Beef Cattle Genetics and Feed Efficiency in Beef Cattle in Florida

M. A. Elzo University of Florida

Data Recording Prior to FEF

Pedigree and Breed Fractions {Calves, Sires, Dams}

Data: 2 {Date and information} {Date, weight, height, condition score, ...}

Provided at the time animals are brought into the FEF

Data Recording at BRU

Pedigree and Breed Fractions {Calves, Sires, Dams}

Data: 6 {Date and information} {Date, weight, height, condition score, …} Files: {Calf, Sire, Dam} Yearly and Accumulated

Data Recording at FEF

Calves: Bulls, Heifers, Steers AdjPeriod: 21 d; Trial:70 d Pens: 24; Calves/pen: 14 - 16

Intake: Feed, Water (Real time) Growth: Dates, weights, Hip Ht (2 wk) Temperament: Chute Score, Exit Velocity (2 wk) Ultrasound: UREA, UIMF, UBF, UTend

Post-FEF Data Recording

Carcass and Meat Quality Data (BRU Only)

Growth: Date, Slaughter weight Carcass: HCW, BF, REA, KPH, MAR, YG, QG Meat Quality: Shear Force, Tenderness, Juiciness, Flavor, Cook Loss, Thaw Loss

Traits

Residual Feed Intake (RFI) Daily Feed Intake (DFI) Feed Conversion Ratio (FCR) Postweaning Gain (PWG)

in the second seco	Calves 2006-2007 BKV-GNV-MAR							
	n = 581		Bre	ed Gro	oup of	Sire		
	BGDam	А	.75 A	Br	.50A	.25A	В	
	Α	80	7	42	7	8	21	
	.75 A	18	9	7	9	12	11	
	Br	16	2	70	2	3	4	
	.50A	18	17	24	11	16	20	
	.25A	8	6	6	8	6	5	
	В	14	0	0	0	0	84	

	Trait			
Effect	RFI	DFI	FCR	PWG
Herd-year-pen	< 0.0001	< 0.0002	< 0.0001	< 0.0001
Age of dam	0.41	0.12	0.65	0.28
Sex of calf	0.003	< 0.0001	< 0.0001	< 0.0001
Age of calf	0.06	0.01	0.0004	0.04
RFI group		< 0.0001	0.78	0.09
Brahman fraction nested within sex of calf	< 0.0001			
Heterosis nested within sex of calf	0.24			
Brahman fraction nested within RFI group		0.0009	0.0073	0.0004
Heterosis nested within RFI group		0.0002	0.22	0.20
Mean Chute Score	0.39	0.42	0.11	0.33
Mean Exit Velocity	0.89	0.0012	0.34	0.31

Residual Feed Intake

Bulls similar to Steers Heifers less efficient than steers (1.24 ± 0.36 kg DM/d)

Bulls and Steers: Similar RFI from A to B Heifers: RFI decreased as B % increased (-1.29 ± 0.28 kg DM/d; more efficient)

	Tat				
Effect	RFI	DFI	FCR	PWG	
Herd-year-pen	< 0.0001	< 0.0002	< 0.0001	< 0.0001	
Age of dam	0.41	0.12	0.65	0.28	
Sex of calf	0.003	< 0.0001	< 0.0001	< 0.0001	
Age of calf	0.06	0.01	0.0004	0.04	
RFI group		< 0.0001	0.78	0.09	
Brahman fraction nested within sex of calf	< 0.0001				
Heterosis nested within sex of calf	0.24				
Brahman fraction nested within RFI group		0.0009	0.0073	0.0004	
Heterosis nested within RFI group		0.0002	0.22	0.20	
Mean Chute Score	0.39	0.42	0.11	0.33	
Mean Exit Velocity	0.89	0.0012	0.34	0.31	

Feed Conversion Ratio

Breed

Increased as B % increased (less efficient) High RFI Group = 1.41 ± 0.52 kg DM*d⁻¹/kg gain*d⁻¹ Med RFI Group = 1.29 ± 0.47 kg DM*d⁻¹/kg gain*d⁻¹

Heterosis

Increased as Het % increased (less effic) High RFI Group = 0.92 ± 0.51 kg DM*d⁻¹/kg gain*d⁻¹

Genetic Parameters (REML)							
	RFI DFI FCR PWG						
RFI	0.19 ± 0.11	0.73 ± 0.13	0.09 ± 0.38	0.58 ± 0.28			
DFI	0.89 ± 0.01	0.42 ± 0.13	-0.05 ± 0.31	0.88 ± 0.12			
FCR	0.55 ± 0.03	0.37 ± 0.04	0.24 ± 0.11	-0.50 ± 0.23			
PWG	0.15 ± 0.04	0.41 ± 0.04	-0.57 ± 0.03	0.40 ± 0.13			

Research: Genetics-Genomics

Estimate effect of genes associated with grow and FE in animals from different breed compositions (100% Angus to 100% Brahmar	th 1)
Estimate effect of genes associated with grow traits at various ages (birth to slaughter)	th
Use high density panels to estimate the bree composition of animals for individual traits in multibreed populations	d n
(Improve accuracy of genetic predictions)	

Research: Physiology-Nutrition

Fine mapping of growth and FE OTL regions Identification of relevant genes under subtropical conditions (Bos taurus-Bos indicus)

Physiological role / effect of relevant genes for growth and FE in subtropical multibreed cattle (Bos taurus-Bos indicus)

Variability in gene expression of relevant growth and FE genes in multibreed Bos taurus-Bos indicus populations in subtropical regions

Carcass (2006-2007) UF Angus-Brahman Herd							
	n = 170		Bre	ed Gro	oup of s	Sire	
	BGDam	А	.75 A	Br	.50A	.25A	В
	Α	17	2	2	2	3	4
	.75 A	6	4	8	5	3	4
	Br	2	1	18	1	1	2
	.50A	5	10	10	6	5	5
	.25A	5	3	2	4	1	2
	В	0	0	0	0	0	27

Model for Carcass Traits

HCW, LMA, BFAT, MAR, SF, TEND

year-pen + age calf + RFI group + BFcalf(rfigrp) + Hetcalf + mean exit velocity + sire + residual

Regression of Carcass & Meat Quality traits on Brahman Fraction							
rait	P > F	High RFI	Medium RFI	Low RFI			
cw	0.0006	-65.7 ± 22.1 kg	-42.4 ± 23.5 kg	-43.3 ± 18.2 kg			

LMA	0.0001	-8.08 ± 5.0 cm ²	-14.6 ± 5.3 cm ²	-17.9 ± 4.1 cm ²
BFAT	0.0207	-1.08 ± 0.4 cm	-0.4 ± 0.4 cm	-0.1 ± 0.3 cm
MAR	0.0001	-170.7 ± 44.1 units	-182.2 ± 46.7 units	-38.7 ± 36.3 units
SF	0.0003	1.3 ± 0.3 kg	0.6 ± 0.3 kg	0.2 ± 0.3 kg
TEND	0.0001	-0.9 + 0.3 units	-1.7 + 0.3 units	-0.9 + 0.3 units

Carcass Traits Feed Efficiency Group

High RFI smaller LMA than Low RFI (-11.0 ± 3.8 cm²)

High RFI higher MAR than Low RFI (116.0 ± 34.0 units) Medium RFI higher MAR than Low RFI (108.0 ± 29.9 units)

