ANIMAL BREEDING NOTES

CHAPTER 15

SIRE-MATERNAL GRANDSIRE APPROXIMATION TO THE MATRIX OF ADDITIVE RELATIONSHIPS AND ITS INVERSE

Definition of the sire-maternal grandsire model

Models used to analyze animal breeding data are often simpler versions of a complete model. These models rest on simplifying assumptions made with respect to the data, whose objectives could be, for instance, to reduce computations or generate a better behaved set of mixed model equations. One possibility is to assume that:
(i) parents have no records of their own, and
(ii) dams are related only through their sires.

These simplifying assumptions reduce an animal model to a sire-maternal grandsire model. Because dams are ignored in A, a set of rules that account for sire (s) and maternal grandsire (mgs) contributions must be used to compute the matrix of additive relationships (A) and its inverse $\left(A^{-1}\right)$. A model for the breeding value of an animal is:

$$
\begin{align*}
\mathrm{u}_{\mathrm{i}} & =\frac{1}{2} \mathrm{u}_{\mathrm{s}_{\mathrm{i}}}+\frac{1}{2} \mathrm{u}_{\mathrm{di}_{\mathrm{i}}}+\frac{1}{2} \varepsilon_{\mathrm{si}}+\frac{1}{2} \varepsilon_{\mathrm{d}_{\mathrm{i}}} \tag{1}\\
\mathrm{E}\left[\mathrm{u}_{\mathrm{i}}\right] & =0 \\
\operatorname{var}\left(\mathrm{u}_{\mathrm{i}}\right) & =\mathrm{a}_{\mathrm{ii}} \sigma_{\mathrm{A}}^{2} \\
& =\left(1+\frac{1}{2} \mathrm{a}_{\mathrm{s}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}}\right) \sigma_{\mathrm{A}}^{2} \\
& =\left(1+\mathrm{F}_{\mathrm{i}}\right) \sigma_{\mathrm{A}}^{2}
\end{align*}
$$

where
$s_{i}=$ sire of animal i,
$d_{i}=$ dam of animal i.
Assuming that the sire and the dam of animal i have no records and that dams are unrelated except through their sires, model [1] can be written as:

$$
\begin{aligned}
& u_{i}=\frac{1}{2} u_{s_{i}}+\frac{1}{2}\left[\frac{1}{2} u_{\text {mgs }_{i}}+\frac{1}{2} u_{\text {mgd }_{i}}+\frac{1}{2} \varepsilon_{m g s_{i}}+\frac{1}{2} \varepsilon_{\mathrm{mgd}_{\mathrm{i}}}\right]+\frac{1}{2} \varepsilon_{\mathrm{si}}+\frac{1}{2} \varepsilon_{\mathrm{di}_{\mathrm{i}}} \\
& \mathrm{u}_{\mathrm{i}}=\frac{1}{2} \mathrm{u}_{\mathrm{s}_{\mathrm{i}}}+\frac{1}{4} \mathrm{u}_{\mathrm{mgs}_{\mathrm{i}}}+\phi_{\mathrm{i}} \\
& \mathrm{E}\left[\mathrm{u}_{\mathrm{i}}\right]=0 \\
& \operatorname{var}\left(\mathrm{u}_{\mathrm{i}}\right)=\left(1+\frac{1}{4} \mathrm{a}_{\mathrm{simg}_{\mathrm{i}}}\right) \sigma_{\mathrm{A}}^{2} \\
& =\left(1+\mathrm{F}_{\mathrm{i}}\right) \sigma_{\mathrm{A}}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{mgs}_{\mathrm{i}} & =\text { maternal grandsire of animal } \mathrm{i} \\
\operatorname{mgd}_{\mathrm{i}} & =\text { maternal granddam of animal } \mathrm{i}, \\
\varphi_{\mathrm{i}} & =\frac{1}{4} \mathrm{u}_{\text {mgd }_{\mathrm{i}}}+\frac{1}{4} \varepsilon_{\mathrm{ms}_{\mathrm{i}}}+\frac{1}{4} \varepsilon_{\mathrm{mgd}_{\mathrm{i}}}+\frac{1}{2} \varepsilon_{\mathrm{s}_{\mathrm{i}}}+\frac{1}{2} \varepsilon_{\mathrm{d}_{\mathrm{i}}}
\end{aligned}
$$

Remarks:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{i}} & =\frac{1}{2} \mathrm{a}_{\mathrm{sid}_{\mathrm{i}}} \\
& =\frac{1}{2}\left[\frac{1}{2} \mathrm{a}_{\mathrm{s}_{\mathrm{i}} \mathrm{mgs}_{\mathrm{i}}}+\frac{1}{2} \mathrm{a}_{\mathrm{s}_{\mathrm{i}} \mathrm{mgd}_{\mathrm{i}}}\right] \\
& =\frac{1}{4} \mathrm{a}_{\mathrm{simg}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}}}, \text { because, by assumption, } \mathrm{a}_{\mathrm{si}_{\mathrm{i}} \operatorname{mgd}_{\mathrm{i}}}=0 .
\end{aligned}
$$

Derivation of the rules to compute the additive relationship matrix among sires and maternal grandsires directly

