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INTRODUCTION 
 
In population genetics, allelic frequencies are typically estimated via maximum 
likelihood (MLE). Under this setting, allele frequencies are treated as unknown 
fixed parameters. However, according to population genetics theory, allele 
frequencies can have random variation, thus they should be treated as random 
variables (Wright, 1930; 1937; Crow and Kimura, 1970).   
 
Under the decision theory framework, given a parameter space Θ, a decision 
space 𝐷 and a loss function 𝐿 𝜃, 𝛿 𝑋 , the average loss for a decision rule 𝛿 
when the true state of nature is 𝜃 ∈ Θ, is defined as 𝑅 𝜃, 𝛿 = 𝐸𝜃 𝐿 𝜃, 𝛿(𝑋) . The 
ideal decision rule is one having uniformly smaller risk, that is, it minimizes the risk 
for every 𝜃 ∈ Θ (Lehmann and Casella, 1998). However, such a decision rule 
rarely exists unless restrictions like unbiasedness and invariance are posed over 
the estimators. Another approach is to allow all kinds of estimators and to use an 
optimality criterion weaker than a uniform minimum risk. Such a criterion looks for 
minimization of 𝑅 𝜃, 𝛿  in some general sense and there are two principles to 
achieve that goal: the Bayes principle and the Minimax principle (Lehman and 
Casella, 1998; Ghosh, personal communication).  
 
Given a loss function and a prior distribution, the Bayes principle looks for an 
estimator minimizing the Bayesian risk 𝑟 Λ, 𝛿 , that is, a decision rule 𝛿  is defined 
to be a Bayes decision rule with respect to a prior distribution Λ if it satisfies: 
 

𝑟 Λ, 𝛿 =  𝑅 𝜃, 𝛿 𝑑Λ 𝜃 = inf
𝛿∈𝐷

𝑅 𝜃, 𝛿

Θ

 

 
This kind of estimators can be interpreted as those minimizing the posterior risk. 
On the other hand, the Minimax principle consists of finding decision rules that 
minimize the supremum (over the parameter space) of the risk function (the worst 
scenario). Thus 𝛿∗ is said to be a Minimax decision rule (or ME) if: 
 

sup
𝜃∈Θ

𝑅 𝜃, 𝛿∗ = inf
𝛿∈𝐷

sup
𝜃∈Θ

𝑅 𝜃, 𝛿  

 
The aim of this study was to derive Bayes and Minimax estimators of allele 
frequencies for biallelic loci under a decision theory framework. 

DERIVATION OF BAYES RULES 

 
Here we assume Hardy-Weinberg equilibrium for an arbitrary locus. Let 𝑋1, 𝑋2 and 𝑋3 
be random variables indicating the number of animals having genotypes AA, AB and 
BB following a trinomial distribution conditional on 𝜃 (the frequency of the “reference”  
allele B)  with corresponding frequencies: 1 − 𝜃 2, 2𝜃(1 − 𝜃) and 𝜃2 and let 𝒙 =
(𝑋1, 𝑋2, 𝑋3). Thus, we are interested in estimating 𝜃 ∈ 0,1 . The sampling model was a 
trinomial distribution and the prior was a Beta 𝛼, 𝛽  distribution. This family of priors 
was chosen because of mathematical convenience, flexibility and because the 
hyperparameters 𝛼 and 𝛽 have a genetic interpretation (Wright, 1937). Under this 
setting, three loss functions were used to derive Bayes decision rules: squared error 
loss (SEL), Kullback-Leibler loss  (KLL) and a quadratic error loss (QEL). 
Squared error loss: Under SEL, the Bayes estimator is the posterior mean. Thus we 
need to derive the posterior distribution of the parameter: 
 

𝜋 𝜃 𝒙 ∝ 𝜋 𝒙 𝜃 𝜋(𝜃) ∝ 𝜃 𝑥2+2𝑥3+𝛼−1 1 − 𝜃 2𝑥1+𝑥2+𝛽−1 
  
The posterior is a Beta(𝑥2 + 2𝑥3 + 𝛼, 2𝑥1 + 𝑥2 + 𝛽) distribution. Therefore, the Bayes 
estimator under the given prior and SEL is: 
 

