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ANIMAL BREEDING NOTES 

CHAPTER 21 

MULTIPLE TRAIT MODELS 

 

In multiple trait analysis animals are evaluated for several traits simultaneously, using information 

on all characters from the animals themselves and(or) their relatives. 

Advantages: 

(i) Higher accuracy of prediction than in single trait analysis.  The error variance of prediction will 

decrease depending on the amount and type (e.g., relatives, own performance) of information 

available.  The largest benefits will probably be for animals with small amounts of information 

on each trait. 

(ii) Accounts for biases due to sequential selection, e.g., selection of animals at weaning results in a 

nonrandom sample of animals present as yearlings.  A single trait analysis of yearling weights 

will be biased, whereas a multiple trait analysis will eliminate much of this bias because it 

includes the information used to select these calves, e.g., weaning weights. 

Disadvantages: 

(i) Longer computing times for m-trait analysis than for m single trait analyses.  Computer times 

m-trait multiple trait analyses will be higher than the time for m single traits analysis, because 

there will be more nonzero elements in the MME, thus less efficient computing strategies than 

those for single trait analysis (e.g., disk storage versus direct memory computations) may need 

to be used. 

(ii) Larger number of variances and covariances assumed to be known in an n-trait multiple traits 

analysis than in n single trait analysis, e.g.,  
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These additive genetic and residual covariances must be estimated, which may take a substantially 

longer computer time.  Also, estimates of covariance components are more difficult to compute 

accurately than estimates of variance components.  A poor set of covariance estimates may offset 

any increase in accuracy of a multiple trait analysis, and it may yield predictions of additive genetic 

animal values that are more unreliable than those from single trait analyses. 

General Multiple Trait Model (GMTM) 

The GMTM is explained here using two traits.  Extension to more than two traits is straightforward. 

Let the equations for the records of traits 1 and 2 be: 

  y1  =  X1b1 + Z1u1 + e1 

and 

  y2  =  X2b2 + Z2u2 + e2 

Then, the GMTM for these two traits is: 
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where 

 yi = vector of record for trait i, i = 1, 2, 

bi = vector of fixed effects for trait i, i = 1, 2, 

ui = vector of random additive genetic effects for trait i, i = 1, 2, 

ei = vector of residuals for trait i, i = 1, 2, 

Xi = incidence matrix relating records for trait i to elements of bi, i = 1, 2, 

Zi = incidence matrix relating records for trait i to elements of ui, i = 1, 2, 

Gij = A*gij, additive genetic covariance matrix between traits i and j, i, j = 1, 2, 

Rij = I*rij, residual covariance matrix between traits i and j, i, j = 1, 2. 

Let the inverse of the two trait additive covariance matrix G, where G = [G11 G12
G21 G22

] be: 
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and define the inverse of the two trait residual covariance matrix R, where R = [R11 R12

R21 R22
] be: 
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Then, the MME for the GMTM for 2 traits are: 
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Numerical example for GMTM with 2 traits

 
Suppose that birth weights (BW) and weaning weights (WW) were taken only for calves in the 

example used for single trait direct genetic effects models (Chapters 16 and 17).  The resulting 

dataset will be analyzed using a multiple trait animal model (MTAM) and a multiple trait sire-

maternal grandsire model (MTSMM). 

1) Multiple trait animal model (MTAM):  The 2-trait mixed model for BW and WW contains sex 

of calf as fixed effects and animal and residual as random effects.  The MTAM with BW and WW 

records ordered by trait and animals within traits is:  
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The matrix of additive genetic variances and covariances for BW and WW in the MTAM is equal 

to: 
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The matrix of additive genetic covariances among all animals in the MTAM is G = A * Go, where 

* = direct product.  The inverse of matrix G computed as G-1
 = A

B1
*Go

B1, where AB1 is computed 

using Henderson's rules and Go
B1 by direct inversion, is shown in the SAS IML output for the 

MTAM model. 

The matrix of environmental variances and covariances for BW and WW in the MTAM is: 

Ro = 
































888
88

  
 σ σ 

 σ σ 
    

 r r 

 r r 

EE

EE

2221

1211

2221

1211

 

The matrix of residual variances and covariances among nonparents with records in the MTAM is 

equal to:
 

 R =  I * Ro = 
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where  *  = direct product. 