In matrix notation model [2] is:

$$
\begin{aligned}
\mathrm{u} & =\frac{1}{2} \mathrm{P}_{\mathrm{s}} \mathrm{u}+\frac{1}{4} \mathrm{P}_{\mathrm{m}} \mathrm{u}+\phi \\
\Rightarrow \quad \mathrm{u} & =\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}\right)^{-1} \phi \\
\mathrm{E}[\mathrm{u}] & =0 \\
\operatorname{var}(\mathrm{u}) & =\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}\right)^{-1} \operatorname{var}(\phi)\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}^{\prime}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}^{\prime}\right)^{-1} \\
& =\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}\right)^{-1} \mathrm{D}\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}^{\prime}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}\right)^{\prime-1} \sigma_{\mathrm{A}}^{2}
\end{aligned}
$$

where
$\mathrm{D}=\operatorname{diag}\left\{\mathrm{d}_{\mathrm{ii}}\right\}, \mathrm{d}_{\mathrm{ii}}=\operatorname{coefficient}$ of $\operatorname{var}\left(\varphi_{\mathrm{i}}\right)$,
$u=$ vector of breeding values of males ordered so that sires and mgs' precede sons and maternal grandsons (mgsons),
$\mathrm{P}_{\mathrm{s}}=$ lower triangular matrix relating sires to sons. A row of P contains at most one non-zero element, i.e., a 1 , in the column corresponding to the sire of a male, if it is known.
$\mathrm{P}_{\mathrm{m}}=$ lower triangular matrix relating mgs' to mgsons. A row of P contains a 1 in the column of the mgs of a male if the mgs is identified or a 0 otherwise, and zeroes elsewhere.
$\varphi=$ vector of independent random variables, where

$$
\begin{aligned}
\varphi_{\mathrm{i}}= & \frac{1}{4} \mathrm{u}_{\mathrm{mg}_{\mathrm{i}}}+\frac{1}{4} \varepsilon_{\mathrm{mgs}_{\mathrm{i}}}+\frac{1}{4} \varepsilon_{\mathrm{mgd}_{\mathrm{i}}}+\frac{1}{2} \varepsilon_{\mathrm{s}_{\mathrm{i}}}+\frac{1}{2} \varepsilon_{\mathrm{d}_{\mathrm{i}}} \\
& \text { if } \mathrm{s}_{\mathrm{i}} \text { and } \mathrm{mgs}_{\mathrm{i}} \text { are known }
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{\mathrm{i}}= & \frac{1}{2} \mathrm{u}_{\mathrm{d}_{\mathrm{i}}}+\frac{1}{2} \varepsilon_{\mathrm{s}_{\mathrm{i}}}+\varepsilon_{\mathrm{d}_{\mathrm{i}}} \\
& \text { if } \mathrm{s}_{\mathrm{i}} \text { is known only } \\
\varphi_{\mathrm{i}}= & \frac{1}{2} \mathrm{u}_{\mathrm{s}_{\mathrm{i}}}+\frac{1}{4} \mathrm{u}_{\mathrm{mgd}_{\mathrm{i}}}+\frac{1}{4} \varepsilon_{\mathrm{mss}_{\mathrm{i}}}+\frac{1}{4} \varepsilon_{\mathrm{mg}_{\mathrm{i}}}+\frac{1}{2} \varepsilon_{\mathrm{si}}+\frac{1}{2} \varepsilon_{\mathrm{d}_{\mathrm{i}}} \\
& \text { if } \mathrm{mgs}_{\mathrm{i}} \text { is known only } \\
\varphi_{\mathrm{i}}= & \mathrm{u}_{\mathrm{i}} \text { if neither } \mathrm{s}_{\mathrm{i}} \text { nor } \mathrm{mgs}_{\mathrm{i}} \text { are known }
\end{aligned}
$$

Thus, the $\operatorname{var}\left(\varphi_{\mathrm{i}}\right)=\mathrm{d}_{\mathrm{ii}} \sigma_{\mathrm{A}}{ }^{2}$ are:
(i) if s_{i} and $\mathrm{mgs}_{\mathrm{i}}$ are identified,

$$
\begin{aligned}
& \operatorname{var}\left(\varphi_{\mathrm{i}}\right)=\operatorname{var}\left(\mathrm{u}_{\mathrm{i}}\right)-\operatorname{var}\left(\frac{1}{2} \mathrm{u}_{\mathrm{si}_{\mathrm{i}}}+\frac{1}{4}{u_{\text {ms }_{\mathrm{i}}}}\right) \\
& =\left[\left(1+\frac{1}{4} \mathrm{a}_{\mathrm{simg}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}}}\right)-\left(\frac{1}{4} \mathrm{a}_{\mathrm{si} \mathrm{~s} i}+\frac{1}{16} \mathrm{a}_{\mathrm{mgs}_{\mathrm{i}} \mathrm{mg}_{\mathrm{i}}}+\frac{1}{4} \mathrm{a}_{\mathrm{simgs}_{\mathrm{i}}}\right)\right] \sigma_{\mathrm{A}}^{2} \\
& =\left[1-\frac{1}{4} \mathrm{a}_{\mathrm{s}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}}}-\frac{1}{16} \mathrm{a}_{\mathrm{mgs}_{\mathrm{i}} \mathrm{~ms}}\right] \sigma_{\mathrm{A}}^{2} \\
& =\left[1-\frac{1}{4}\left(1+\mathrm{F}_{\mathrm{si}_{\mathrm{i}}}\right)-\frac{1}{16}\left(1+\mathrm{F}_{\mathrm{mgs}_{\mathrm{i}}}\right)\right] \sigma_{\mathrm{A}}^{2} \\
& =\left[\frac{11}{16}-\frac{1}{4} \mathrm{~F}_{\mathrm{si}}-\frac{1}{16} \mathrm{Fmgs}_{\mathrm{i}}\right] \sigma_{\mathrm{A}}^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{F}_{\mathrm{s}_{\mathrm{i}}} & =\frac{1}{4} \mathrm{a}_{\mathrm{ssi}^{\mathrm{mgss}}}^{s_{\mathrm{i}}}
\end{aligned}
$$

