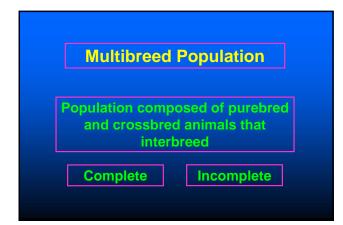

MULTIBREED ANIMAL EVALUATION AND ITS APPLICATION TO THE THAI ENVIRONMENT

M. A. Elzo University of Florida

Genetic and Environmental Effects


Modeling Strategies

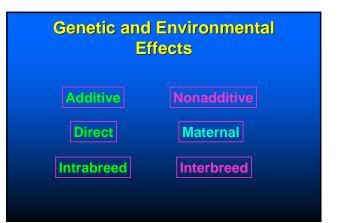
Multibreed Model

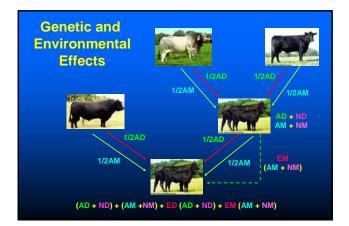
Covariance Estimation Procedure

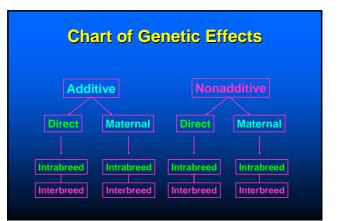
Results From Experimental Herds

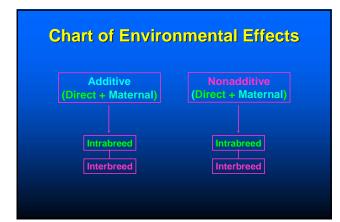
Implications for National Sire Evaluations

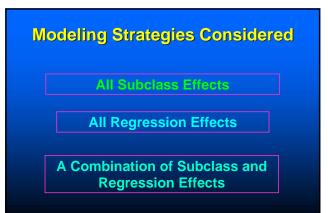
		Nu	mbe	rs o	i Sire	95	
				B	GS		
BG	D	Α	.75A	.50 A	.25 A	В	Br
A		16	7	9	10	15	16
.75	A	13	9	9	9	17	13
.50	A	16	11	9	11	18	15
.25	A	11	6	7	7	12	10
B		13	11	9	11	20	16
B	r	10	7	8	10	12	16

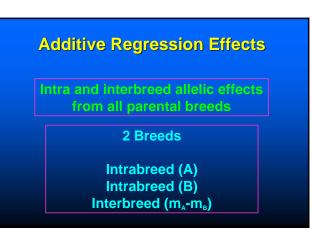

	Nu	umbe	ers o	i Da	ms	
	BGS					
BGD	Α	.75A	.50A	.25A	В	Br
Α	69	24	22	28	40	40
.75A	13	20	23	22	24	29
.50A	50	36	38	47	54	50
.25A	21	16	23	16	25	24
В	45	40	36	43	107	44
Br	21	15	19	23	23	66

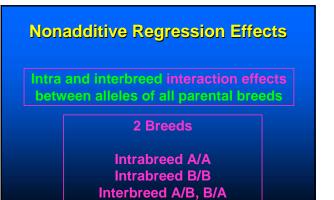

Numbers of Calves								
BGS								
Α	.75A	.50A	.25 A	В	Br			
117	25	22	28	40	40			
29	21	25	24	27	32			
62	41	46	57	65	66			
24	20	24	19	32	28			
53	44	39	49	195	50			
23	16	19	26	25	106			
	117 29 62 24 53	117252921624124205344	A.75A.50A1172522292125624146242024534439	A.75A.50A.25A11725222829212524624146572420241953443949	A.75A.50A.25AB1172522284029212524276241465765242024193253443949195	A.75A.50A.25ABBr11725222840402921252427326241465765662420241932285344394919550		