The inverse of R, i.e., R-1 = In * Ro
-1, where In is an identity matrix, Ro

-1 is computed by direct 

inversion and * = direct product.  Matrix R-1 for the MTAM is equal to: 
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R-1 

0.1375 0 0 0 0 -0.0125 0 0 0 0 

0 0.1375 0 0 0 0 -0.0125 0 0 0 

0 0 0.1375 0 0 0 0 -0.0125 0 0 

0 0 0 0.1375 0 0 0 0 -0.0125 0 

0 0 0 0 0.1375 0 0 0 0 -0.0125 

-0.0125 0 0 0 0 0.0125 0 0 0 0 

0 -0.0125 0 0 0 0 0.0125 0 0 0 

0 0 -0.0125 0 0 0 0 0.0125 0 0 

0 0 0 -0.0125 0 0 0 0 0.0125 0 

0 0 0 0 -0.0125 0 0 0 0 0.0125 

 

The MME for the MTAM are: 

 

 

 

  

















































































 yR   +   yR’Z 

 yR   +   yR’Z 

 ------------- 

 yR   +   yR’X 

 yR   +   yR’X 

    

 u 

 u 

---

 b 

  b 

 

 gA   +   ZR’Z |  

 gA   +   ZR’Z gA   +   ZR’Z|  

 --------------------------|--------------

 XR’X  ZR’X|XR’X  

 ZR’X  ZR’X|XR’X  XR’X 

2
22

1
21

2 

2
12

1
11

1 

2
22

1
21

2 

2
12

1
11

1 

2 

1 

2 

1

221
2 

22
2 

121
2 

12
1 

111
1 

11
1 

2
22

21 
21

2 2 
22

2 

2
12

11 
11

1 2 
12

1 1 
11

1 

 

The left hand side (34 × 34) and the right hand side (34 × 1) of the MME are shown in the SAS 

IML output for MTAM.  Notice that the elements of the right hand side for animals without records 

(pedigree animals 1 to 10) are equal to zero. 

The MTAM solutions for sex effects and their standard errors are: 

Effect biBW
o SE(biBW

o) biWW
o SE(biWW

o) 

Male 37.63 1.95 287.87 6.47 
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Female 37.00 2.32 276.51 7.70 

 

The MTAM predicted breeding values and standard errors of prediction for all animals are: 

Effect ûiBW SEP(ûiBW) ûiWW SEP(ûiWW) 

Animal 1 -0.03 1.41 -0.07 4.68 

Animal 2 -0.08 1.40 -0.22 4.63 

Animal 3 -0.11 1.55 -0.30 5.15 

Animal 4 -0.45 1.38 -1.48 4.59 

Animal 5 0.53 1.36 1.71 4.52 

Animal 6 -0.13 1.62 -0.35 5.37 

Animal 7 -0.21 1.70 -0.57 5.65 

Animal 8 -0.40 1.51 -1.34 5.00 

Animal 9 0.19 1.50 0.52 4.99 

Animal 10 0.51 1.59 1.68 5.27 

Animal 11 -0.08 1.66 -0.21 5.50 

Animal 12 -0.45 1.48 -1.25 4.92 

Animal 13 -0.72 1.57 -2.52 5.21 

Animal 14 0.46 1.55 1.25 5.15 

Animal 15 0.79 1.60 2.71 5.30 

 

2) Multiple trait sire maternal grandsire model (MTSMM):  The 2-trait mixed model for BW and 

WW contains sex of calf as fixed effects, and sires and maternal grandsires and residual as random 
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effects.  The MTSMM with BW and WW records ordered by trait and animals within traits is: 































































































































































































































 e φ + φ ½ + u ¼

 e + φ + φ ½ + u ¼ 
 + 

 u 

 u 

 u 

 u 

----

 u 

 u 

 u 

 u 

 

 1.5000|    

 1.5000|    

 01.500|  0 

 010.50|    

 001.50|    

------------|------------

    |1.5000 

 0  |1.5000 

    |01.500 

    |010.50 

    |001.50 

 + 

 b 

 b 

---

 b 

 b 

 

 1    0|   

 0    1|   

 1    0|0 

 0    1|   

 0    1|   

---|---

 |1    0 

 |0    1 

  0 |1    0 

 |0    1 

 |0    1 

    

 288 

 290 

 265 

 285 

 289 

---

 40 

 39 

 34 

 36 

 38 

nndmgd

nndmgd

25

24

23

21

15

14

13

11

22

21

12

11

2222

1111

 

   

    



















































 σI + σDσI + σD|00

 σI + σDσI + σD|00

------------------------|------

 00|g Ag  A

 00|g Ag  A

     

 e 

 e 

---

 u 

 u 

var  

E22nA22nE21nA21n

E12nA12nE11nA11n

2221

1211

2

1

2

1

 

