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ANIMAL BREEDING NOTES 

CHAPTER 16 

ANIMAL AND REDUCED ANIMAL MODELS 

 

Animal Model (AM) 

Objective:  to predict the breeding value (BV) of animals based on their own records and(or) 

records of their relatives. 

Assumptions: 

(i)  Animals belong to a single population, 

(ii)  Animals may have 1 or more records and covariances among records are due only to genetic 

factors, and  

(iii)   There is either no selection in the population, or: 

  (a) If selection occurred based on records, the selection was within fixed effects, and 

  (b) If selection occurred based on the BV of animals, the relationship matrix is complete. 

The AM is: 
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,   because of assumptions (i) and (ii).

  var(y)  = ZGZ + R, 
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     = ZAZσA
2 + Iσe

2, 

where 

 y = vector of animal records, 

 b = vector of unknown fixed effects, 

 u = vector of unknown random BV belonging to the animals making the records, 

 e = vector of unknown random residual effects, 

 X = known incidence matrix relating records to fixed effects in vector b, 

 Z = known incidence matrix relating records to BV in vector u. 

Let 
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Then, the mixed model equations (MME) for the AM, , are: after multiplying both sides by σe
2
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where AB1 is the inverse of the matrix of additive relationships among the animals with records.  If 

animals in the pedigree of animals with records did not have records themselves, their BV would 

not be included in vector u.  This would prevent the use of Henderson's rules to compute AB1 

directly.  However, Henderson’s rules could be used if we included the BV of the animals 

without records in vector u, which can be accomplished by using the following Equivalent 

Animal Model (EAM): 
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where 

 u1 = u of the AM, 

 u0 = random vector of the BV of animals without records which are relatives of the animals 

with records. 

The variance of y is: 

 var(y)  =   
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Thus, the E[y] and the var(y) of the AM and the EAM are the same, proving that they are 

equivalent models. 

The MME of the EAM are: 
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, computed using Henderson's rules. 

Remarks: 

(1)  Absorption of the equations for u0 into b and u1 yields: 
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where 

  (A11 B A10 (A00)B1 A01) αB1  = A11
-1 αB1 

          = AB1 αB1 

Proof: 
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 A00 A01 + A01 A11 = 0                  [1] 

 A10 A01 + A11 A11 = I                  [2] 

From [1]: 

  A01  = B(A00)B1 A01 A11                [3] 

Substituting [3] for A01 in [2] yields: 

 BA10 (A00)B1 A01 A11 + A11 A11  = I 

  (A11 B A10 (A00)B1 A01) A11  = I 

  A11
-1  = (A11 B A10 (A00)B1 A01) 

  Kb ε AM  = Kb ε EAM for estimable K 

  û from AM  =  û1  from EAM  

(2)  From the equations for u0 of the MME for the EAM, 

  A00 αB1 û 0 = BA01 αB1 û1 

    û 0 = B(A00)B1 A01 û1 

or 
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    û0 = B(A00)B1 A01 û  

where 

    û1 = BLUP of u1 (= u) from the EAM, and 

    û = BLUP of u (= u1) from the AM. 

Thus, û0 is the BLUP of u0, because u0 is a linear combination of û1 = û , the BLUP of u. 

Also, notice that: 

  û0 = B(A00)B1 A01 û1      

   = A01 A11
-1 û1    

Proof:   

Equation [1] above is: 

  A00 A01 + A01 A11 = 0 

     A01  = BA00A01 A 

Substituting BA00A01 A for A01 in û0  = B(A00)B1 A01 û1  yields: 

     û0  = B(A00)B1 (BA00) A01 A11
-1 û1 

     û0  = A01 A11
-1 û1 

or 

     û0  = A01 A11
-1 û 

(3)  This method used to obtain the BLUP of u0 is actually a general method to predict the BV of 

animals not represented in vector u, but correlated to some of the elements of u (see 

Henderson, 1977). 

(4)  Advantages of the EAM: 

   (a) all additive genetic relationships are used, and 
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   (b) the MME are easy to construct. 

(5)  Disadvantages of the EAM: 

  (a) there are usually more equations (i.e., more unknowns) than there are records, and 

 (b) sometimes the MME do not behave well in iterative solutions (probably as a 

consequence of disadvantage 5a). 

 

Reduced Animal Model (RAM) 

Objective:  same as the AM (or the EAM), i.e., to predict the BV of animals with and without 

records.  However, the set of equations used to compute the BV will require less number of 

computations.  The reduction in computations is achieved by exploiting the structure of A. 

Assumptions:  same as the AM. 

Derivation of the RAM 

Denote the EAM: 
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Consider ordering the y and the u vectors of the EAM as follows: 
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where 

 yp = subvector of y containing records of animals that have progeny with records, 

 yn = subvector of y with records of animals that are nonparents, 

 up = subvector of u  representing the BV of parents with or without records of their own, and 

 un = subvector of u  holding the BV of nonparents. 

