B 2 P)B1 σA
2 

where 

  D = diag {dii} 

The var(φi)  = dii σA
2 are: 

(i) 







ε

2

1
 + ε

2

1
var  ds ii

 =   







u

2

1
 + u

2

1
 var  - uvar  dsi ii

 

       = σ   a 
2

1
 + a 

4

1
 + a

4

1
 - a 

2

1
 + 1 2

Ad sd ds sd s iiiiiiii 























 

       = σ  a 
4

1
 - a 

4

1
 - 1 2

Ad ds s iiii 







 

       =     σ   F + 1 
4

1
 - F + 1 

4

1
 - 1 2

Ads ii 







 

       =   σ   F + F 
4

1
 - 

2

1 2
Ads ii 








 

        if si and di are known, 

(ii) 







ε 

2

1
 + ε 

2

1
 + u 

2

1
var  dsd iii

  =   







u

2

1
 var  - uvar  si i

 

         = σ  a 
4

1
 - 1 2

As s ii 







 

         =   σ   F + 1 
4

1
 - 1 2

Asi 







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         = σ  F 
4

1
 - 

4

3 2
Asi








 

           if si is known only, 

(iii) 







ε 

2

1
 + ε 

2

1
 + u 

2

1
var  dss iii

 =   







u   - u  di i

2

1
varvar  

         = σ  a 
4

1
 - 1 2

Ad d ii 







 

         =   σ   F + 1 
4

1
 - 1 2

Adi 







 

         = σ  F 
4

1
 - 

4

3 2
Adi








 

          if di is known only, 

(iv) 







ε 

2

1
 + ε 

2

1
 + u 

2

1
 + u 

2

1
var  dsds iiii

  = var(ui) 

           = σA
2 

            if neither si nor di are known. 

But 

 var(u) =  A σA
2 

where 

 A = matrix of additive genetic relationships. 

Thus, 

 var(u)  = σ  ’ P
2

1
 - I  D  P

2

1
 - I 2

A

-1-1

















 

    = σA  2
A  
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   A  = 















’ P

2

1
 - I  D  P

2

1
 - I

-1-1

 

  AB1  = 















P 

2

1
 - I  D  P’ 

2

1
 - I 1-  

  AB1  = DB1  B  2 DB1 P  B  2 P DB1  +  3 P DB1 P 

                

    diagonals     parentBprogeny     parentBparent 

Let P =























 

’p 

  

’p 

’p 

n

2

1


, where pi is a vector with at most two 1's and the rest zeroes. 

Thus, 

 B2 DB1 P  = 





























n
1

nn

1
1

11

p d 
2

1
-

p d 
2

1
-

  

     = 

































]calf[d 
2

1
-d 

2

1
-

]dam[]sire[

i
1-

ii
1-

ii

ii

 

 B2 P DB1  = 







p d 

2

1
-p d 

2

1
-

n

1-
nn1

1-
11   
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     = 















































]dam[d 
2

1
-

]sire[d 
2

1
-

]calf[

i
1-

ii

i
1-

ii

i

 

 3 P DB1 P  = ’p p d ii

1-
ii

n

1=i

  

     = 















































]dam[d 
4

1
d 

4

1

]sire[d 
4

1
d 

4

1

]dam[]sire[

i
1-

ii
1-

ii

i
1-

ii
1-

ii

ii

 

Based on the pattern of contributions of the four matrices contributing to AB1, the following 

rules to compute AB1 directly can be inferred: 

(1)  if both the sire (si) and the dam (di) of animal i are identified, add: 

  d 
1

ii
  to i  i 

 d 
2

1 1
ii
  to i  si, i  di, si  i, di  i 

 d 
4

1
 1

ii
   to si  si, si  di, di  si, di  di 

where 

 











a 
4

1
 - a 

4

1
 - 1    d d ds s

1 

1-
ii iiii
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(2)  if only the sire (si) is known, add: 

  d 
1

ii
  to i  i 

 d 
2

1 1
ii
  to i  si, si  i 

 d 
4

1
 1

ii
   to si  si 

where  

 







 a 

4

1
- 1    d s s

1- 

1-
ii ii

 

(3)  if only the dam (di) is known, add: 

  d 
1

ii
  to i  i 

 d 
2

1 1
ii
  to i  di, di  i 

 d 
4

1
 1

ii
   to di  di 

where  

 







 a 

4

1
- 1    d d d

1- 

1-
ii ii

 

(4)  if neither si nor di are known, add: 

 d 
1

ii
  to i  i 

where 

 1    d
-1
ii   

These are called Henderson's rules. 