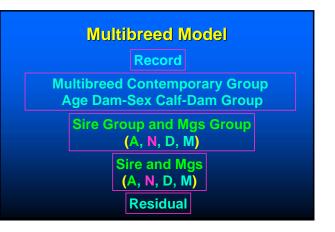

Number of Sires							
		BGS					
	Sanmar	½S½B	Brahman				
Sanmar	88	0	14				
1/2S1/2B	14	10	18				
³∕₄S¹⁄₄B	14	0	0				
Brahman	41	1	22				

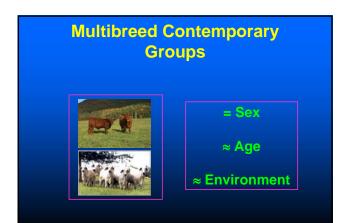

Number of Dams								
	BGS							
BGD	Sanmar	½S½B	Brahman					
Sanmar	410	0	80					
½S½B	39	68	75					
³∕₄S¹∕₄B	29	0	0					
Brahman	75	1	110					


	lumber o	of Calve	s 💽
		BGS	
BGD	Sanmar	½S½B	Brahman
Sanmar	1309	0	147
¹ ∕₂S¹∕₂B	92	242	242
³∕₄S¹∕₄B	88	0	0
Brahman	264	1	371



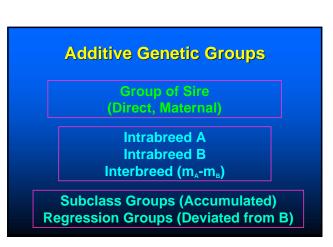


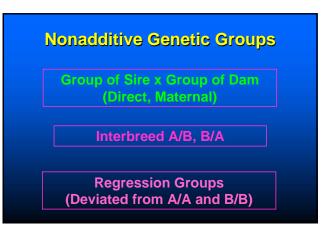


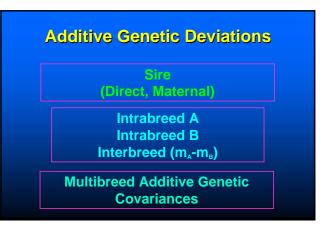


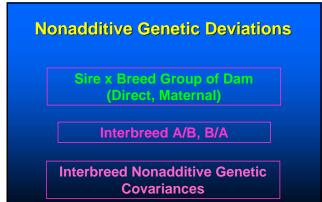
Actual Modeling Strategy						
Effects Prediction Covariance Components						
Additive	Subclass	Regression				
Nonadditive	Regression	Regression				
Environmental	Subclass	Regression				

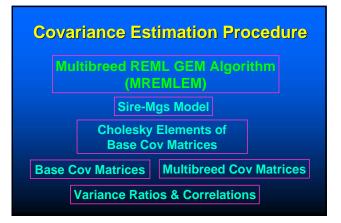
Multibreed Group 3



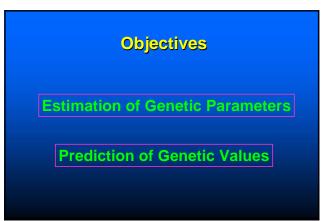


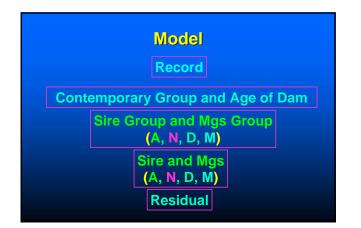


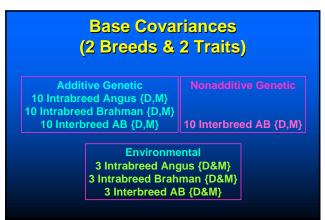

Connectedness Contemp Group 2 3 X 4 X X 5 Х X X 6 Х X 7 X

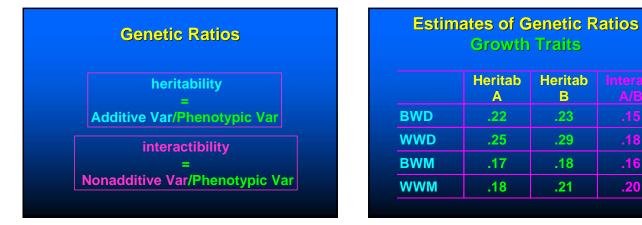


Multibreed Genetic Predictions


MEPD	Direct (D)	Maternal (M)
Additive (A)	AD	АМ
Nonadditive (N)	ND	NM
Total (T=A+N)	TD	тм




