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ANIMAL BREEDING NOTES 

CHAPTER 20 

ADDITIVE GENETIC GROUP MODELS 

The models studied until now have all assumed that the expected value of the BLUP of the animals' 

genetic values was zero, i.e., E[u] = 0.  This was an assumption made when the BLUP was derived.  

It means that a priori all animals are considered to be equal.  Also, the information used to evaluate 

an animal is regressed towards zero.  However, in some cases E[u]  0.  This can happen when: 

(i) Animals come from various genetically distinct populations. 

(ii) Animals were born over a number of years within a population that underwent genetic changes 

due to selection over time. 

These cases can be handled by adding a genetic group factor to the model.  The grouping strategy, 

however, will differ in cases (i) and (ii).  Additive group models (AGM) will be explained based on 

the sire-maternal grandsire model (SMM). 

Standard Additive Genetic Group Models (SAGM) 

The SAGM can be used, for example, when animals belong to different breeds or different 

countries, and there is no migration across the various breeding populations.  A linear model for 

such cases is: 

   y = Xb + Zu + e 

  E[y] = Xb + ZQg 
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where 

 g = vector of genetic groups, 
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 Q = incidence matrix relating elements of u to elements of g, and 

 γ =  



2
e

2
A ¼  

The remaining terms are as defined for the SMM. 

Remarks: 

(i) The above linear model assumes equal additive genetic and residual variances and covariances 

in all genetic populations, which may not be true. 

(ii) Sires are nested within genetic groups. 

To include genetic groups in the above model, add and subtract ZQg, i.e., 

  y  =  Xb + Z(Qg B Qg + u) + e 

Let  

  s  =  u B Qg 

Thus, the SAGM is: 

   y = Xb + ZQg + Zs + e 

  E[y] = Xb + ZQg 
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The usual MME for the SAGM are: 

 
























































 











y R’  Z

y R’ Z’ Q 

y R’ X 

  

 s 

 g 

 b 

 

 A + ZR’ Z ZQR’ Z XR’  Z

 ZR’ Z’ Q ZQR’ Z’ Q XR’ Z’ Q 

 ZR’ X ZQR’ X XR’ X 

1

1

1

11111

111

111

 

The equations for the fixed effects b are usually absorbed.  Thus, the MME for the SAGM become: 
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where 

  M = RB1 B RB1X(XRB1X)XRB1 

Because sires are nested within genetic groups, the programming strategy to form the MME 

involves: 

 (i)  computing the ZMZ matrix, 

(ii)  summing the appropriate rows of ZMZ to build the QZMZ matrix, 

(iii)   summing the appropriate columns of QZMZ to form the QZMZQ matrix, 

(iv)   computing ZMy, 

 (v)   adding appropriate rows of ZMy to obtain QZMy, and 

(vi)   computing the {dii} using Quaas' algorithm and AB1γ using Henderson's rules. 

The objectives of the SAGM could be: 

(i) to compare populations, i.e., we want to compute: 

   {gi B gi} 

 where 

   E[gi B gi] = gi B gi 

(ii) to rank sires within a population, i.e., we need to compute: 

   }ŝŝ{ ji'ij   

(iii)  to compare sires across populations, i.e., we must obtain: 

   {uij B uij} 

 where 
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   uij  = gi + ijŝ  

   uij = gi + j'i'ŝ  

Usually the gi are computed as deviations from a base population defined as a single population or 

a weighted average of all of the populations involved.  In such cases, 

  E[gi] = gi B gbase 

The vector of predictions of additive genetic values of animals in u, i.e., 

  û  = Q ĝ  + ŝ   

can be obtained directly by modifying the absorbed MME for the SAGM as follows: 

(i)  Let 
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(ii)  Premultiply the LHS and the RHS of the absorbed MME by (PB1), where 
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to obtain: 
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(iii)  Insert PB1P between the LHS and the vector of unknowns of the MME in (ii), i.e., postmultiply 

the LHS by PB1, and premultiply the vector of unknowns by P.  The resulting set of equations is 

called the modified MME for the SAGM.  These equations are: 
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These equations converged much faster than the usual MME for the SAGM (Van Vleck and 

Dwyer, 1985).  Multiple trait versions of the modified MME were first implemented at Cornell 

University in the mid-1980’s (North East Dairy Sire Evaluation and the American Simmental Sire 

Evaluation). 