 

The matrix of additive genetic variances and covariances for BW and WW in the MTSMM is equal 

to: 
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The matrix of additive genetic covariances among sires and maternal grandsires in the MTSMM is 

G = A * Go, where * = direct product.  The inverse of matrix G, i.e., GB1, computed as AB1
*Go

B1, 

where AB1 is obtained using Henderson's rules and Go
B1 by direct inversion, is equal to: 
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 0.28125 0.28125   0.9375  0.5626| 0.1875 0.1875 0.625 

   0.375   0.375   0.5625    0.75|   0.25   0.25 0.375 0.5 

      G

1

1

 

The matrix of environmental variances and covariances for the MTSMM is: 

Ro = 
































888
88

  
 σ σ 

 σ σ 
    

 r r 

 r r 

EE

EE

2221

1211

2221

1211

 

The matrix of residual variances and covariances among nonparents with records in the MTSMM is 

equal to:
 

 R =  Dn * G0 + I * R0 = 














 R R 

 R R 

2221

1211
 

where  *  = direct product,  and Dn = (I – ½ Psire – ¼ Pmgs) is the matrix of coefficients of residual 

genetic variances and covariances for nonparents in the MTSMM.  Matrix Dn (from Chapter 17, 

page 19) is equal to: 

 Dn = 























6875.0
6875.0

6875.0
671875.0

609375.0

 

Thus, the matrix of residual variances and covariances among nonparents with records in the 
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MTSMM is equal to:  

 R  = Dn * 








223
32

+ In * 








888
88

 

 R  = 












 (88)I + (22)*D  (8)I + (3)*D 

    (8)I + (3)*D  (8)I + (2)*D 

nnnn

nnnn
 

and the inverse of R is:  

RB1  = 















 R R 

 R R 

2221

1211
1 

 
= 















 R R 

 R R 
2221

1211

 

Matrix R-1 for the MTSMM is: 

R
-1 

0.1209742 0 0 0 0 -0.011725 0 0 0 0 

0 0.1195062 0 0 0 0 -0.011645 0 0 0 

0 0 0.1191449 0 0 0 0 -0.011626 0 0 

0 0 0 0.1191449 0 0 0 0 -0.011626 0 

0 0 0 0 0.1191449 0 0 0 0 -0.011626 

-0.011725 0 0 0 0 0.0109977 0 0 0 0 

0 -0.011645 0 0 0 0 0.0108642 0 0 0 

0 0 -0.011626 0 0 0 0 0.0108314 0 0 

0 0 0 -0.011626 0 0 0 0 0.0108314 0 

0 0 0 0 -0.011626 0 0 0 0 0.0108314 

 

The MME for the MTSMM are: 



Mauricio A. Elzo, University of Florida, 1996, 2005, 2006, 2010, 2014 [21-11] 
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
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


















 yR   +   yR’Z 

 yR   +   yR’Z 

 ------------- 

 yR   +   yR’X 

 yR   +   yR’X 

    

 u 

 u 

---

 b 

  b 

 

 gA   +   ZR’Z |  

 gA   +   ZR’Z gA   +   ZR’Z|  

 --------------------------|--------------

 XR’X  ZR’X|XR’X  

 ZR’X  ZR’X|XR’X  XR’X 

2
22

1
21

2 

2
12

1
11

1 

2
22

1
21

2 

2
12

1
11

1 

2 

1 

2 

1

221
2 

22
2 

121
2 

12
1 

111
1 

11
1 

2
22

21 
21

2 2 
22

2 

2
12

11 
11

1 2 
12

1 1 
11

1 

 

The left hand side of the MME for MTSMM is: 

0.359625 0 -0.035 0 0 0.241214 0.119506 0.178717 0 -0.02341 -0.01165 -0.01744 

0 0.23829 0 -0.02325 0 0 0.178717 0.178717 0 0 -0.01744 -0.01744 

-0.035 0 0.032693 0 0 -0.02341 -0.01165 -0.01744 0 0.021929 0.010864 0.016247 

0 -0.02325 0 0.021663 0 0 -0.01744 -0.01744 0 0 0.016247 0.016247 

0 0 0 0 6.247619 -2.74286 -1.67619 -1.67619 -0.85195 0.374026 0.228571 0.228571 

0.241214 0 -0.02341 0 -2.74286 3.959211 0.059753 0 0.374026 -0.52799 -0.00582 0 

0.119506 0.178717 -0.01165 -0.01744 -1.67619 0.059753 3.739963 0 0.228571 -0.00582 -0.49495 0 