Multibreed Herds


Angus-Brahman - U. Florida (1996) Growth Traits (Preweaning) Carcass Traits Romosinuano-Brahman - Turipaná (1998) Growth Traits (Pre & Postweaning) Sanmartinero-Brahman - La Libertad (1999) Growth Traits (Pre & Postweaning) BON-Brahman – El Nus (2000) Growth Traits (Pre & Postweaning)

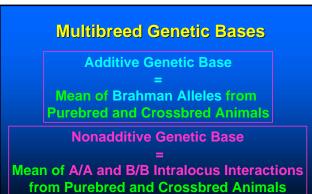
Estimates of Genetic Ratios								
Carcass Traits								
Heritab Heritab Interact								
	A	В						
CW	.46	.39						
LMA	.42	.53	.28					
FAT	.14	.24	.02					
КРН	.03	.14	.05					
MB	.16	.16	.12					
WBS	.58	.17	.07					

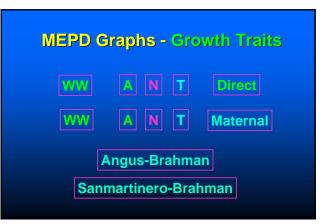
Straightbred and Crossbred
Heritabilites

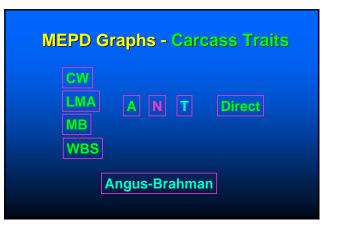
.20

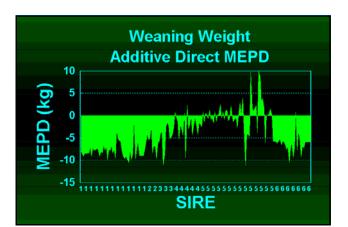
	BWD	BWM	WWD	wwm
<u>A x A</u>	.22	.17	.25	.05
B x B	.23	.18	.29	.09
A x B	.19	.15	.22	.07
<u>.5A.5B x A</u>	.16	.32	.18	.44

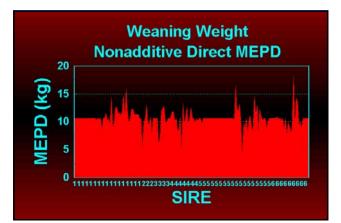
Straightbred and Crossbred Heritabilities						
	cw	RA	FR	KP	MB	SF
A x A	.46	.42	.14	.03	.16	.58
BxB	.39	.53	.24	.14	.16	.17
AxB	.30	.34	.18	.07	.13	.25
.5A.5B x A	.37	.33	.03	.02	.19	.43

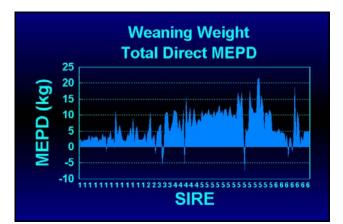

Correlation Estimates

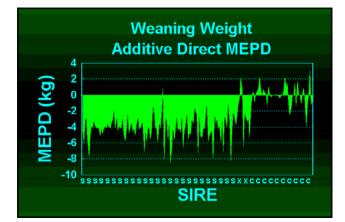

r ₄ (BWD,WWD)	.24 A and .22 B
r ₄ (WWD,WWM)	28 A and22 B
r _N (BWD,WWD)	.18 A/B
r _N (BWM,WWM)	
r.(CWD.LMAD)	.45 A and .40 B