𝜃 𝑆𝐸𝐿 =
𝑥2 + 2𝑥3 + 𝛼

2𝑛 + 𝛼 + 𝛽
=

𝑥2 + 2𝑥3

2𝑛

2𝑛

2𝑛 + 𝛼 + 𝛽
+

𝛼

𝛼 + 𝛽

𝛼 + 𝛽

2𝑛 + 𝛼 + 𝛽
 

 
which is a convex combination of the MLE and the prior mean.  
The frequentist risk for this estimator is: 
 

𝑅 𝜃, 𝜃 𝑆𝐸𝐿 = 𝐸𝜃

𝑥2 + 2𝑥3 + 𝛼

2𝑛 + 𝛼 + 𝛽
− 𝜃

2

= 𝑉𝑎𝑟𝜃

𝑥2 + 2𝑥3 + 𝛼

2𝑛 + 𝛼 + 𝛽
+ 𝐸𝜃

𝑥2 + 2𝑥3 + 𝛼

2𝑛 + 𝛼 + 𝛽
− 𝜃

2

 

After some algebra we obtain: 

𝑅 𝜃, 𝜃 𝑆𝐸𝐿 =
2𝑛𝜃 1 − 𝜃 + 1 − 𝜃 𝛼 − 𝜃𝛽 2

2𝑛 + 𝛼 + 𝛽 2
 

 
Kullback-Leibler loss: Under this loss, the Bayes decision rule is the one minimizing 
(with respect to 𝛿): 

 𝐿𝐾𝐿(𝜃, 𝛿)𝜋 𝜃 𝒙 𝑑𝜃

1

0

 

where: 

𝐿𝐾𝐿 𝜃, 𝛿 = 𝐸𝜃 𝑙𝑜𝑔
𝜋 𝒙 𝜃

𝜋 𝒙 𝛿
= 2𝑛 1 − 𝜃 𝑙𝑜𝑔

1 − 𝜃

1 − 𝛿
+ 𝜃𝑙𝑜𝑔

𝜃

𝛿
 

 
After differentiating  𝐿𝐾𝐿(𝜃, 𝛿)𝜋 𝜃 𝒙 𝑑𝜃

1

0
 with respect to 𝛿, doing some algebra and 

checking the second order condition we obtain the following Bayes estimator: 
 

𝜃 𝐾𝐿𝐿 =
𝑥2 + 2𝑥3 + 𝛼

2𝑛 + 𝛼 + 𝛽
= 𝜃 𝑆𝐸𝐿 

 
Thus, the Bayes decision rules are the same under SEL and KLL. 
Quadratic error loss: The general form of this loss is: 𝑤 𝜃 𝑎 − 𝜃 2, 𝑤 𝜃 > 0, ∀ 𝜃 ∈ Θ 
Let 𝑤 𝜃 = 𝜃(1 − 𝜃) −1 . This form of 𝑤(𝜃)  was chosen for mathematical 
convenience. Under the given loss and prior, the Bayes estimator is: 
 

𝜃 𝑄𝐸𝐿 =

𝑥2 + 2𝑥3 + 𝛼 − 1

2𝑛 + 𝛼 + 𝛽 − 2
, 𝑖𝑓 𝑥2 + 2𝑥3 + 𝛼 − 1 > 0 𝑎𝑛𝑑  2𝑥1 + 𝑥2 + 𝛽 − 1 > 0 

0,                       𝑖𝑓 𝑥2 + 2𝑥3 + 𝛼 − 1 ≤ 0 
1,                       𝑖𝑓 2𝑥1 + 𝑥2 + 𝛽 − 1 ≤ 0 

 

 
In most of real life situations  𝑥2+2𝑥3 + 𝛼 − 1 > 0 𝑎𝑛𝑑  2𝑥1 + 𝑥2 + 𝛽 − 1 > 0, and in this 
case: 