Remarks: 

(i) From the first equation of the modified MME: 

  QAB1QγB1 g = QAB1γB1 u 

  g = (QAB1Q)B1 QAB1 u 

     i.e., group effects are linear combinations of the ui 

  the BLUP of g (as a deviation from gbase) is: 

  ĝ  = (QAB1Q)B1QAB1 û  

(ii) From the second equation of the modified MME: 

  BAB1QγB1g + (ZMZ + AB1γB1) u = ZMy 

  û  = (ZMZ + AB1γB1)B1ZMy + (ZMZ + AB1γB1)B1AB1QγB1 ĝ  

 As the amount of information per animal increases, the second term will go to zero. 

Also, note that: 

  (ZMZ + AB1γB1)B1AB1QγB1 g = (ZMZ + AB1γB1)B1[(ZMZ + AB1γB1) B ZMZ]Q g 

          = Q g B (ZMZ + AB1γB1)B1ZMZQ g 

  û  = (ZMZ + AB1γB1)B1ZM(y B ZQ ĝ ) + Q ĝ  

 As the amount of information per animal increases, the importance of the group component 
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decreases. 

(iii)  Premultiplying both sides of the MME of the SAGM (i.e., the unmodified MME) with b 

absorbed by [BI    Q] yields: 

  QAB1γB1 ŝ   = 0 

  QAB1 ŝ   = 0 

i.e., the weighted sum of the ijŝ  sum to zero within genetic groups, where the weights are the 

elements of the inverse of the numerator relationship matrix. 

If there is only one population, Q = 1, thus, 

 1AB1 ŝ  = 1AB1 û  = 0 

and when A = I, 

 Q ŝ  = 0 if there are several genetic groups, 

 1 ŝ   = 0 if there is only one genetic group. 

A proof that 1AB1 û  = 0 in a single population (Quaas, 1986) is the following. 

The MME for a single population are: 

 (ZMZ + AB1γB1) û  = ZMy 

where 

 ZMZ = ZZ B ZX(XX)B1XZ 

so, 

  M = I B X(XX)B1X 

and 

 XM = X B XX(XX)B1X = 0 

Notice that 1n (n = number of records in vector y) is in the column space of X.  Thus, 1n can be 
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written as Xk, 

   1n = kX 

 1nM = kXM  = 0 

Also, 

   1n  = Z1ns,  where ns = number of sires 

 1nsZMZ = 1MZ = 0 

Thus, 

 1ns(ZMZ + AB1γB1) û   = ZMy 

      1nsAB1 û   = 0 

       1ns û   = 0  if A = I 

 the û  sum to zero "within" the overall mean of a single population. 

The SAGM can also be used to account for differences in the mean genetic values of animals born 

in different years, generations, etc.  However, a more realistic model is the accumulated group 

model. 

Accumulated Additive Genetic Group Models (AAGM) 

The AAGM was introduced by Thompson (1979).  The AAGM for a sire model, using scalar 

notation, is: 

 yij  = xijb +
k

aikgk + si + eij 

 E[yij] = xijb +
k

aikgk 
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where 

 b = vector of fixed effects, 

 aik = additive genetic relationship between animals i and k, 

 gk = additive genetic group which animal k belongs to, and 

    
k

 = summation over all ancestors of animal i. 