0.178717 0.178717 -0.01744 -0.01744 -1.67619 0 0 3.888533 0.228571 0 0 -0.50946 

0 0 0 0 -0.85195 0.374026 0.228571 0.228571 0.567965 -0.24935 -0.15238 -0.15238 

-0.02341 0 0.021929 0 0.374026 -0.52799 -0.00582 0 -0.24935 0.359928 0.005432 0 

-0.01165 -0.01744 0.010864 0.016247 0.228571 -0.00582 -0.49495 0 -0.15238 0.005432 0.339997 0 

-0.01744 -0.01744 0.016247 0.016247 0.228571 0 0 -0.50946 -0.15238 0 0 0.353503 

 

The right hand side of the MME for MTSMM is: 

3.4670989 

2.3877353 

8.0975408 

5.1294392 

0 

2.304549 
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2.4384748 

4.0392275 

0 

5.4377116 

6.3896163 

8.013142 

 

The MTSMM solutions for sex effects and their standard errors are: 

Effect biBW
o SE(biBW

o) biWW
o SE(biWW

o) 

Male 37.63 1.95 287.87 6.47 

Female 37.00 2.32 276.51 7.70 

 

The MTSMM predictions of transmitting abilities (i.e., ½ BV) for sires and maternal 

grandsires and their standard errors of prediction are: 

Effect ûiBW SEP(ûiBW) ûiWW SEP(ûiWW) 

Sire 1 -0.00 0.71 0.01 2.34 

Sire 3 -0.00 0.78 0.02 2.57 

Sire 4 -0.24 0.69 -0.77 2.29 

Sire 5 0.24 0.69 0.76 2.27 

   

 

Special cases of multiple trait analysis 

The structure of the data vector, the pedigree of the animals being evaluated and the model used for 

each trait allow, in some cases, to develop more efficient and less expensive algorithms to compute 
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the solutions of multiple trait analyses. 

[I] Animals have measurements on all traits, parents are either non-inbred or have the same 

level of inbreeding, the incidence matrices of the fixed effects are equal for all traits and the 

incidence matrices for the random effects are equal for all traits. 

Under these conditions, the GMTM becomes: 
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
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 rI rI|0 0 
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12n11n
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Let the above model be multiple trait model 1 (MTM1).  The MTM1 can also be written, using 

the direct product notation, as follows: 

  y = (I2*X)b + (I2*Z)u + e 

 E[y] = (I2*X)b 

 












 e 

u  
var   = 















 R*I 0 

 0 G*A 

o

o
 

where 

 , 
 e 

 e 
  e    , 

 u 

 u 
 u     , 

 b 

 b 
  b    , 

 y 

 y 
 y 
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2

1
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 . 
 r r 

 r r 
  R    and  , 

 g g 

 g g 
  G
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The MME for the MTM1 are: 
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More explicitly the MME for the MTM1 are: 
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If r12 = 0 and g12 = 0 the set of MME for the MTM1 becomes two independent single trait analyses.  

Thus, the task is to transform the data such that the records of an animal for different traits are 

uncorrelated.  The can be achieved by using a canonical transformation. 

Let 

   =  


















 I*L 0 

 0 I*L 

n
1

n
1

 

where 

  n = number of animals with records 

  L = t x t matrix, where t is the number of traits. 

The matrix L is chosen such that: 

 (i) LRB1L   =  I 

(ii) LGB1L  =  D a diagonal matrix 
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How to find L? 

Quaas's (1986) approach: 

(i) Decompose Ro using any transformation, e.g., Cholesky decomposition, so that: 

  Ro  =   TT 

(ii) Compute B = TGo
B1

T.  Then, decompose B as follows: 

  B  =  UDU 

where 

  D = diagonal matrix, whose elements are the eigenvalues of B 

  U  = orthogonal matrix whose columns are the orthonormal eigenvectors of B, 

i.e., 

    UU  =  UU  =  I 

(iii)   Compute  L = TU. 