In order to apply these rules we must know the dii.  If there is no inbreeding the dii can be easily 
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computed using the above formulae substituting 1's for the relationships of parents with 

themselves.  But, if there is inbreeding, the computation of the dii requires knowledge of the 

coefficients of inbreeding of their parents.  However, it is easier to compute the dii directly using a 

recursive procedure based on computing L, where LL = A.  This approach will be used here. 

 

Non-Inbred Population 

If all animals in a population are non-inbred then: 

 dii = 2 if both si and di are known, 

  = 3 if only si or di is known, 

  = 1 if neither si nor di are known. 

and Henderson's rules simplify to: 

(1)  if both si and di are identified, add: 

   2   to i  i 

 1-   to i  si, i  di, si  i, di   i 

  
2

1
  to si  si, si  di, di  si, di  di 

(2)  if si is identified only, add: 

   
3

4
  to i  i 

 
3

2
-  to i  si, si  i 

   
3

1
  to si  si 
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(3)  if di is identified only, add: 

   
3

4
  to i  i 

 
3

2
-   to i  di, di  i 

   
3

1
  to di  di 

(4)  if neither si nor di are known, add: 

 1 to i  i. 

 

Example of AB1 in a non-inbred population 

 Animal Sire Dam 

Parents 1   

 2   

 3  2 

Non-parents 4 1  

 5 1 2 

 6 1 3 
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P  =  

































 000|101 

 00|011 

  0|001 

---|---

   |010 

   | 00 

   |  0 

, DB1  = 









































 2  |    

 2 |    

  

3

4|    

---|---

   |

3

4   

   | 1  

   |  1 

 

B 2 DB1 P  































































000|101

00|011

0|001

|

|010

|00

|0

2|

2|
3

4
|

|

|
3

4

|1

|1

2

1
 

 

    









































000|101

00|011

0|00
3

2
|

|0
3

2
0

|00

|0
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B2 P DB1  

















































 

0   |    

0 0 |    

0 00|    

---|---

100|0    

0 10|

3

20  

11

3

2|000 

 

3 P DB1 P   (B2 P DB1)(B2 P) 

     









































































































000|

2

10

2

1

 00|0

2

1

2

1
 

  0|00

2

1
 

---|---

   |0

2

10 

   | 00 

   |  0 

 

0  |    

00 |    

000|    

---|---

100|0    

010|

3

20   

11

3

2|0 0 0
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     


























































































0  |    

00 |    

000|    

---|--------------- 

000|

2

1   

000|0

2

1
 + 

3

1  

000|

2

1

2

1

2

1
 + 

2

1
 + 

3

1
 

 

AB1  = DB1 B 2 DB1 P B 2 P DB1 + 3 P DB1 P 

AB1  = 

   

 

 

 

 

nonparents

parents

 

2  |    

 02 |    

 00

3

4|    

---------|----------------------

100|

2

1
 + 

3

4   

 010|

3

2

2

1
 + 

3

1
 + 1

  

11

3

2|
 

2

1

2

1

2

1
 + 

2

1
 + 

3

1
 + 1 




























































































































 

                  



 [14-19] 
 

       parents          non-parents 

 

Inbred Population 

The additive relationship of an animal with itself is equal to: 

 aii = a 
2

1
 + 1 d s ii

 

or 

 aii = 1 + Fi 

where 

  a d s ii
 = additive genetic relationship between the sire (si) and the dam (di) of animal i 

  Fi  = coefficient of inbreeding of animal i 

    = a 
2

1
d s ii

 