The EAM corresponding this partitioning of the y and u  is: 
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 the EAM [5] and [6] are equivalent models. 

The MME for the EAM [6] are: 
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Thus, 

   P   = 














 0  P 

 0  P 

np

pp
 

and  

 AB1  = 
   













































 

I  P½ 

 0  P½  I 
 

D  0 

 0  D 
 

 I  0 

 ’P½  ’P½ I 

nnp

ppp

1-
n

1-
p

n

nppp
 



 [16-9] 
 

   = 
         

  

















 D|P½D 

 D’P½|P½D’P½ + P½ ID’P½ I 

1-
nnp

1-
n

1-
nnpnp

1-
nnpppp

1-
pppp

 

   = 


















 D|PD½ 

 D’P½|PD’P¼ + A 

1-
nnp

1-
n

1-
nnpnp

1-
nnp

1-
pp

           [8] 

   = 














 A  A 

 A  A 
nnnp

pnpp

 

Substituting [8] for the submatrices of the AB1 of MME [7] yields: 























 D + Z’Z  PD½ X’Z 

 D’P½  PD’P ¼ + A + Z’Z  X’Z 

 Z’X  Z’X  X’X + X’X

1-1-
nnn

1-
np

1-
nnn

1-1-
nnp

1-
np

1-
nnp

1-1-
ppppPp

nnppnnpp







































 y’Z 

 y’Z 

 y’X +y’X 

    

 u 

 u 

 b 

nn

pp

nnpp

n

p [9] 

 

Remarks: 

(a)  The BLUP of un, i.e., ûn, can be easily computed based on b and ûp, i.e., from the third 

equation of [9], 

 ûn = (ZnZn + Dn
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The BLUP of the BV of the ith nonparent is: 
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Thus, 

         û  + û  ½  w - 1 + b - y  w = û ddss
ii
nii

ii
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(b)  The matrix ZnZn + Dn
-1

 αB1 is diagonal.  Thus, the equations for un can be readily absorbed 

into b and up (Hint: obtain (αZnDnZn + I)B1 in all equations).  The absorption of un into b 

and up is as follows: 

 (i)  XpXp + XnXn B XnZn(ZnZn + Dn
-1

 αB1)B1ZnXn 
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    = ZpZp + AαB1 + (2Pnp)(Dn
-1

 αB1  

       + ZnZn B ZnZn)[Dnα B (ZnZn + Dn
-1

 αB1)B1](Dn
-1

 αB1)(2Pnp) 

    = ZpZp + AαB1 + (2Pnp)[I B I + ZnZn(ZnZn + Dn
-1

 αB1)B1] 

        (Dn
-1

 αB1 + ZnZn B ZnZn)(2Pnp) 

    = ZpZp + AαB1 + (2Pnp)[ZnZn B ZnZn(ZnZn + Dn
-1

 αB1)B1ZnZn](2Pnp) 

    = ZpZp + AαB1 + (2PnpZn)[I B Zn(ZnZn + Dn
-1

 αB1)B1Zn](2ZnPnp) 
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    = ZpZp + AαB1 + (2PnpZn)(αZnDnZn + I)B1(2ZnPnp) 

 (iv)  Xpyp + Xnyn B XnZn(ZnZn + Dn
-1

 αB1)B1Znyn 

    = Xpyp + Xn[I B Zn(ZnZn + Dn
-1

 αB1)B1Zn]yn 

    = Xpyp + Xn(αZnDnZn + I)B1yn 

 (v)  Zpyp B (2Pnp)(Dn
-1

 αB1)(ZnZn + Dn
-1

 αB1)B1Znyn 

    = Zpyp B (2Pnp)(BZnZn + ZnZn + Dn
-1

 αB1)(ZnZn + Dn
-1

 αB1)B1Znyn 

    = Zpyp + (2Pnp)[ZnZn(ZnZn + Dn
-1

 αB1)B1Zn + Zn]yn 

    = Zpyp + (2PnpZn)[I + Zn(ZnZn + Dn
-1

 αB1)B1Zn]yn 

    = Zpyp + (2PnpZn)(αZnDnZn + I)B1yn 

Let R2 = (αZnDnZn + I) 

Then, the MME after absorbing un are: 
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The MME [10] are those for the model: 
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The EAM [11] is called the Reduced Animal Model (RAM).   

The RAM can also be derived starting from the EAM [6] by expressing the BV of the nonparents in 

terms of the BV and the Mendelian sampling of their parents, i.e., let: 

  un = 2 Pnp up + φn                 [12] 

where 

 Pnp  = incidence matrix relating nonparents to their known parents, 

 φn  = vector of Mendelian sampling terms for nonparents, where 
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Substituting un in the second set of equations of [6] for expression [12] yields the EAM: 
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The MME for the EAM [13] are:  
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 [14] 

Notice that φn is uncorrelated to up, thus, it can be placed together with en to form a new 

residual, ėn, where 

 ėn = Znφn + en 

The resulting EAM is the RAM shown in equation [11] above. 