and subscripts,

$$
\begin{array}{ll}
\mathrm{ss}_{\mathrm{i}} & =\text { sire of } \mathrm{s}_{\mathrm{i}} \\
\operatorname{mgSs}_{\mathrm{i}} & =\operatorname{mgs} \text { of } \mathrm{s}_{\mathrm{i}} \\
\operatorname{smgs}_{\mathrm{i}} & =\text { sire of } \mathrm{mgs}_{\mathrm{i}} \\
\operatorname{mgsmgs}_{i} & =\text { mgs of } \mathrm{mgs}_{i}
\end{array}
$$

(ii) if s_{i} is identified only,

$$
\begin{aligned}
\operatorname{var}\left(\varphi_{\mathrm{i}}\right) & =\operatorname{var}\left(\mathrm{u}_{\mathrm{i}}\right)-\operatorname{var}\left(\frac{1}{2} \mathrm{u}_{\mathrm{si}}\right) \\
& =\left[1-\frac{1}{4} \mathrm{a}_{\mathrm{s}_{\mathrm{s}} \mathrm{i}}\right] \sigma_{\mathrm{A}}^{2} \\
& =\left[1-\frac{1}{4}\left(1+\mathrm{F}_{\mathrm{si}}\right)\right] \sigma_{\mathrm{A}}^{2} \\
& =\left[\frac{3}{4}-\frac{1}{4} \mathrm{~F}_{\mathrm{s}_{\mathrm{i}}}\right] \sigma_{\mathrm{A}}^{2}
\end{aligned}
$$

(iii) if $\mathrm{mgs}_{\mathrm{i}}$ is identified only,

$$
\begin{aligned}
\operatorname{var}\left(\varphi_{\mathrm{i}}\right) & =\operatorname{var}\left(\mathrm{u}_{\mathrm{i}}\right)-\operatorname{var}\left(\frac{1}{4} \mathbf{u}_{\mathrm{ms}_{\mathrm{i}}}\right) \\
& =\left[1-\frac{1}{16} \mathrm{a}_{\text {ms }_{\mathrm{i}} \mathrm{mgs}_{\mathrm{i}}}\right] \sigma_{\mathrm{A}}^{2} \\
& =\left[1-\frac{1}{16}\left(1+\mathrm{F}_{\mathrm{mgs}}\right.\right. \\
) &] \sigma_{\mathrm{A}}^{2} \\
& =\left[\frac{15}{16}-\frac{1}{16} \mathrm{~F}_{\mathrm{mgs}_{\mathrm{i}}}\right] \sigma_{\mathrm{A}}^{2}
\end{aligned}
$$

(iv) if neither s_{i} nor $\mathrm{mgs}_{\mathrm{i}}$ are identified,

$$
\operatorname{var}\left(\varphi_{\mathrm{i}}\right)=\operatorname{var}\left(\mathrm{u}_{\mathrm{i}}\right)
$$

$$
\begin{aligned}
& =[1] \sigma_{\mathrm{A}}^{2} \\
& =\sigma_{\mathrm{A}}^{2}
\end{aligned}
$$

Because

$$
\begin{aligned}
& \operatorname{var}(\mathrm{u})=\mathrm{A} \sigma_{\mathrm{A}}{ }^{2} \\
& \operatorname{var}(\mathrm{u})=\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}\right)^{-1} \mathrm{D}\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}{ }^{\prime}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}{ }^{\prime}\right)^{-1} \sigma_{\mathrm{A}}^{2} \\
& \Rightarrow \quad \text { A } \quad=\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}\right)^{-1} \mathrm{D}\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}{ }^{\prime}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}{ }^{\prime}\right)^{-1} \quad \text { if only males are included in } \mathrm{A} \\
& \Rightarrow \quad \mathrm{~A}^{-1} \quad=\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}{ }^{\prime}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}{ }^{\prime}\right) \mathrm{D}^{-1}\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}\right) \\
& \mathrm{A}^{-1}=\mathrm{D}^{-1} \quad \text { diagonals } \\
& -\frac{1}{2} D^{-1} P_{s} \quad \text { sons-sires } \\
& -\frac{1}{2} P_{s}{ }^{\prime} D^{-1} \quad \text { sires-sons } \\
& -\frac{1}{4} \mathrm{D}^{-1} \mathrm{P}_{\mathrm{m}} \quad \text { mgsons-mgs' } \\
& -\frac{1}{4} \mathrm{P}_{\mathrm{m}}{ }^{\prime} \mathrm{D}^{-1} \quad \text { mgs'-mgsons } \\
& +\frac{1}{4} \mathrm{P}_{\mathrm{s}}{ }^{\prime} \mathrm{D}^{-1} \mathrm{P}_{\mathrm{s}} \quad \text { sires-sires } \\
& +\frac{1}{8} \mathrm{P}_{\mathrm{s}} \mathrm{D}^{-1} \mathrm{P}_{\mathrm{m}} \quad \text { sires-mgs' } \\
& +\frac{1}{8} \mathrm{P}_{\mathrm{m}}{ }^{\prime} \mathrm{D}^{-1} \mathrm{P}_{\mathrm{s}} \quad \text { mgs'-sires }
\end{aligned}
$$