In an inbred population the diagonal elements of the matrix D, i.e., the dii, will depend on the 

coefficient of inbreeding of the parents of the animals included in the relationship matrix A.  Thus, 

the dii cannot be computed based on knowledge of σA
2 only, as it was the case in a non-inbred 

population, but must also know the coefficients of inbreeding of the parents in the population.  One 

possibility would be to obtain these coefficients of inbreeding by computing A first.  However, we 

only need the diagonals of A, because 

     a 
4

δ
 - a 

4

δ
 - 1    d d d

d

s s

s
ii ii

i

ii

i  

where 

   
 








otherwise0

known is d s if1
    δ δ

ii

ds ii
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Thus, what is needed is an efficient method to compute the diagonal elements of A, i.e., the aii.  A 

fast method to compute the aii, based on some previous work by Henderson (1976), was described 

by Quaas (1976). 

 

Recursive method to compute the aii 

The relationship matrix A is equal to: 

  















 ’ P

2

1
 - I D  P

2

1
 - I  A  

-1-1

 

Claim: 

  
































P

2

1
 +  + P

2

1
 + P

2

1
 + P

2

1
 + I    P

2

1
 - I

m32-1

  

where 

 m = maximum number of generations separating two individuals in A. 

 m  n , n  = order of matrix A 

     = number of animals in the pedigree 

Proof (Quaas, 1986):   

P is a lower triangular matrix with zeroes on and above the diagonal.  Thus, Pm+1 = 0 for m  n. 

Consider, 

  















 P

2

1
 +  + P

2

1
 + P

2

1
 + I    T

m2

  

and 

  








































P

2

1
 + P

2

1
 +  + P

2

1
 + P

2

1
 + P

2

1
    T  P

2

1
1 + mm32

  
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Subtract the second term from the first term: 

  
















 P

2

1
 - I    T  P

2

1
  T

1 + m

 

But  

  0    P
2

1
1 + m









 

Thus, 

  I    P
2

1
 - I  T 








 

  







 P

2

1
 - I    T

-1

 

  
























P

2

1
 +  + P

2

1
 + P

2

1
 + I    P

2

1
 - I

m2-1

  

Remarks: 

The rows of the matrices P, P2, P3, ..., identify parents, grandparents, great-grandparents, ..., i.e., 

  Rows of     identify 

   P      parents 

   P2      grandparents 

   P3      great-grandparents 

               

   Pm    ancestors m generations back from the current generation 
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Example of AB1 in an inbred population 

 Animal Sire Dam 

Parents 1   

 2 1  

 3 1 2 

 4 3 2 

Non-parents 5 3 4 

 6 3 4 

 

P = 































00|1100

0|1100

|

|0110

|011

|01

|0

 

P2 = P P  = 































00|1100

0|1100

|

|0110

|011

|01

|0































00|1100

0|1100

|

|0110

|011

|01

|0

=































00|0121

0|0121

|

|0012

|001

|00

|0

 

                         
       parents             grandparents 
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P3 = P2 P = 































00|0121

0|0121

|

|0012

|001

|00

|0































00|1100

0|1100

|

|0110

|011

|01

|0

=































00|0013

0|0013

|

|0001

|000

|00

|0

 

                         
                     great-grandparents 

P4 = P3 P = 































00|0013

0|0013

|

|0001

|000

|00

|0































00|1100

0|1100

|

|0110

|011

|01

|0

=































00|0001

0|0001

|

|0000

|000

|00

|0

 

                         
                   great-great-grandparents 

 

P5 = P4 P = 































00|0001

0|0001

|

|0000

|000

|00

|0































00|1100

0|1100

|

|0110

|011

|01

|0

 =  0  

  Animals in the current generation have no known ancestors beyond their 4th ancestral 

generation. 