Remarks: 

(a) If nonparents have several records for a trait, the var(ė) = var(Znφn + en) is blockBdiagonal.  For 

instance, if the ith animal has two records: 
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If nonparents have only 1 record, then 

 var(e)  = var(φn + en) 
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    = diagonal matrix 

Thus, for the ith animal with 1 record 

 var(ė)  = (dii α + 1)σe
2 

    = (dii σA
2 + σe

2) 

(b) The number of equations for the RAM will be fewer than for the other EAM which include 

either un or φn, thus they are solved faster than the other EAM.  If the BLUP of some nonparents 

were wanted, they could be backsolved using the formulae developed in remark (a) for the 

MME in equation [9].  Also, backsolutions can be obtained using the MME in equation [14] 

for the EAM [13].  From the equations for φn, the BLUP of φn is: 

  n̂   = (ZnZn + D1αB1)B1[Znyn B ZnXnb B 2ZnZnPnp ûp] 

  n̂   = (ZnZn + D1αB1)B1[Znyn B ZnXnb]      } data 

     + (ZnZn + D1αB1)B1(2ZnZnPnp ûp]       } pedigree 

From equation [12], the BLUP of un is: 

 ûn = 2 Pnp ûp + n̂  

For the ith animal with ni records: 
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Example for the AM and the RAM 

Animal Sex Weaning 

Weight (kg) 

Sire Dam Mgs 

1 M     

2 F  1   

3 M 292 1 2 1 

4 M 286 1   

5 M 304 1   

6 F 256 3 2 1 

7 F 261 3 6 3 

8 F 266 4 7 3 

9 F 270 5 8 4 

10 F 275 5 9 5 

11 M 289 3 6 3 

12 M 285 4 7 3 

13 F 265 4 8 4 

14 M 290 5 9 5 

15 F 288 5 10 5 
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Assumptions 

 σA
2  =  22 kg2,  σe

2  =  88 kg2,  σP
2  =  110 kg2 

 0.2    
σ
σ    h 2

p

2
A2  ; 4.0   α        0.25    

σ
σ    α 1

2
e

2
A    

[A]  Consider 

   yijk  = μ + sexi + animalj + residualijk 

  E[yijk]  = μ + sexi 

  var(yijk) = var (animalj) + var (residualijk) 

     = ajj σA
2  + σe

2 

 cov(yijk,yijk) = cov(animalj, animalj) + cov(residualijk, residualijk) 

     = ajj σA
2 + δ σe

2, where 

      δ = 
 

 



 

element loffdiagonaotherwise0 

element diagonalk'j'i'  ijk   if1 
 

In matrix notation, the AM is: 

     y   = e +u   Z+ b X  

    y    E   = b X  
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     = (88)  
 I       0 

 0 A(0.25) 
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Explicitly, the vectors and matrices of the AM model are: 
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However, to build AB1 (and A) directly using Henderson's rules, we need base animals 1 and 2.  

Thus, instead of AM, we will use the following EAM: 
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and 
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The inverse of the relationship matrix A is: 

  AB1  = (I B 2 P) DB1 (I B 2 P) 

The diagonal elements of A and the elements of D and DB1 are: 

i diagonal of A diagonal of D diagonal of DB1 

1 1.0 1.0 1.0 

2 1.0 0.75 1.3333 

3 1.25 0.5 2.0 

4 1.0 0.75 1.3333 

5 1.0 0.75 1.3333 

6 1.375 0.4375 2.2857 

7 1.5 0.34375 2.9091 

8 1.171875 0.375 2.6667 

9 1.1484375 0.45703125 2.1880 

10 1.32421875 0.462890625 2.1603 

11 1.5 0.34375 2.9091 

12 1.171875 0.375 2.6667 

13 1.3359375 0.45703125 2.1880 

14 1.32421875 0.462890625 2.1603 

15 1.412109375 0.4189453125 2.3869 
 

The matrix (I B 2 P) is: 
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The AB1 matrix, built by Henderson's rules, is: 
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The MME for the EAM are: 
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The vector of solutions for the EAM is: 
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The MME for the AM (i.e., the EAM with u0 absorbed into b and u1) are: 
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The solution vector for the MME for the AM (i.e., the EAM with u0 absorbed) is: 
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The BLUP of u0 based on the solution vector of the AM are: 
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û  A  A    û
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[B]  The RAM is: 
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The diagonals of Ap, Dp and D−1 are: 

p app dpp dpp
-1 

1 1.0 1.0 1.0 

2 1.0 0.75 1.3333 

3 1.25 0.5 2.0 

4 1.0 0.75 1.3333 

5 1.0 0.75 1.3333 

6 1.375 0.4375 2.2857 

7 1.5 0.34375 2.9091 

8 1.171875 0.375 2.6667 

9 1.1484375 0.45703125 2.1880 

10 1.32421875 0.462890625 2.1603 
 

The App
−1 matrix is: 
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001.3333-3.5758       