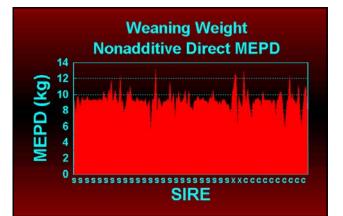

Multibreed Predictions


Comparison of sires of any fraction of parental breeds

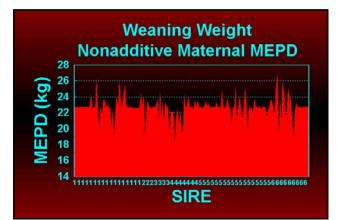

Graphs assumed sires to be mated to ½A ½B cows

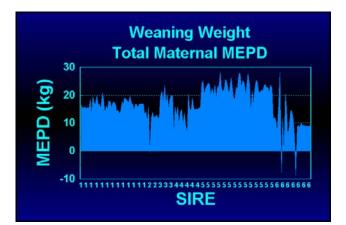


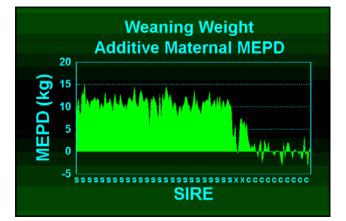


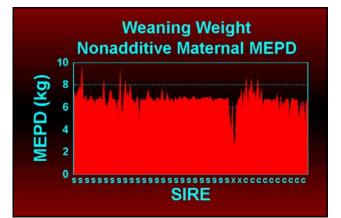


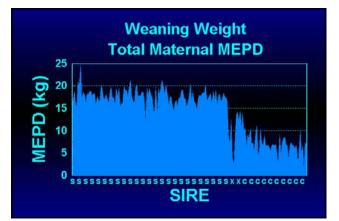


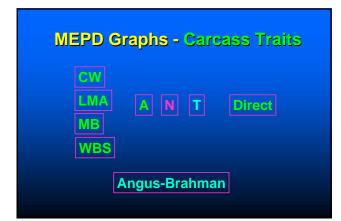


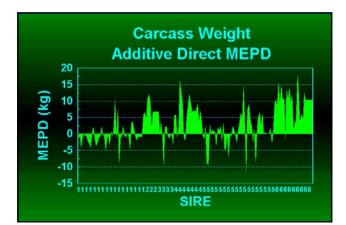


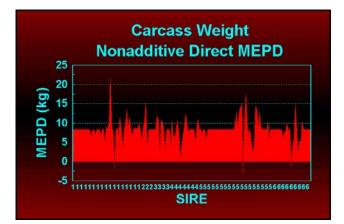


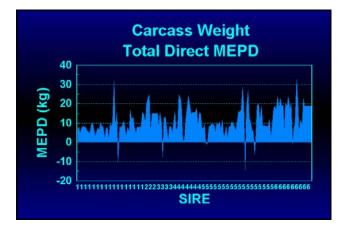


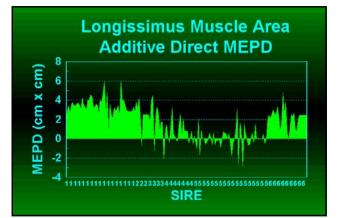


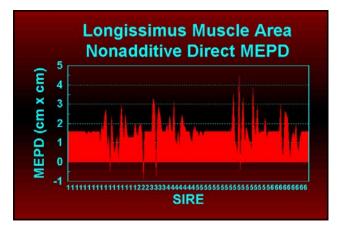


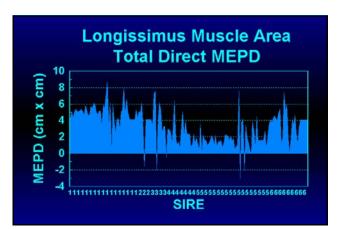


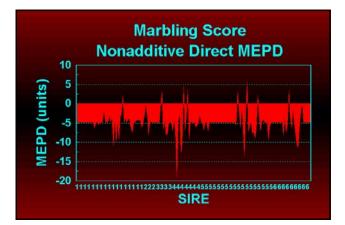






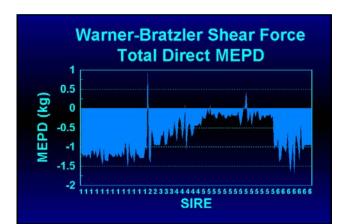












Corr	elation b Growth	etween I n Traits	NEPD
	(A, N)	(A, T)	(N, T)
BWD	.25	.98	.42
WWD	.20	.94	.53
BWM	.40	.96	.65
WWM .32		.98	.52

Corr	elation b Carcas	<mark>etween</mark> l Is Traits	Mepd
	(A, N)	(A, T)	(N, T)
CW	.41	.93	.72
RA	.29	.94	.59
FR	.04	1.00	.06
KP	.16	1.00	.24
MB	.22	.99	.33
SF	.33	1.00	.39

Implications - Variability

Additive and Nonadditive Genetic Effects were important sources of variation for growth related traits

Feasible to Select for Additive and Nonadditive MEPD in Bos Taurus-Brahman Multibreed Populations

Implications - Predictions

No straightbred or crossbred sire group was completely superior to another group (Ranges Overlapped)

Conservative Selection Rule First select Sires for Additive MEPD, and then for Total MEPD

Mating Strategies	
Primarily Crossbreeding	
	BGD