Also, 
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 







P

2

1
 - I

-1

 = 

















































 10

2

1
-

2

1
-

00 

 1 

2

1
-

2

1
-

00 

  1 

2

1
-

2

1
-

0 

   1 

2

1
-

2

1
- 

    1 

2

1
- 

     1  
1- 

 

    = 



























   1.0    0   0.5  0.750.6250.6875 

    1.0   0.5  0.750.6250.6875 

     1.0   0.5  0.75 0.625 

      1.0   0.5  0.75 

       1.0   0.5 

        1.0 

 

Alternatively, 

 







P

2

1
 - I

-1

  = 























P

2

1
 + P

2

1
 + P

2

1
 + P

2

1
 + I

432

 

     = 























































005.05.000

05.05.000

05.05.00

05.05.0

05.0

0

1

1

1

1

1

1
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     + 























































0000125.0375.0

000125.0375.0

000125.0

000

00

0

10025.050.025.0

1025.050.025.0

0025.050.0

0025.0

00

0

 

     + 



























000000625.0

00000625.0

0000

000

00

0

 

     = 



























 10   0.5  0.750.6250.6875 

 1   0.5  0.750.6250.6875 

     1   0.5  0.75 0.625 

      1   0.5  0.75 

       1   0.5 

        1 

 

Let us look at the sums 4  j  , P
2

1
   + I

cj

1=c









 , more closely. 

 P
2

1
 + I  = 

1 generation from rows parental   

1.000.50.500

1.00.50.500

1.00.50.50

1.00.50.5

1.00.5

1.0




































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







 P

2

1
 + I

c2

1=c

 = 
2 generation from row parental

1 generation from rows parental

 

 1.000.50.750.500.25 

 1.00.50.750.500.25 

  1.0 0.50.750.50 

---------------------

    1.0 0.50.75 

---------------------

     1.0 0.5 

      1.0 







































 









 P

2

1
 + I

c3

1=c

 = 

3 generation from row parental

2 generation from row parental

1 generation from rows parental

 

 1.000.50.750.6250.625 

 1.00.50.750.6250.625 

------------------------

  1.0 0.5 0.750.625 

---------------------

    1.0  0.5 0.75 

---------------------

      1.0 0.5

      1.0 











































 









 P

2

1
  + I

c4

1=c

 = 

3 generation from row parental

2 generation from row parental

1 generation from rows parental

 

 1.000.50.750.6250.6875 

 1.00.50.750.6250.6875 

-------------------------

  1.0 0.5 0.75 0.625 

------------------------

    1.0  0.5  0.75 

------------------------

      1.0   0.5 

        1.0 










































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Generalizing: 

(1) The ith row of T  = 







P

2

1
 - I

-1

 is equal to the sum of the ith rows of I, P
2

1
, 








P

2

1
2

, ..., 







P

2

1
m

, 

i.e.,  the ith row of T is equal to the sum of the ith rows of I, P
2

1
, 








P

2

1
2

, ..., 







P

2

1
m

.  

However, the ith row of T is also equal to the sum of the ith rows of I, P
2

1
, 








P

2

1
2

, ..., 







P

2

1
mi

, 

where mi (mi ≤ m) is the number of generations separating animal i from its oldest known 

ancestor. 

(2) The parental rows of P
2

1
  I   are the same as the corresponding ones of 

     ,P
2

1
 + P

2

1
 + P

2

1
 + I  , P

2

1
 + P

2

1
 + I

322

























 

and  

 T    P
2

1
 +  + P

2

1
 + P

2

1
 + P

2

1
 + I

m32

























  

Similarly, the parental rows of 







P

2

1
 + P

2

1
 + I

2

are the same as the corresponding ones of 

















P

2

1
 + P

2

1
 + P

2

1
 + I

32

, ..., and of T; etc.  The reason for this is that the differences that exist 

between 

   







 P

2

1
  + I

cj_1

1=c

  and  







 P

2

1
  + I

cj

1=c

 

are related to accounting for the passage of alleles from ancestors c generations removed form each 
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animal, to these same individuals.  For instance, if c = 3, the difference between 







 P

2

1
  + I

c2

1=c

 and 









 P

2

1
  + I

c3

1=c

, are the elements of 







P

2

1
3

 which reflect the passage of alleles from great-

grandparents to great-grandprogeny.  Thus, rows of animals with unknown ancestors from the cth 

generation backwards remain unchanged, i.e., when the passage of alleles from all known 

ancestors of an animal has been explained, its row will not change anymore.  These fixed rows 

are called parental rows if these animals have progeny.  In particular, notice that: 

   












































































 P

2

1
   + I

  

 of rows parental  the

    

P
2

1
   + I

  

 of rows parental  the

cm

1=c

cm

1=c

i1-i

 

because the animals from the last generation have not become parents yet. 