$$
+\frac{1}{16} \mathrm{P}_{\mathrm{m}}^{\prime} \mathrm{D}^{-1} \mathrm{P}_{\mathrm{m}} \quad \text { mgs'-mgs' }
$$

where the right hand column indicates where the elements of the matrices on the left column are located in the A^{-1} matrix, e.g., sires-sires means that the matrix $\frac{1}{4} \mathrm{P}_{\mathrm{s}}{ }^{\prime} \mathrm{D}^{-1} \mathrm{P}_{\mathrm{s}}$ contributes with nonzero elements to the sire-sire elements of A^{-1}. Based on the contributions of the component matrices, i.e., $D^{-1}, \ldots, \frac{1}{16} P_{m}{ }^{\prime} D^{-1} P_{m}$, to A^{-1}, the rules to compute A^{-1}, using a list of males where sires and mgs' $^{\prime}$ precede sons and mgsons, are (Henderson, 1976):
(1) if s_{i} and $\mathrm{mgs}_{\mathrm{i}}$ are known, add:

$$
\begin{array}{ll}
\mathrm{d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{i} \times \mathrm{i} \\
-\frac{1}{2} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{i} \times \mathrm{s}_{\mathrm{i}}, \mathrm{~s}_{\mathrm{i}} \times \mathrm{i} \\
-\frac{1}{4} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{i} \times \mathrm{mgs}_{\mathrm{i}}, \mathrm{mgs}_{\mathrm{i}} \times \mathrm{i} \\
\frac{1}{4} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{s}_{\mathrm{i}} \times \mathrm{s}_{\mathrm{i}} \\
\frac{1}{8} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{si}_{\mathrm{i}} \times \mathrm{mgs}_{\mathrm{i}}, \mathrm{mgs}_{\mathrm{i}} \times \mathrm{s}_{\mathrm{i}} \\
\frac{1}{16} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{mgs}_{\mathrm{i}} \times \mathrm{mgs}_{\mathrm{i}}
\end{array}
$$

where

$$
\mathrm{d}_{\mathrm{ii}}^{1}=\left[1-\frac{1}{4} \mathrm{a}_{\mathrm{sis}_{\mathrm{i}}}-\frac{1}{16} \mathrm{a}_{\mathrm{mgs}_{\mathrm{i}} \mathrm{~ms}_{\mathrm{i}}}\right]^{-1}
$$

(2) if s_{i} is known only, add:

$$
\begin{array}{cl}
\mathrm{d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{i} \times \mathrm{i} \\
-\frac{1}{2} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{i} \times \mathrm{s}_{\mathrm{i}}, \mathrm{~s}_{\mathrm{i}} \times \mathrm{i} \\
\frac{1}{4} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{s}_{\mathrm{i}} \times \mathrm{s}_{\mathrm{i}}
\end{array}
$$

where

$$
\mathrm{d}_{\mathrm{ii}}^{-1}=\left[1-\frac{1}{4} \mathrm{a}_{\mathrm{s}_{\mathrm{i}} \mathrm{si}_{\mathrm{i}}}\right]^{-1}
$$

(3) if $\mathrm{mgs}_{\mathrm{i}}$ is known only, add:

$$
\begin{array}{cl}
\mathrm{d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{i} \times \mathrm{i} \\
-\frac{1}{4} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{i} \times \mathrm{mgs}_{\mathrm{i}}, \mathrm{mgs}_{\mathrm{i}} \times \mathrm{i} \\
\frac{1}{16} \mathrm{~d}_{\mathrm{ii}}^{-1} & \text { to } \mathrm{mgs}_{\mathrm{i}} \times \mathrm{mgs}_{\mathrm{i}}
\end{array}
$$

where

$$
\mathrm{d}_{\mathrm{ii}}^{-1}=\left[1-\frac{1}{16} \mathrm{a}_{\mathrm{mgs}_{\mathrm{i}} \mathrm{mgs}_{\mathrm{i}}}\right]^{-1}
$$

(4) if neither s_{i} nor $\mathrm{mgs}_{\mathrm{i}}$ are known, add:

$$
\mathrm{d}_{\mathrm{ii}}^{-1} \quad \text { to } \mathrm{i} \times \mathrm{i}
$$

where

$$
\mathrm{d}_{\mathrm{ii}}^{-1}=1
$$

Non-inbred population
If there is no inbreeding the d_{ii} and $\mathrm{d}_{\mathrm{ii}}{ }^{-1}$ are:

Ancestor(s) identified	d_{ii}	$\mathrm{d}_{\mathrm{ii}}{ }^{-1}$
$\mathrm{~s}_{\mathrm{i}}$ and $\mathrm{mgs}_{\mathrm{i}}$	$\frac{11}{16}$	$\frac{16}{11}$
$\mathrm{~s}_{\mathrm{i}}$ only	$\frac{3}{4}$	$\frac{4}{3}$
$\mathrm{mgs}_{\mathrm{i}}$ only	$\frac{15}{16}$	$\frac{16}{15}$
none	1	1