 𝑅 𝜃, 𝜃 𝑄𝐸𝐿 = 𝐸𝜃 𝑤(𝜃) 𝜃 − 𝑎 2 =
2𝑛

2𝑛+𝛼+𝛽−2 2 +
−𝜃 𝛼+𝛽−2 +𝛼−1

𝜃(1−𝜃) 2𝑛+𝛼+𝛽−2 2 
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SUMMARY 
 
The aim of this study was to derive Bayes and Minimax estimators (ME) of allele 
frequencies for biallelic loci using decision theory. Because an optimal decision 
rule with uniformly smallest risk rarely exists, an approach is to establish 
principles that allow ordering of decision rules according to their risk function. To 
this end, two general methods were used: The Bayes and the Minimax principles. 
For an arbitrary locus, the sampling model was a trinomial distribution for numbers 
of individuals for each genotype and the prior was a Beta distribution, chosen 
because of mathematical convenience, flexibility and genetic interpretation of its 
parameters. Three types of loss functions were considered: squared error (SEL), 
Kullback-Leibler (KLL) and a quadratic error loss (QEL). The SEL and KLL yielded 
the same estimator, which was a convex combination of the prior mean and the 
MLE. Using the Bayes estimator from QEL, an ME was derived by applying a 
theorem which states that a Bayes estimator with constant risk is also Minimax. 
The constant risk was obtained by finding appropriate hyperparameter values. 
This estimator was shown to be equivalent to MLE. The prior associated with this 
ME was uniform [0,1]. Extension to several loci under linkage equilibrium and 
independent priors was discussed. The estimators derived here have the 
appealing property of allowing variation in allelic frequencies, which is more 
congruent with the reality of finite populations exposed to evolutionary forces. In 
addition, from a Bayesian perspective they permit modelling uncertainty and 
incorporation of previous genotypic information from the population.  

 
 
 
 
 
 
 
 

EXTENSION TO K LOCI 

 
Let 𝜽 = 𝜃1, 𝜃2, … , 𝜃𝑘  be the vector containing the frequencies of the “reference” 
alleles for k loci, 𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌 ;  𝒙𝒊 = 𝑋1𝑖 , 𝑋2𝑖 , 𝑋3𝑖 , 𝑖 = 1,2, … , 𝑘 the vector 
containing the number of individuals for every genotype at every locus and 
𝜹 = 𝛿1, 𝛿2, … , 𝛿𝑘  a vector valued estimator of 𝜽. Consider a general additive loss 
function of the form: 𝐿 𝜽, 𝜹 𝑿 =  𝐿 𝜃𝑖 , 𝛿𝑖(𝑿)𝑘

𝑖=1 . Assuming linkage equilibrium 
(LE) we have that 𝜋 𝑿 𝜽 =  𝜋 𝒙𝑖 𝜃𝑖

𝑘
𝑖=1 , and using independent priors it follows 

that  𝜋 𝜽 𝑿 =  𝜋 𝜃𝑖 𝒙𝑖
𝒌
𝒊=𝟏 . To obtain a Bayes estimator, we have to minimize the 

following expression with respect to 𝛿𝑖 , ∀ 𝑖 = 1,2, … , 𝑘: 

 …  𝐿 𝜽, 𝜹 𝑿

Θ𝑘Θ1

𝜋 𝜽 𝑿 𝑑𝜃1 ⋯ 𝑑𝜃𝑘 =  …   𝜃𝑖 , 𝛿𝑖(𝑿)

𝑘

𝑖=1Θ𝑘Θ1

𝜋 𝜽 𝑿 𝑑𝜃1 ⋯ 𝑑𝜃𝑘 

=   …  𝐿 𝜃𝑖 , 𝛿𝑖(𝑿)

Θ𝑘Θ1

 𝜋 𝜃𝑗 𝒙𝒋

𝒌

𝒋=𝟏

𝑑𝜃1 ⋯ 𝑑𝜃𝑘

𝑘

𝑖=1

 