Proof that L = TU: 

(i) LRB1L  = UTTBTTB1TU 

    = I 

(ii) LGo
B1L = UTGo

B1TU 

    = UTTBTBTB1TU 

    = UBU 

    = UUDUU 

    = D 

Using  = 


















 I*L 0 

 0 I*L 

n
1

n
1

on the MTM1, where L = TU, yields MTM2. 
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 (LB1*In)y = (LB1*In)(It*X)b + (LB1*In)(It*Z)u + (LB1*In)e 

 (LB1*In)y = (LB1It*InX)b + (LB1It*InZ)u + (LB1*In)e 

 (LB1*In)y = (LB1*X)b + (LB1*Z)u + (LB1*In)e 

 (LB1*In)y = (It*X)(LB1*If)b + (It*Z)(LB1*Ir)u + (LB1*In)e 

or 

  y*  = (It*X)b* + (It*Z)u* + e* 

where 

     n  = number of animals with records, 

     t  = number of traits, 

     f  = number of fixed effects per trait, 

     r  = number of random effects per trait, 

    b*  = (LB1*If)b 

    u*  = (LB1*Ir)u 

    e*  = (LB1*In)e 

    y*  = (LB1*In)y 

  E[y*] = (LB1*In)Xb 

    = (LB1*X)b 

  var(u*)  = (LB1*Ir)(Go*A)(LBT*Ir) 

     = LB1GoLBT*A 

But, 

   B = TGB1T 

    = UDU 
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  Go
B1 = TBTUDUTB1 

  Go
B1 = LBTDLB1 

  Go  = LDB1L 

Thus, 

  var(u*)  = LB1LDB1LLBT*A 

     = DB1*A 

and 

  var(e*)  = (LB1*In)(Ro*In)(LB1*In) 

     = LB1RoLBT*In 

     = UTB1TTTBTU 

     = It*In 

Thus, 
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The transformed model for the ith trait is: 

   y = Xb + Zu  + e  

  E[y] = XB  

  var
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The MME of the transformed records for the ith trait are: 
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The untransformed solutions can be obtained as follows: 

(i)    b̂   I * L     b̂ f
1*   

    b̂   I * L     b̂ *
f  

  b̂      b̂
*
jij

t

1=j
i   

(ii)    û   I * L     û r
1*   

    û   I * L     û *
r  

  û      û *
jij

t

1=j
i   

 

Cholesky Decomposition 

If a matrix A is symmetric positive definite, then there exists a lower triangular matrix T with 

positive diagonal entries such that A = TT (Golub and Van Loan, 1984). 

Computing algorithm (row version) 

For i = 1, ..., n compute: 

  tii = 











t   a 2
ik

1i

1=k
ii

2/1

 

For  = i + 1, ..., n compute: 

  tj = t * t t   a 1
jkk

1i

1=k
j












   

 

Example:   
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Consider the matrix Ro for the case of a model with four traits. 

Let Ro be: 

   Ro = 























 147 41 28 8  

 41  30 14 16 

 28  14 51 32 

 8   6  32 64 

 

Then, 

   t11 = (64)2 = 8 

   t21 = 32/8 = 4 

   t31 = 16/8 = 2 

   t41 = 8/8 = 1 

   t22 = (52 B 42)2 = 6 

   t32 = (14 B 4*2)/6 = 1 

   t42 = (28 B 4*1)/6 = 4 

   t33 = (30 B 22 B 12)2 = 5 

   t43 = (41 B 2*1 B 1*4)/5 = 7 

   t44 = (147 B 12 B 42  B 72)2 = 9 

Thus, 

   T = 




















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 9 7 4  1 

 0 5 1 2 

 0 0 6 4 

 0 0 0 8 

 

[II] Animals have missing records following some pattern, parents are either non-inbred or 



Mauricio A. Elzo, University of Florida, 1996, 2005, 2006, 2010, 2014 [21-20] 
 

have the same level of inbreeding and the incidence matrices for the fixed and for the random 

effects are the same for all traits. 

(a) Missing records in traits that are recorded sequentially, e.g., birth weight (BW), weaning 

weight (WW), yearling weight (YW).  If calves are selected after BW as well as after WW, the 

following patterns for residual covariance matrices will exist: 

  .

 r r r 

 r r r 

 r r r 
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Is there an transformation of the data vector that uncorrelates the residual effects?  The task 

here is to find a matrix T such that: 

(i) TRoT  = I 

  Ro  = (T)B1TB1 

  Ro
B1 = TT 

(ii) TiRoiT  = diag{δi 1} for 1it 

  Roi  = (Ti)B T 

  Roi
B1 = TiTi 

where 

  Ro  = 







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
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
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 r r r 

 r r r 

 r r r 

333231

232221

131211

 

  Ti  = matrix T with the rows and columns for the traits not measured on an animal 

replaced by zeroes. 
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  δi  = Kronecker delta 












otherwise    0   
 

animalan on  measured  trait wasa if    1   

 

  Roi  = matrix Ro with zeroes substituted for the elements of the rows and columns 

corresponding to traits not measured on an animal. 