So, the rules to build $\mathrm{A}^{\mathbf{- 1}}$ simplify to those of Henderson (1975):
(1) if s_{i} and $\mathrm{mgs}_{\mathrm{i}}$ are known, add:

$$
\frac{16}{11} \quad \text { to } \mathrm{i} \times \mathrm{i}
$$

$$
-\frac{8}{11} \quad \text { to } \mathrm{i} \times \mathrm{s}_{\mathrm{i}}, \mathrm{~s}_{\mathrm{i}} \mathrm{x} \mathrm{i}
$$

$$
-\frac{4}{11} \quad \text { to } \mathrm{i} \times \mathrm{mgs}_{\mathrm{i}}, \mathrm{mgs}_{\mathrm{i}} \times \mathrm{i}
$$

$$
\frac{4}{11} \quad \text { to } \mathrm{s}_{\mathrm{i}} \times \mathrm{s}_{\mathrm{i}}
$$

$$
\frac{2}{11} \quad \text { to } \mathrm{s}_{\mathrm{i}} \times \mathrm{mgs}_{\mathrm{i}}, \mathrm{mgs}_{\mathrm{i}} \times \mathrm{s}_{\mathrm{i}}
$$

$$
\frac{1}{11} \quad \text { to } \mathrm{mgs}_{\mathrm{i}} \times \mathrm{mgs}_{\mathrm{i}}
$$

(2) if s_{i} is known only, add:

$$
\begin{aligned}
& \frac{4}{3} \quad \text { to } \mathrm{i} \times \mathrm{i} \\
& -\frac{2}{3} \text { to } \mathrm{i} \times \mathrm{s}_{\mathrm{i}}, \mathrm{~s}_{\mathrm{i}} \times \mathrm{i} \\
& \frac{1}{3} \quad \text { to } \mathrm{s}_{\mathrm{i}} \mathrm{X} \mathrm{si}
\end{aligned}
$$

(3) if $\mathrm{mgs}_{\mathrm{i}}$ is known only, add:

$$
\begin{array}{ll}
\frac{16}{15} & \text { to } \mathrm{i} \times \mathrm{i} \\
-\frac{4}{15} & \text { to } \mathrm{i} \times \mathrm{mgs}_{\mathrm{i}}, \mathrm{mgs}_{\mathrm{i}} \times \mathrm{i} \\
\frac{1}{15} & \text { to } \mathrm{mgs}_{\mathrm{i}} \times \mathrm{mgs}_{\mathrm{i}}
\end{array}
$$

(4) if neither s_{i} nor mgs $_{i}$ is known, add:

```
    1 to i }\times\textrm{i}\mathrm{ .
```

Inbred population
If there is inbreeding in a population, then we need to know the diagonal elements of the A matrix to be able to compute the d_{i}. Quaas' (1976) procedure to compute the diagonal of A , when males and females in the pedigree are accounted for, can be easily modified to the case when males are included in A only. Thus, to compute A^{-1} :
[1] Define:
$u=$ vector of sums of squares of the elements of a row of L, where

$$
\mathrm{L}=\left(\mathrm{I}-\frac{1}{2} \mathrm{P}_{\mathrm{s}}-\frac{1}{4} \mathrm{P}_{\mathrm{m}}\right)^{-1} \mathrm{D}^{1 / 2}
$$

$\mathrm{v}=$ vector containing the diagonal elements of L and also used to store the offdiagonal elements of L temporarily.
[2] Order and number males from 1 to n , sires and mgs preceding sons and mgsons. Set the number of the unknown sires and mgs' to zero.
[3] Process one male at a time, from male 1 to n. For the $i^{\text {th }}$ male, compute:
(a) $\mathrm{v}_{\mathrm{i}}=\mathrm{c}_{\mathrm{ii}}$

$$
\begin{array}{ll}
=\left[1-\frac{1}{4} u_{s_{i}}-\frac{1}{16} u_{\text {ms }_{\mathrm{i}}}\right]^{1 / 2} & \text { if } \mathrm{s}_{\mathrm{i}}, \mathrm{mgs}_{\mathrm{i}}>0 \\
=\left[1-\frac{1}{4} u_{s_{i}}\right]^{1 / 2} & \text { if } \mathrm{s}_{\mathrm{i}}>0, \mathrm{mgs}_{\mathrm{i}}=0 \\
=\left[1-\frac{1}{16} u_{\mathrm{ms}_{\mathrm{i}}}\right]^{1 / 2} & \text { if } \mathrm{s}_{\mathrm{i}}=0, \mathrm{mgs}_{\mathrm{i}}>0 \\
=1 & \text { if } \mathrm{s}_{\mathrm{i}}=\mathrm{mgs}_{\mathrm{i}}=0
\end{array}
$$