Thus, instead of having one group effect for the ith animal as in the SAGM, the AAGM contains a 

weighted sum of the genetic group effects of all the ancestors of an animal in addition to that 

animal's group, e.g., for the sire model above: 

  g a kik
k
  = sire genetic group 

        + 

      2 grandsire genetic group 

        + 

      3 great grandsire genetic group 

        + 

          

The additive genetic value of sire i is: 

 usi
 = s + g a ikik

k
  

Derivation of the AAGM using matrix notation 

Let a linear model for vector y be: 

  y = Xb + Zu + e 

 E[y] = Xb + Z E[u] 
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But 

 A = TDT 

where 
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Thus, the following equivalent AAGM model can now be considered: 

  y = Xb + Z(TTB1)u + e 

  y = Xb + ZT(TB1u) + e 

  y = Xb + ZTφ+e 

 E[y] = Xb + ZT E[φ] 
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The MME for this equivalent AAGM model are: 
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Composition of the accumulated groups 

Recall that for the SMM, 

 φ = (I B 2Ps B 3Pmgs) u 

  = TB1 u 
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Consequently, the accumulated groups will include all the genetic effects contained in φ whose 

expectation is different from zero.  Thus, 

(i)  if the sire and the mgs of animal i are identified,  

  i   = u¼  u ½  + u½ + u½ mgssids iiii
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(ii)  if the sire of animal i is identified only, 
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(iii)  if the maternal grandsire of animal i is identified only, 
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(iv)  if neither the sire nor the mgs of animal i are identified, 

  i   =  ids  + u ½ + u ½
ii
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Criteria used to construct groups 

(a) Ancestors identified, e.g., in the sire-mgs case, there are four groups: 

  group 1 = sire and mgs identified, 

  group 2 = sire identified only, 

  group 3 = mgs identified only, and 

  group 4 = neither sire nor mgs identified. 

(b) In addition to the grouping criterion (a) we can add time, stud, region, breed, etc.  For instance, 

if there were only one more criterion:  time and only 2 generations, there would be eight groups in 

all. 

In terms of the AAGM model we have that: 

  gQ    ][  E o  

where 

  Qo = matrix that relates the φi to genetic groups g according to criteria (a) and (b) above. 

Thus, the complete specification of the equivalent AAGM model is: 

  y = Xb + ZTφ + e 

 E[y] = Xb + ZTQog 
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But, u = T φ.  Thus,  

  y = Xb + Zu + e 

 E[y] = Xb + ZTQog 
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This equivalent AAGM model can be rewritten as follows: 

  y = Xb + Z(TQog - TQog + u) + e 

  y = Xb + ZTQog + (u - TQog) + e 

  y = Xb + ZTQog + s + e, where s = u - TQog 

 E[y] = Xb + ZTQog 
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These equations for the AAGM are identical to those of the SAGM, with TQo substituted for Q, 

and using the fact that A = TDT and AB1 =  TBTDB1TB1.  The transformed MME to compute 

vectors u and g instead of vectors s and g can be obtained using a similar procedure to the one 

utilized with the SAGM. 

Thus,  

(i)  Let 



 [20-14] 
 

  P  =  
















ITQ0
0I0
00I

0

,   PB1  =  
















 ITQ0
0I0
00I

0

,   and   (PB1)  =  


















I00
T''QI0

00I

0  

(ii)  Premultiply the LHS and the RHS of the AAGM MME by (PB1), and then postmultiply the 

LHS of the resulting MME by PB1 and premultiply the vector of unknowns by P. 

The resulting MME are the modified MME for the AAGM: 
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The MME for the AAGM are simple to program (Quaas, 1986).  Usually the fixed effects are 

absorbed, so the modified MME for the AAGM become: 
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where 

 M = RB1 B RB1X(XRB1X)B1XRB1 . 

