MULTIBREED EVALUATION: THEORY AND APPLICATION

M. A. Elzo University of Florida **Multibreed Populations**

Genetic and Environmental Effects

Modeling Strategies

Multibreed Model

Covariance Estimation Procedure

Results From Experimental Herds

Implications for National Sire Evaluations

	Numbers of Sires								
			B	GS					
BGD	Α	.75A	.50A	.25A	В	Br			
Α	16	7	9	10	15	16			
.75A	13	9	9	9	17	13			
.50A	16	11	9	11	18	15			
.25A	11	6	7	7	12	10			
В	13	11	9	11	20	16			
Br	10	7	8	10	12	16			

Numbers of Dams							
	_		B	GS			
BGD	Α	.75A	.50A	.25A	В	Br	
Α	69	24	22	28	40	40	
.75A	13	20	23	22	24	29	
.50A	50	36	38	47	54	50	
.25A	21	16	23	16	25	24	
В	45	40	36	43	107	44	
Br	21	15	19	23	23	66	

R.L	Numbers of Calves							
			B	GS				
BGD	Α	.75A	.50A	.25 A	В	Br		
Α	117	25	22	28	40	40		
.75A	29	21	25	24	27	32		
.50A	62	41	46	57	65	66		
.25A	24	20	24	19	32	28		
В	53	44	39	49	195	50		
Br	23	16	19	26	25	106		

Number of Sires								
		BGS						
	Sanmar	½S½B	Brahman					
Sanmar	88	0	14					
½S½B	14	10	18					
³ / ₄ S ¹ / ₄ B	14	0	0					
Brahman	41	1	22					

Number of Dams								
		BGS						
BGD	Sanmar	½S½B	Brahman					
Sanmar	410	0	80					
¹ ∕₂S¹∕₂B	39	68	75					
³ / ₄ S ¹ / ₄ B	29	0	0					
Brahman	75	1	110					

Number of Calves							
		BGS					
	Sanmar	½S½B	Brahman				
Sanmar	1309	0	147				
½S½B	92	242	242				
3∕4 S¹∕ 4B	88	0	0				
Brahman	264	1	371				

Actual N	Actual Modeling Strategy						
Effects	Prediction	Covariance Components					
Additive	Subclass	Regression					
Nonadditive	Regression	Regression					
Environmental	Subclass	Regression					

Nonadditive Regression Effects

Intra and interbreed interaction effects between alleles of all parental breeds

2 Breeds

Intrabreed A/A Intrabreed B/B Interbreed A/B, B/A

С	Connectedness								
Contemp Group									
1	X								
2	X		X						
3	X	X	X						
4		X	X						
5	X	Х	X						
6	X		X						
7	X								

Multibreed Genetic Predictions

MEPD	Direct (D)	Maternal (M)
Additive (A)	AD	АМ
Nonadditive (N)	ND	NM
Total (T=A+N)	TD	тм

Multibreed Herds

Angus-Brahman - U. Florida (1998) Growth Traits (Preweaning) Carcass Traits Romosinuano-Brahman - Turipaná (1998) Growth Traits (Pre & Postweaning) Sanmartinero-Brahman - La Libertad (1999) Growth Traits (Pre & Postweaning)

Estimates of Genetic Ratios									
	Carcass Traits								
Heritab Heritab Interact									
	Α	В							
CW	.46	.39	.27						
LMA	.42	.53	.28						
FAT	.14	.24	.02						
КРН	.03	.14	.05						
MB	.16	.16	.12						
WBS	.58	.17	.07						

Straightbred and Crossbred
Heritabilities

	BWD	BWM	WWD	wwm
AxA	.22	.17	.25	.05
B x B	.23	.18	.29	.09
A x B	.19	.15	.22	.07
.5A.5B x A	.16	.32	.18	.44

Straightbred and Crossbred Heritabilities							
	cw	RA	FR	КР	мв	SF	
AxA	.46	.42	.14	.03	.16	.58	
B x B	.39	.53	.24	.14	.16	.17	
A x B	.30	.34	.18	.07	.13	.25	
<u>.5A.5B x A</u>	.37	.33	.03	.02	.19	.43	

Correlation Estimates

r ₄ (BWD,WWD)	.24 A and .22 B
r_(WWD,WWM)	28 A and22 B
r _v (BWD,WWD)	.18 A/B
r _N (BWM,WWM)	.12 A/B
r₄(CWD,LMAD)	.45 A and .40 B

Multibreed Predictions

Comparison of sires of any fraction of parental breeds

Graphs assumed sires to be mated to ½A ½B cows

Iean of A/A and B/B Intralocus Interactions from Purebred and Crossbred Animals

Corr	elation b Growth	etween I n Traits	MEPD
	(A, N)	(A, N) (A, T)	
BWD	.25	.98	.42
WWD	.20	.94	.53
BWM	.40	.96	.65
WWM	VWM .32		.52

Correlation between MEPD Carcass Traits					
(A, N)	(A, T)	(N, T)			
.41	.93	.72			
.29	.94	.59			
.04	1.00	.06			
.16	1.00	.24			
.22	.99	.33			
.33	1.00	.39			
	(A, N) .41 .29 .04 .16 .22 .33	Alation between Carcass Traits (A, N) (A, T) .41 .93 .29 .94 .04 1.00 .16 1.00 .22 .99 .33 1.00			

Implications - Variability

Additive and Nonadditive Genetic Effects were important sources of variation for growth related traits

Feasible to Select for Additive and Nonadditive MEPD in Bos Taurus-Brahman Multibreed Populations

Implications - Predictions

No straightbred or crossbred sire group was completely superior to another group (Ranges Overlapped)

Conservative Selection Rule First select Sires for Additive MEPD, and then for Total MEPD

National Multibreed Populations

A Single Multibreed Population All breeds in the USA

Several Overlapping Multibreed Populations Angus-Brangus-Brahman Simmental (USA-Canada)-Simbrah-Brahman

Several Extended Breeds (Straightbred Sires; Straightbred and Crossbred Dams)

Multibreed Genetic Bases

Single Multibreed Population Single Base (Add, Nonadd)

Overlapping Multibreed Populations Single Reference Base (Add, Nonadd) Connected Reference Bases (Add, Nonadd)

> Extended Breeds Weak Connections (Mgs, Mgd ?)

Multibreed Genetic Evaluations

Single Multibreed Population Additive, Nonadditive, Total

Overlapping Multibreed Populations Additive, Nonadditive, Total

Extended Breeds Additive, Nonadditive, Total (Within Ex Br)

Publication of MEPD

Paper Multibreed Sire Summaries Additive (Feasible) Nonadditive, Total (Unfeasible)

Electronic Multibreed Sire Summaries Additive, Nonadditive, Total

> Better Alternative Mating Program Service

Final Remarks

Definition of USA Multibreed Populations

Methodological Research and Development

Publication of Genetic Predictions

Additional Services