 
The ℎ𝑡ℎ integral in the summation (ℎ = 1,2, … , 𝑘) can be written as: 

 𝐿(𝜃ℎ, 𝛿ℎ(𝑿))𝜋 𝜃ℎ 𝒙𝒉 𝑑𝜃ℎ

Θℎ

 𝜋 𝜃𝑖 𝒙𝒊

Θ−ℎ

𝑑𝜽−ℎ =  𝐿(𝜃ℎ, 𝛿ℎ)𝜋 𝜃ℎ 𝒙𝒉 𝑑𝜃ℎ

Θℎ

 

where the subscript " − ℎ“ indicates that we consider all 𝑖 ≠ ℎ. From the result above, 
it follows that Bayes estimation of 𝜽 reduces to that of its components. Therefore, 
under LE, independent priors and an additive loss it follows that  
𝜽 𝐵𝑎𝑦𝑒𝑠 = 𝜃 1

𝐵𝑎𝑦𝑒𝑠
, 𝜃 2

𝐵𝑎𝑦𝑒𝑠
, . . . , 𝜃 𝑘

𝐵𝑎𝑦𝑒𝑠 . Applying the results derived previously, an ME 
of 𝜽 is obtained by posing k independent uniform [0,1] priors and the 𝑖𝑡ℎ element of  
𝜽 𝑀𝑖𝑛𝑖𝑚𝑎𝑥 has the form  𝑥2𝑖+2𝑥3𝑖

2𝑛
, which is equivalent to the MLE. 
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DERIVATION OF MINIMAX RULES 

 
To derive Minimax rules the following theorem is used (Lehman and Casella, 1998): 
Theorem 1: Let Λ be a prior and 𝛿Λ a Bayes rule with respect to Λ with Bayes risk 
satisfying 𝑟 Λ, 𝛿Λ = sup

𝜃∈Θ
𝑅 𝜃, 𝛿Λ .  Then: 𝑖) 𝛿Λ is Minimax and 𝑖𝑖) Λ is least favorable. 

A corollary that follows from this theorem is that a if 𝛿 is a Bayes decision rule with 
respect to a prior Λ and it has constant (not depending on 𝜃)  frequentist risk  𝑅 𝜃, 𝛿  
then it is also an ME and Λ is least favorable, that is, it causes the greatest average 
loss. This is the result that was used to find ME. Once a Bayes estimator has been 
derived, if it is possible to find appropriate values for the hyperparameters such that 
𝑅 𝜃, 𝛿  is constant, then under the prior with these particular values for the 
hyperparameters, the resulting estimator is also an ME. Among the previously 
derived Bayes estimators, it is easy to notice that provided  𝑥2+2𝑥3 + 𝛼 − 1 >

0 𝑎𝑛𝑑  2𝑥1 + 𝑥2 + 𝛽 − 1 > 0, 𝜃 𝑄𝐸𝐿 will have a constant risk for 𝛼 = 𝛽 = 1,  that is, 
under a uniform 0,1  prior. In that case:  
 

𝜃 𝑀𝑖𝑛𝑖𝑚𝑎𝑥 =
𝑥2 + 2𝑥3

2𝑛
= 𝜃 𝑀𝐿𝐸𝑎𝑛𝑑 𝑅 𝜃, 𝜃 𝑀𝑖𝑛𝑖𝑚𝑎𝑥 =

1

2𝑛
 ∀ 𝜃 ∈ Θ 

 
This shows that this ME is equivalent to the MLE and that the uniform 0,1  prior is 
least favorable. The same idea does not work for 𝜃 𝑆𝐸𝐿.  

FINAL REMARKS 

 
The estimators derived here have the appealing property of allowing variation in 
allelic frequencies, which is more congruent with the reality of finite populations 
exposed to evolutionary forces. From a Bayesian perspective they permit modelling 
uncertainty and incorporation of previous genotypic information from the population.  