  Ro
B1 = inverse of Ro 

  Roi
B  = generalized inverse of Roi 

  Ti
B  = generalized inverse of Ti 

Consider a triangular transformation (Pollak, 1983, personal communication; Quaas et al., 1984), 

where T is a Cholesky decomposition of R o
B1, i.e., T is a lower triangular matrix so that: 

(i) R o
B1  =  TT  Ro  =  TBTTB1  TRoT  =  I 

(ii) TiRoiTi  =  diag {δi 1} for 1  i  t 

For instance, for the BW, WW and YW case above, 
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Remarks: 
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(1) The total number of combinations that exist among t traits is (2t B 1).  However, the maximum 

number of combinations among t traits that the triangular transformation can handle is less than or 

equal to t, the maximum number of traits measured per animal. 

(2) Define the inverse of T, i.e., TB1 as follows: 

  TB1 = lower triangular {tij} 

where 

  t    t 1
ii

ii   

  t t      t     t 1
i

k

j=

1i

j=k

1
ii

ij 


  



 

Proof: 

Consider the case of three traits and the following identity: 
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Thus, the formula for diagonal terms of T
B1 is: 

  t    t 1
ii

ii   

For example, in the case of t11 we have that: 

  1    t  t 11
11   

  t    t 1
11

11   

For offdiagonal terms of TB1 we have that: 

(1)  0    t  t + t  t 21
22

11
21   

  t  t  t     t 1
1121

1
22

21   
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(2)  0    t  t + t  t + t  t 31
33

21
32

11
31   

    t  t  t  t + t  t t    t 1
1121

1
2232

1
1131

1
3331
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(3)  0    t  t + t  t 32
33
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32   

  t  t  t     t 1
2232

1
33

32   

By observing the pattern of formulae (1), (2) and (3), we obtain the formula for offdiagonal terms 

of T
B1, i.e., 

  t t      t     t 1
i

k

j=

1i

j=k

1
ii

ij 

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

 . 

(4) The g-inverses of Ti for i = 1, 2 are: 
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where the tij are as defined in remark (2) above. 

Thus, the triangular transformation to uncorrelate the residuals of the records of an animal having 

the ith trait combination, will require to multiply the matrix Ti
B by the vector of recorded traits of this 

individual.  In the weight traits case: 

(i)  if an animal has trait 1 (BW) recorded only, 
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(ii)  if an animal has traits 1 and 2 recorded, 
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(iii)  if an animal has records on all three traits, 
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Thus, the transformed model: 

(i) for animals with BW measured only is: 

   y = X1 b + Z1 u + e 

 E[y] = X1 b ,  b = t11 b1 

 var
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(ii)  for animals with BW and WW measured is: 

   y = X2 b + Z2 u + e 

 E[y] = X2 b ,  b = t21 b1 + t22 b2 
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    = 

 

 




















































 
e

 e 
 t  t 

 
u

 u 
 t  t 

var  

2

12221

2

12221

 

    = 
 

  













 I *  t r t  +   t r t 2  +   tr t |0

0| A* t  g t  +   t g t 2  +   t g t 

22
22 

2222
12 

2121
11 

21

22
22 

2222
12 

2121
11 

21

 

(iii)  for animals with all three traits measured is: 

   y = X3 b + Z3 u + e 

  E[y] = X3 b,  b = t31 b1 + t32 b2 + t33 b3 
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Assuming that we are evaluating all animals for all traits (i.e., the Zi matrices will contain columns 

of zeros for the traits animals have no records), the triangularly transformed GMTM (i.e., MTM3) 

is: 
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The MME for the MTM3 are: 
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where 
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   =  TB1GoTBT 

Thus, the inverse of {θij} is: 

 {θij} =  (TB1GoTBT)B1 

   =  TGoT  

 

Advantages of the MTM3 

(1) Blocks of zeroes on the LHS of the MME, wherein nonzero blocks existed in the GMTM. 
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(2) Absorption of the fixed effects becomes much faster, simpler and less expensive. 

Disadvantages of the MTM3 

Some of the requirements for the triangular transformation may not exist in some data sets.  For 

instance, there can be more combinations of traits than the total number of traits, records from 

different traits may be affected by one or more different fixed effects. 

Backtransforming the solutions 

(1) Fixed effects 
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(2) Random effects 
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