(b) $v_{j}=c_{j i} \quad$ for $j=i+1, \ldots, n$

$$
=\frac{1}{2} \mathrm{v}_{\mathrm{s}_{\mathrm{j}}}+\frac{1}{4} \mathrm{v}_{\mathrm{mg} \mathrm{~s}_{\mathrm{j}}} \quad \text { if } \mathrm{i} \leq \mathrm{s}_{\mathrm{j}}, \mathrm{mgs}_{\mathrm{j}}
$$

$$
=\frac{1}{2} \mathrm{v}_{\mathrm{s}_{\mathrm{j}}} \quad \quad \text { if } \mathrm{mgs}_{\mathrm{j}}<\mathrm{i} \leq \mathrm{s}_{\mathrm{j}}
$$

$$
=\frac{1}{4} \mathrm{vms}_{\mathrm{m}} \quad \text { if } \mathrm{s}_{\mathrm{j}}<\mathrm{i} \leq \mathrm{mgs}_{\mathrm{j}}
$$

$$
=0 \quad \text { if } \mathrm{s}_{\mathrm{j}}, \mathrm{mgs}_{\mathrm{j}}<\mathrm{i}
$$

(c) $u_{j}=u_{j}+\left(v_{j}\right)^{2} \quad$ for $j=i, \ldots, n$
(d) $\mathrm{d}_{\mathrm{ii}}^{-1}=\left(\mathrm{v}_{\mathrm{i}}\right)^{-2}$
(e) Add the contributions of the $i^{\text {th }}$ animal to A^{-1} using the rules for the case of males included
in A only given previously. Use a matrix or the vectors of the a linked-list subroutine to sum and store the non-zero elements of A^{-1}. Store the row number, column number and the non-zero element after the $\mathrm{n}^{\text {th }}$ animal is processed.

Remarks:
[1] If a computer program for the sire-mgs approximation to A^{-1} is written, check for sire $=\mathrm{mgs}$ (i.e., sire-daughter matings). If $\mathrm{s}_{\mathrm{i}}=\mathbf{m g s} \mathbf{s}$, add:
(i) $\left(\frac{1}{4}+2\left(\frac{1}{8}\right)+\frac{1}{16}\right) d_{i i}^{-1}-\frac{9}{16} d_{i i}^{-1} \quad$ to $s_{i} \times s_{i}\left(=\operatorname{mgs}_{i} \times \mathrm{mgs}_{\mathrm{i}}\right) \quad$ if $\mathrm{s}_{\mathrm{i}}\left(=\mathrm{mgs}_{\mathrm{i}}\right)$ is inbred
(ii) $\left(\frac{4}{11}+2\left(\frac{2}{11}\right)+\frac{1}{11}\right)-\frac{9}{16} \quad$ to $\mathrm{s}_{\mathrm{i}} \times \mathrm{s}_{\mathrm{i}}\left(=\mathrm{mgs}_{\mathrm{i}} \times \mathrm{mgs}_{\mathrm{i}}\right) \quad$ if $\mathrm{s}_{\mathrm{i}}\left(=\mathrm{mgs}_{\mathrm{i}}\right)$ is not inbred.
[2] The sire-mgs approximation to A:
[2.1] Treats full-sibs as paternal half-sibs, e.g.,

true pedigree	sire-mgs approximation
$\mathrm{s}_{1} \quad \mathrm{~d}_{1}$	$\mathrm{mgs}_{\mathrm{i}}$
$\downarrow>\prec \downarrow$	
$\downarrow<\diamond \downarrow$	
p_{1}	p_{2}

[2.2] Treats maternal half-sibs as mgs-grandprogeny, e.g.,
true pedigree
$\begin{array}{lll}\mathrm{s}_{1} & \mathrm{~d}_{1} & \mathrm{~s}_{2}\end{array}$
$\downarrow<>\downarrow$
$\mathrm{p}_{1} \quad \mathrm{p}_{2}$
sire-mgs approximation
$\mathrm{mgS}_{\mathrm{i}}$
$\mathrm{s}_{1} \mathrm{~d}_{1} \mathrm{~d}_{2} \mathrm{~s}_{2}$
\downarrow, $\downarrow \downarrow$
$\mathrm{p}_{1} \quad \mathrm{p}_{2}$
[2.3] is equal to an \mathbf{A} that includes males and females, if:
(a) all maternal granddams are base dams, i.e., unrelated and non-inbred, and
(b) there are no maternal half-sibs, i.e., each dam has only one calf.

Example of \mathbf{A}^{-1} for the sire-mgs approximation

Animal	Sire	Mgs
1		
2	1	
3		1
4	3	2
5	4	3
6	4	4

Here,
$P_{s}=\left[\begin{array}{lllllll}0 & & & & & \\ 1 & 0 & & & & \\ 0 & 0 & 0 & & & \\ 0 & 0 & 1 & 0 & & \\ 0 & 0 & 0 & 1 & 0 & \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$ and $P_{m}=\left[\begin{array}{llllll}0 & & & & & \\ 0 & 0 & & & & \\ 1 & 0 & 0 & & & \\ 0 & 1 & 0 & 0 & & \\ 0 & 0 & 1 & 0 & 0 & \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$