These MME can be built as follows: 

(i)   Compute and halfBstore the matrix ZMZ, 

(ii)   Compute and store the vector ZMy, and 

(iii)   Compute and half-store the matrix. 
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The contributions of a bull to the submatrices in (iii) are: 
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mgs of bull 1/16 1
iid     

sire of bull 1/8 1
iid  1/4 1

iid    

bull B1/4 1
iid  B1/2 1

iid  1
iid   

bull group 1/4 1
iid  1/2 1

iid  B 1
iid  1

iid  

 mgs of bull sire of bull bull bull group 
 

Relationship between the SAGM and the AAGM 

The SAGM is; 

  y = Xb + Zu + e 

 E[y] = Xb + ZQg,  Q = incidence matrix relating sires to groups 
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The AAGM is: 

  y = Xb + Zu + e 

 E[y] = Xb + ZTQog, Qo = incidence matrix relating residual genetic terms (φij) to 

groups 
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
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



 e 
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var   = 








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 
2
e

 R 0 

 0 A 
 

In the SAGM, bulls are placed into groups.  Thus, 

 E[uij] = gi  

On the other hand, residual genetic terms (φij) are grouped in the AAGM.  Thus, 

 E[φij] = gi  

But 
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  φ =  TB1 u 

  u =  T φ 

 E[uij] = g t iij
i
  

where 

  tij = elements of the ith row of t, and 

  T = (I B 2P)B1    if sires and dams are included in the model 

  T = (I B 2Ps B 3Pmgs)B1 if sires and mgs' are included in the model 

Let 

  gi
* = g t iij

i
  

Then, for the SMM we have that the elements of T are: 

  tij =    t ¼  + t ½ j , mgsmgsj , ss iiii   

  tii =   1 

  gi
* = 

















  g  t  ¼   + g  t   ½   + g(1) kk , mgs

k
mgskk , s

k
si ijijijij

 

  gi
* =    *

mgsmgs
*
ssi ijijijij

g ¼  + g ½  + g   

 E[uij] =     ]u[ E ¼   +  ]u[ E ½  + g mgsmgsssi ijijijij   

  gi =     ]u[ E ¼     ]u[ E ½   ]u[ E mgsmgsssij ijijijij   

or 

   ][ E ij  =     ]u[ E ¼     ]u[ E ½   ]u[ E mgsmgsssij ijijijij   

 the SAGM and the AAGM will be equivalent only if the pedigrees of all bulls are the same 

and all bulls belong to the same group.  If so, the ranking of bulls will be the same in the SAGM 



 [20-17] 
 

and in the AAGM. 

Remarks: 

(i)   The composition of the residual genetic terms φij will depend on the ancestors identified in an 

individual.  

(ii)   The expected values of the φij will be determined by the expected values of the additive genetic 

values of the ancestors of individual ij included in φij and by the expected values of the Mendelian 

sampling terms (i.e., the  ) belonging to these ancestors and to animal ij. 

(iii)   The expected values of the Mendelian sampling terms (i.e., the  ) reflect the occurrence of 

selection in a group of animals. 

Let 

 gi  = genetic group value of the animals in the ith genetic group, where the ith genetic group 

may be defined to be, for instance, all animals belonging to the ith  (time × breed) subclass.  Because 

gi is not estimable, (gi B gbase) is used to obtain a unique ĝ  in bull evaluations.  Notice that if there is 

only one (time × breed) subclass (gi B gbase) = (gbase B gbase) = 0. 

Then, 

(a) if the ith genetic group is unselected, 

  iij g][E   

where 

 ij = jth animal from the ith genetic group 

(b) if there was selection of animals in the ith genetic group, 

  )gg(g][E iselectediij i
  
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  iiij g][E   

where 

 gselectedi = additive genetic value of the selected group of animals from the ith (time × breed) 

subclass, and 

   Δi  = genetic selection differential for the ith genetic group. 