(3) The ith row of T is a linear function of the rows of the parents of animals i, i.e., 

 ith row of 




















  P

2

1
   + I 

cm

1=c

i

 = ith row of 































   P

2

1
   _ I    P

2

1
 + I 

cm

1=c

1-i

 

         = 1 on diag +



















 P

2

1
   + I ’p

2

1
cm

1=c

i

1-i

 

where 

 pi = ith row of P, it has at most two non-zero elements:  a 1 on the column corresponding to 

the sire of animal i (si) and another 1 on the column of the dam of animal i (di), i.e., 

     pi = [0 ... 010 ... 010 ... 0] 
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               
            si   di 

(4) Because T contains all the parental rows and the row for an animal is a linear function of the 

rows of its parents, a recursive procedure to compute T can be outlined as follows: 

 (i) Order animals such that parents precede progeny, numbering them from 1 (oldest) to n 

(youngest). 

 (ii) Compute the elements of T = {tij}, one row or one column at a time, as follows: 

  (a) tij =   i < jfor   t
2

1
 + t

2

1
j , dj , s ii

  if si and di are known 

    =   i < jfor   t
2

1
j , si

    if si is known only 

    =   i < jfor   t
2

1
j , di

    if di is known only 

    =   i < jfor   0      if neither si nor di is known 

    = i > jfor   0  

  (b) tii = 1 

The matrix A, written in terms of T, is: 

  A = T D T 

Because D is diagonal and positive, D = D2 D2.  Thus, 

  A = T D2 D2 T 

  A = CC 

where 

  C = T D2 



 [14-30] 
 

  C = Cholesky decomposition of A. 

The elements of C can be computed recursively, using the procedure to compute T, as follows: 

(i) cij = d  t 2
1

jjij  

  =   i < jfor   d  t  δ + t  δ
2

1
2

1

iiii jjj , ddj , ss
 

where 

  δ  δ ds ii
 = 1 if  si (di)  >  0 

    = 0 if  si (di)  =  0 

(ii) cii = d
1

ii
  

 cii
2 = dii  

  = a δ
4

1
  a δ

4

1
  1 d dds ss iiiiii

  

But 

 A  = CC 

 c     a
2

k , s

s

1=k

s s i

i

ii   

 c     a
2

k , d

d

1=k

d d i

i

ii   

 c  δ
4

1
  c  δ

4

1
  1    c

2
k , d

d

1=k

d
2

k , s

s

1=k

s
2
ii i

i

ii

i

i    

 to compute the dii = cii
2 we only need the squares of the diagonal elements of Cholesky matrix 

C.  Also, computations can proceed one column at a time.  Consequently, the matrix C does not 

need to be stored to compute the aii. 
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The computational procedure to obtain the aii, proceeding one column at a time (Quaas, 

1976), is as follows: 

[1] Define: 

 u  = vector of sums of squares of the elements of a row of C 

 v  = vector containing the diagonal elements of C and work vector (used to store 

offdiagonal elements of C temporarily) 

[2] Order animals so that parents precede progeny and number them from 1 to n.  Set the numbers 

of unknown parents to zero. 

[3] For the ith round (i.e., the ith animal) compute: 

 (a)  vi = cii  

    =  







 u + u

4

1
  1 ds ii

2
1

  if si, di > 0 

    = 







 u

4

1
  1 si

2
1

   if si > 0, di = 0 

    = 







 u

4

1
  1 di

2
1

   if si = 0, di > 0 

    = 1      if si = di = 0 

 (b)  vj = c ji    for j = i + 1, ... , n 

    = v
2

1
 + v

2

1
ds jj

   if i  sj, dj 

    = v
2

1
s j

     if dj < i  sj 

    = v
2

1
d j

     if sj < i  dj 
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    = 0       if sj, dj < i 

 (c)  uj = uj + (vj)
2 for j = i, ... , n 

 (d)  dii
B1 = (vi)B

2 

[4] Compute and sum the contributions of the ith animal to AB1 using Henderson's rules.  If the 

matrix is too big to be kept in core, use a linked-list subroutine to sum and store only the non-

zero elements of AB1. 