0001.4545-3.013      

 1.0802-0.5539-0.547 002.4204     

001.333-0.6667 00   2.0      

0001.4545-0.4156-003.2987   

00001.1429-000.4286-2.4048  

000000.6667-0.6667-   1.0-0.1667-2.5 

 

The diagonal elements of Dn and D−1 are: 

n dnn dnn
-1 

11 0.34375 2.9091 

12 0.375 2.6667 

13 0.45703125 2.1880 

14 0.462890625 2.1603 

15 0.4189453125 2.3869 
 

The matrix Pnp, which relates parents to progeny, is: 

 Pnp = 

























 1  0  0  0  0  1  0  0  0  0 

 0  1  0  0  0  1  0  0  0  0 

 0  0  1  0  0  0  1  0  0  0 

 0  0  0  1  0  0  1  0  0  0 

 0  0  0  0  1  0  0  1  0  0 

 

Thus, the RAM looks like: 
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




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


















 e +  

 e 
 + u 

 P ½ 

 Z 
 + b 

 X 

 X 
    

 y 

 y 

nn

p

p

np
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n

p

n
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The matrix R2 = Dn (3) + I is: 

R2 = 

























 1.10473633     

 1.11572266    

  1.11425781   

   1.09375  

    1.0859375 

 

The MME for the RAM are: 
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
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
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
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
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

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
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



405.348

399.961

384.913

391.286

389.065

564.308

535.200

425.065

0

0

-------

1826.511

1668.622

    

u 

 u 

 u 

 u 

 u 

 u 

 u 

 u 

 u 

 u 

---

 b 

 b 

 

 9.868          |  

4.321-12.137        |  

04.376-14.079       |  

005.333-15.532      |  

0005.818-13.282     |  

 4.094-1.992-2.188 0011.32    |  

005.109-2.895 009.453   |  

0005.818-1.432-0014.425  |   

00004.571-001.714-9.619   |  

000002.667-2.667-4.0-0.667-10.0|  

1.4531.01.4491.01.00.45330.449000|6.803 

00.44800.4570.4601.4481.4571.46000|05.731 
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8

7
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3

2

1

2

1

 

The vector of solutions for the RAM is: 
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
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
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





 3.3714   

 0.9258   

 2.4499-  

 3.3839-  

 3.5008-  

 3.5970   

 1.5212-  

 2.1405-  

 2.0758-  

 0.4410-  

-------

 269.0403 

 291.6375 
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The vector of deviations of the BV of the nonparents from the midparental BV, i.e., the vector φn, is: 

 φn = (I + Dn
-1 αB1)B1 [yn B Xnbn B 2 Pnp up] 

 φn = WB1[yn B Xnbn B 2 Pnp up] 

where 

 WB1 = diag {wa
ii} 

 WB1 = diag 









1-

n

n

 + d
d

ii

ii  

 WB1 = diag 





























)4 + 125(0.4189453 * 250.41894531 
 )4 + 25(0.4628906 * 50.47289062 

 )4 + 5(0.4570312 * 0.45703125 
 )4 + (0.375 * 0.375 

 )4 + (0.34375 * 0.34375 

1-

1-

1-

1-

-1
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The BLUP of φn for the ith nonparent is: 

     ̂     
  [       

  
 

 
( ̂    ̂  )] 

Thus, 

  

 φ̂ 

 φ̂ 

 φ̂ 

 φ̂ 

 φ̂ 

15

14
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








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



 = 























3.3714)] + ½(3.5970 - 269.0403 - 288 [ 0.0948 
 0.9258)] + ½(3.5970 - 291.6375 - 290 [ 0.1037 
 2.4499)] - ½(-1.5212 - 269.0403 - 265 [ 0.1025 
 3.3839)] - ½(-1.5212 - 281.6375 - 285 [ 0.0857 
 3.5008)] - ½(-2.1405 - 291.6375 - 289 [ 0.0791 

 

    = 

























 1.4670774  

 0.4043159- 

 0.2106119- 

 0.3586502- 

 0.0144939  

 

and  

 ûn i   =   ̂ +  û + û  ½
nds iii

 

 

























 û 
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









 4.9514  

 1.8570  

 2.1962 

 2.8113

 2.8061 

    

 1.45708 + 3.48420  

 0.40432  2.26140  

 0.26061 1.98555

 0.35865  2.45255 

 0.01449 + 2.82065 

. 
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