Upgrading (e.g., to Holstein)	Н
Intermediate Crossbred Groups	.75H
	.50H
Straightbred and Crossbred Sires	.25H
	Т

Ø,	B	eef N	lating	js		
		Breed	Grou	ıp Sire	•	
BGD	С	.75C	.50C	.25C	Т	
С	X					
.75C	Х	X	X	X	X	
.50C	Х	X	X	X	X	
.25C	Х	X	X	X	X	
Т	Х	X	X	X	X	

Straightbred and Crossbred Dams

	Multibreed Populations					
	A Single Multibreed Population					
	All breeds and Crossbred Groups					
S	Several Overlapping Multibreed Populations					
	Charolais-Brahman					
	Bos taurus-Bos indicus					
	Several Extended Breeds					
	(Brahman Sires; Brahman and Brahman x					
	Thai Native Dams)					

Dairy Matings

X

X

Х

H X X X

X

X

Breed Group Sire .75H .50H .25H

X

Х

X

X

Multibreed Genetic Bases

Single Multibreed Population Single Base (Add, Nonadd)

Overlapping Multibreed Populations Single Reference Base (Add, Nonadd) Connected Reference Bases (Add, Nonadd)

> Extended Breeds Weak Connections (Mgs, Mgd ?)

Multibreed Genetic Evaluations

Single Multibreed Population Additive, Nonadditive, Total

Overlapping Multibreed Populations Additive, Nonadditive, Total

Extended Breeds Additive, Nonadditive, Total (Within Ex Br)

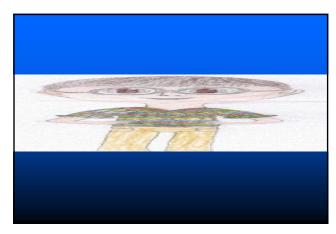
Publication of MEPD

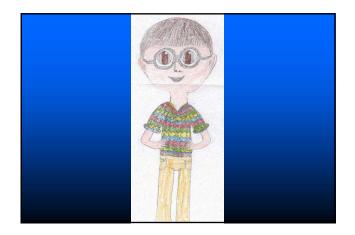
Paper Multibreed Sire Summaries Additive (Feasible) Nonadditive, Total (Unfeasible)

Electronic Multibreed Sire Summaries Additive, Nonadditive, Total

> Better Alternative Mating Program Service

Final Remarks


Definition of Multibreed Populations


Methodological Research and Development (Dairy, Beef)

Publication of Genetic Predictions

Additional Services