[5] Repeat steps [3] and [4] until the last animal is processed, i.e., do steps [3] and [4] for i = 1, ... , 

n. 

[6] If matrix AB1 is to be stored on disk or type, copy the non-zero elements accompanied by their 

row and column numbers. 
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Computation of the dii in the example of an inbred population using Quaas' (1976) procedure 

 Round (i) 

(j) 1 2 3 4 5 6 

u1 

u2 

u3 

u4 

u5 

u6 

1.0 

(0.5)2 

(0.75)2 

(0.625)2 

(0.6875)2 

(0.6875)2 

1.0 

u2(1) + 0.75 

u3(1) + (v3(2))
2 

u4(1) + (v4(2))
2 

u5(1) + (v5(2))
2 

u6(1) + (v6(2))
2 

1.0 

1.0 

u3(2) + 0.5 

u4(2) + (v4(3))
2 

u5(2) + (v5(3))
2 

u6(2) + (v6(3))
2 

1.0 

1.0 

1.25 

1.375 

u5(3) + (v5(4))
2 

u5(3) + (v5(4))
2 

1.0 

1.0 

1.25 

1.375 

1.5 

u6(4) + (0.0)2 

1.0 

1.0 

1.25 

1.375 

1.5 

1.5 

 1 2 3 4 5 6 

v1 

v2 

v3 

v4 

v5 

v6 

(1.0)2 

0.5 

0.75 

0.625 

0.6875 

0.6875 

1.0 

(0.75)2 

2(0.75)2 

:(0.75)2 

e(0.75)2 

e(0.75)2 

1.0 

(0.75)2 

(0.5)2 

2(0.5)2 

:(0.5)2 

:(0.75)2 

1.0 

(0.75)2 

(0.5)2 

(0.4375)2 

2(0.34375)2 

2(0.4375)2 

1.0 

(0.75)2 

(0.5)2 

(0.4375)2 

(0.34375)2 

0.0 

1.0 

(0.75)2 

(0.5)2 

(0.4375)2 

(0.34375)2 

(0.34375)2 

 

Thus, the matrix D = diag {(vi)
2}, is: 

 D = 































 0.34375                        

        0.34375                

               0.4375           

                     0.5        

                        0.75    

                            1.0 

 

The matrix AB1, computed using Henderson's rules, is: 

 AB1  = 














A  ’ A 

 A  A 

2212

1211

 

where 
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














































































































































  

0.34375

2

4

1
 + 

0.4375

1   

0.34375

2

4

1
 + 

0.4375

1

2

1
  

0.34375

2
 + 

0.4375

1

4

1
 + 

0.5

1
 

  

0.34375

1

2

1

0.4375

1

4

1
 + 

0.5

1

2

1

0.4375

1
 + 

0.5

1
 

4

1
 + 

0.75

1 

0

0.5

1

2

1

0.5

1

4

1
 + 

0.75

1

2

1

0.5

1
 + 

0.75

1

4

1
 + 1 

    A
11

 





































































 
0.34375

1

2

1
  

0.34375

1

2

1
 

 
0.34375

1

2

1
  

0.34375

1

2

1
 

          0                0    

          0                0    

    A
12  























 
0.34375

1
 

  

       0 
 

0.34375

1
 

    A
22  

Thus, 

AB1  = 







































9091.2|

09091.2|

|

4545.14545.1|7403.3

4545.14545.1|3117.00260.4

00|1429.14286.04048.2

00|00000.11667.08333.1

Symmetric

 

AB1  = (I B 2 P) DB1 (I B 2 P) 

For the sake of completeness, the relationship matrix A is: 
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 A =  (I B 2 P)B1 D (I B 2 P)B1 

 A = 































5.1|

15625.15.1|

|

1875.11875.1|375.1

125.1125.1|0.125.1

8125.08125.0|875.075.00.1

6875.06875.0|625.075.05.00.1

Symmetric
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