Example: 

If bulls of breed i are mated to dams of breed i, the expected value of the   of their progeny is 

equal to: 

 (1)  ][E ij
  = ig  

    = ][E ½][E ½ 'j'iij    

         
damssires


     

    = ][ E + ][ E j’i’ij   

    = g ½ + g ½ i'i  

     if both parents of animal j are identified and the sire and the dam genetic groups 

are unselected, 

(2)  ][E ij
  = ][ E + ][ E j’i’ij   

    =     i’i’ii  + g ½ +  + g ½  

     if both parents of the animal j are known and both parental genetic groups are 

selected. 
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Understanding the solutions obtained using the AAGM 

Consider the MME without absorbing the b's, i.e., 
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(1) Group solutions 

From the 3rd equation of the MME: 

 QoDB1TB1γB1 û  = QoDB1QoγB1 ĝ  

     ĝ  = (QoDB1Qo)B1QoDB1TB1 û  

where 

 TB1  = (I B 2P)    for models with sires and dams: AM, RAM, SDM 

 TB1  = (I B 2Ps B 3Pmgs)  for the SMM 

 TB1  = (I B 2Ps)     for the SM 

  φ̂  = TB1 û  = 

   

   

 





















                  
   
    
   

         

SM for the}û  ½ δ  û {

SMM for the}û ¼  δ  û  ½ δ  û {

SDM RAM, AM, for the} û  ½ δ  û ½ δ  û{

ssij

mgsmgsssij

ddssij

ijij

ijijijij

ijijijij

 

  DB1  = diagonal matrix of group weights, i.e., the dij,ij
-1, which were defined in the chapters 

dealing with A and AB1.  Notice that the d of all the animals in a group is the same because of the 

grouping strategy based on ancestors identified. 

 Qo  = incidence matrix that sums the terms 
 ˆ  d ij

1
ij,ij within a group, 
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 (QoDB1Qo)B1 = diagonal matrix with the weights for each group. 

Notice that because DB1 is diagonal, 

(i) (QoDB1Qo)B1 = 








d  
n
1

ij,ij
i

 

where 

 ni = number of animals in group i, and  

(ii) QoDB1TB1 û  = DB1QoTB1 û  

   ĝ    = (QoQo)B1DDB1QoTB1 û  

      = (QoQo)B1QoTB1 û  

   iĝ   =        û ¼   û ½   û ½   û     
n
1

mgsmgsddssij

n

1=ji
ijijijijijij

i

  

     =   PI  û    
n
1

ijij

n

1=ji

i

  

where 

 kij
 =1 if ancestor k of animal ij is known and used in the model and 0 otherwise, and 

 PIij = pedigree index of animal ij. 

(2) Prediction of additive genetic values  

From the second equation of the MME: 

 ZRB1X b + (ZRB1Z + AB1γB1) û  B TBTDB1QoγB1 ĝ  = ZRB1y 

 (ZRB1Z + AB1γB1) û  = ZRB1(y B Xb) + TBTDB1QoγB1 ĝ  

 û  = (ZRB1Z + AB1γB1)B1ZRB1(y B Xb) + (ZRB1Z + AB1γB1)B1TBTDB1QoγB1 ĝ  

As an example, consider the ith nonparent in a SMM.  In this case, AB1 has at most 3 nonzero values 



 [20-21] 
 

in the ith row, i.e., 

 d ¼ 1
ii
   mgsi × i 

 d ½  1
ii
   si × i 

  d 1
ii
    i × i 

Also, 

 TBTDB1QoγB1 ĝ    





























































1

n

p

n

p

1
n

1
p

n

pnpp

  
 ĝ 
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Thus,   

   ĝ d  + y    û d ½   û d ¼   û   d  + r i
1

ii
1*

is
1

ii
1

mgs
1

ii
1

i
1

ii
1*

i ii







   

     ĝ d  +  û ¼  + û ½  d  + y    û  d  + r i
1
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1
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d    + mgssi1
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Numerical examples for the SAGM and the AAGM 

Consider a SMM using the example used for the direct effects models. 
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(1) The SAGM is: 
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The MME and the vector of solutions for the SAGM are: 
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(2) The AAGM is: 
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The transformed MME (i.e., in terms of g, and u = TQ0 + s) and the vector of solutions for the 

AAGM  are: 
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 [20-25] 
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Remark 

The AAGM described here places all animals into genetic groups.  A different strategy is to assign 

only base animals (i.e., animals without identified parents) to genetic groups.  For a comprehensive 

description of this grouping strategy, please refer to Quaas (1988). 
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