Computation of the d_{ii} using the sire-mgs version of Quaas' (1976) procedure

	Round (i)					
(j)	1	2	3	4	5	6
u_{1}	1.0	1.0	1.0	1.0	1.0	1.0
u_{2}	$(0.5)^{2}$	$\mathrm{u}_{2(1)}+0.75$	1.0	1.0	1.0	1.0
u_{3}	$(0.25)^{2}$	$\mathrm{u}_{3(1)}+\left(\mathrm{v}_{3(2)}\right)^{2}$	$\mathrm{u}_{3(2)}+0.9375$	1.0	1.0	1.0
u_{4}	$(0.25)^{2}$	$\mathrm{u}_{4(1)}+\left(\mathrm{v}_{4(2)}\right)^{2}$	$\mathrm{u}_{4(2)}+\left(\mathrm{v}_{4(3)}\right)^{2}$	$\mathrm{u}_{4(3)}+0.6875$	1.03125	1.03125
u_{5}	$(0.1875)^{2}$	$\mathrm{u}_{5(1)}+\left(\mathrm{v}_{5(2)}\right)^{2}$	$\mathrm{u}_{5(2)}+\left(\mathrm{v}_{5(3)}\right)^{2}$	$\mathrm{u}_{5(3)}+\left(\mathrm{v}_{5(4)}\right)^{2}$	$\mathrm{u}_{5(4)}+0.6796875$	1.1328125
u_{6}	$(0.1875)^{2}$	$\mathrm{u}_{6(1)}+\left(\mathrm{v}_{6(2)}\right)^{2}$	$\mathrm{u}_{6(2)}+\left(\mathrm{v}_{6(3)}\right)^{2}$	$\mathrm{u}_{6(3)}+\left(\mathrm{v}_{6(4)}\right)^{2}$	$u_{6(4)}+\left(v_{6(5)}\right)^{2}$	1.2578125
	1	2	3	4	5	6
V_{1}	$(1.0)^{1 / 2}$			1.0	1.0	1.0
v_{2}	0.5	$(0.75)^{1 / 2}$	$(0.75)^{1 / 2}$	$(0.75)^{1 / 2}$	$(0.75)^{1 / 2}$	$(0.75)^{1 / 2}$
V_{3}	0.25	0	$(0.9375)^{1 / 2}$	$(0.9375)^{1 / 2}$	$(0.9375)^{1 / 2}$	$(0.9375)^{1 / 2}$
V_{4}	0.25	$1 / 4(0.75)^{1 / 2}$	1/2(0.9375) ${ }^{1 / 2}$	$(0.6875)^{1 / 2}$	$(0.6875)^{1 / 2}$	$(0.6875)^{1 / 2}$
v_{5}	0.1875	1/8(0.75) ${ }^{1 / 2}$	1/2(0.9375) ${ }^{1 / 2}$	1/2(0.6875) ${ }^{1 / 2}$	$(0.6796875)^{1 / 2}$	$(0.6796875)^{1 / 2}$
v_{6}	0.1875	$3 / 16(0.75)^{1 / 2}$	$3 / 8(0.9375)^{1 / 2}$	$3 / 4(0.6875)^{1 / 2}$	0	$(0.677734375)^{1 / 2}$

Therefore, the matrix D^{-1} is:

The matrix A^{-1}, using the sire-mgs rules, is:
$\mathrm{A}^{-1}=\left[\begin{array}{ccccc}1+\frac{1}{4}(1.3333)+\frac{1}{16}(1.0667) & \mid & -\frac{1}{2}(1.3333) & \mid & -\frac{1}{4}(1.0667) \\ & \left\lvert\, 1.3333+\frac{1}{16}(1.4545)\right. & \mid & \frac{1}{8}(1.4545) & \mid \\ \text { Symmetric } & \mid & \mid & 1.0667+\frac{1}{4}(1.4545)+\frac{1}{16}(0.4713) & \mid \\ & \mid & \mid & \mid \\ & \mid & \mid & \mid\end{array}\right.$

$$
\left.\begin{array}{ccccc}
0 & \mid & 0 & \mid & 0 \\
-\frac{1}{4}(1.4545) & \mid & 0 & \mid & 0 \\
1.4545)+\frac{1}{8}(1.4713) & \mid & -\frac{1}{4}(1.4713) & \mid & 0 \\
\frac{1}{4}(1.4713)+\frac{9}{16}(1.4755) & \mid & -\frac{1}{2}(1.4713) & \mid & -\frac{3}{4}(1.4755) \\
& \mid & 1.4713 & \mid & 0 \\
& \mid & & 1.4755
\end{array}\right]
$$

$$
\mathrm{A}^{-1}=\left[\begin{array}{rrrrrr}
1.4000 & -0.6667 & -0.2667 & 0 & 0 & 0 \\
& 1.4242 & 0.1818 & -0.3636 & 0 & 0 \\
& & 1.5223 & -0.5434 & -0.3678 & 0 \\
\text { Symmetric } & & & 2.6523 & -0.7356 & -1.1066 \\
& & & & 1.4713 & 0 \\
& & & & & 1.4755
\end{array}\right] .
$$

Recursive procedure to compute \mathbf{A} for the sire-mgs approximation

The rules are based on approximating the additive relationship between two individuals by considering males only. Dams are assumed to be unrelated to sires and among themselves, except through their sires (the mgs' of calves). Thus,
(i) the additive relationship between two animals is approximately:

$$
\begin{aligned}
a_{i j} & =\frac{1}{2}\left[a_{\mathrm{is}_{\mathrm{j}}}+a_{\mathrm{idj}_{\mathrm{j}}}\right] \\
a_{\mathrm{ij}} & =\frac{1}{2}\left[a_{\mathrm{is}_{\mathrm{j}}}+\frac{1}{2}\left(\mathrm{a}_{\mathrm{imgs}_{\mathrm{j}}}+\mathrm{a}_{\mathrm{imgd}_{\mathrm{j}}}\right)\right] \\
\Rightarrow \quad a_{\mathrm{ij}} & \approx \frac{1}{2} a_{\mathrm{is}_{\mathrm{j}}}+\frac{1}{4} a_{\mathrm{imgs}_{\mathrm{j}}}
\end{aligned}
$$

(ii) the coefficient of inbreeding of an animal is approximately:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{i}} & =\frac{1}{2} \mathrm{a}_{\mathrm{sidi}_{\mathrm{i}}} \\
\mathrm{~F}_{\mathrm{i}} & =\frac{1}{2}\left[\frac{1}{2}\left(\mathrm{a}_{\mathrm{simg}_{\mathrm{s}_{\mathrm{i}}}}+\mathrm{a}_{\mathrm{simg}_{\mathrm{i}}}\right)\right] \\
\Rightarrow \quad \mathrm{F}_{\mathrm{i}} & \approx \frac{1}{4} \mathrm{a}_{\mathrm{s}_{\mathrm{i}} \mathrm{mg}_{\mathrm{s}_{\mathrm{i}}}}
\end{aligned}
$$

Using the approximate formulae for a_{ij} and F_{i}, the following recursive procedure to build a siremgs A can be outlined:
[1] If s_{j} and $\mathrm{mgs}_{\mathrm{j}}$ are known,

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{ij}}=\frac{1}{2} \mathrm{a}_{\mathrm{isj}_{\mathrm{j}}}+\frac{1}{4} \mathrm{a}_{\mathrm{img} \mathrm{~s}_{\mathrm{j}}} \\
& \mathrm{a}_{\mathrm{ii}}=1+\frac{1}{4} \mathrm{a}_{\mathrm{si}_{\mathrm{i}} \mathrm{~ms}_{\mathrm{i}}}
\end{aligned}
$$

[2] If s_{j} is known only,

$$
\begin{aligned}
\mathrm{a}_{\mathrm{ij}} & =\frac{1}{2} \mathrm{a}_{\mathrm{isj}} \\
\mathrm{a}_{\mathrm{ii}} & =1
\end{aligned}
$$

[3] If $\mathrm{mgs}_{\mathrm{j}}$ is known only,

$$
\begin{aligned}
& a_{i j}=\frac{1}{4} a_{\mathrm{img}_{\mathrm{j}}} \\
& \mathrm{a}_{\mathrm{ii}}=1
\end{aligned}
$$

[4] If neither s_{j} nor mg_{j} is known,

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{ij}}=0 \\
& \mathrm{a}_{\mathrm{ii}}=1
\end{aligned}
$$

Example of a sire-mgs A matrix

The approximate additive genetic relationship matrix for the sire-mgs A^{-1} example is:

		1	1	3	2	4
1	1	2	3	4		
1	1.0	0.5	0.25	0.25	0.1875	0.1875
2	0.5	1.0	0.125	0.3125	0.1875	0.234375
3	0.25	0.125	1.0	0.53125	0.515625	0.3984375
4	0.25	0.3125	0.53125	1.03125	0.6488375	0.7734375
5	0.1875	0.1875	0.515625	0.6484375	1.1328125	0.486328125
6	0.1875	0.234375	0.3984375	0.7734375	0.486328125	1.2578125

Also, to check $A^{-1}=\left(I-1 / 2 P_{s}{ }^{\prime}-1 / 4 P_{m}{ }^{\prime}\right) D^{-1}\left(I-1 / 2 P_{s}-1 / 4 P_{m}\right)$, matrix A could have been computed as:

$$
\mathrm{A}=\left(\mathrm{I}-1 / 2 \mathrm{P}_{\mathrm{s}}-1 / 4 \mathrm{P}_{\mathrm{m}}\right)^{-1} \mathrm{D}\left(\mathrm{I}-1 / 2 \mathrm{P}_{\mathrm{s}}^{\prime}-1 / 4 \mathrm{P}_{\mathrm{m}}{ }^{\prime}\right)^{-1}
$$

where

$$
\left(I-1 / 2 P_{s}-1 / 4 \mathrm{P}_{\mathrm{m}}\right)^{-1}=\left[\begin{array}{cccccc}
1 & & & & & \\
-1 / 2 & 1 & & & & \\
-1 / 4 & 0 & 1 & & & \\
0 & -1 / 4 & -1 / 2 & 1 & & \\
0 & 0 & -1 / 4 & -1 / 2 & 1 & \\
0 & 0 & 0 & -3 / 4 & 0 & 1
\end{array}\right]
$$

and

$$
\mathrm{D}=\left[\begin{array}{llllll}
1.0 & & & & & \\
& 0.75 & & & & \\
& & 0.9375 & & & \\
& & & 0.6875 & & \\
& & & & 0.6796875 & \\
& & & & & 0.677734375
\end{array}\right]
$$

References

Henderson, C. R. 1975. Inverse of a matrix of relationships due to sires and maternal grandsires. J. Dairy Sci. 58:1917-1921.

Henderson, C. R. 1975. Inverse of a matrix of relationships due to sires and maternal grandsires in an inbred population. J. Dairy Sci. 59:1585-1588.

Quaas, R. L. 1976. Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics 32:949-953.

