
Genomic-Polygenic Evaluation for Milk Yield and Fat Yield in a Multibreed Dairy Cattle 
Population in Central Thailand

SUMMARY

Milk yield (MY) and fat yield (FY) are economically important traits for Thai dairy business. Genetic prediction for MY and FY in Thailand uses only pedigree

and phenotypic information. Combining SNP genotypes of individual animals with pedigree and phenotypes would be expected to increase accuracy of

genetic predictions and speed up selection progress. The objectives of this study were to estimate the fraction of the genetic variance accounted by 8,257

SNP from GeneSeek GGP-LD BeadChip and to compare the rankings of animals evaluated with a genomic-polygenic (GP), genomic (G), and polygenic (P)

model for MY and FY. The dataset consisted of first-lactation MY and FY records from 600 cows from 56 farms in Central Thailand collected from 2000 to

2013. The mixed model contained herd-year-season, Holstein fraction and age at first calving as fixed effects (all model). Random effects were SNP genomic

(GP and G), animal polygenic (GP and P) and residual. Variance components were estimated using GS3 software (option VCE; GP and P). Additive genetic

predictions were computed with GS3 (option BLUP) for all models. The fraction of additive genetic variances explained by the 8,257 SNP from GGP-LD and

computed with the GP model were 46% for MY and 45% for FY. Heritability estimates with the GP model were higher (0.37 for MY and 0.40 for FY) than

those with the P model (0.28 for MY and 0.30 for FY). Rank correlations between GP and G model were the highest (0.99 for both MY and FY; P<0.0001),

followed by correlations between GP and P models (0.91 for MY and 0.75 for FY; P<0.0001), and the lowest correlations were between G and P models

(0.89 for MY and 0.73 for FY; P<0.0001). Thus, SNP from GeneSeek GGP-LD not only accounted for a sizeable fraction of the additive genetic

variance for MY and FY, but they also yielded animal genomic EBV whose ranking was highly correlated with rankings of both genomic-polygenic

and polygenic EBV. These results indicated that utilization of GGP-LD, and perhaps higher density genotyping chips, would be advantageous for

genomic-polygenic evaluation and selection in Central Thailand.

INTRODUCTION

Milk yield (MY) and fat yield (FY) are economically important traits in the 

dairy business. Both traits are used for price determination of raw milk in 

Thailand. Genetic improvement for MY and FY in dairy cattle require 

unselected pedigree and phenotype information from individual animals. 

Traditional estimated breeding values (EBV) for animals are computed 

using best linear unbiased prediction (BLUP) procedures that utilize 

phenotype and pedigree information from all animals. However, genetic 

improvement for dairy traits require high accuracies of prediction. Animals 

can now be genotyped to obtain information on single nucleotide 

polymorphisms (SNPs) throughout the entire genome. These SNP are 

expected to be associated with economically important dairy traits. The 

combination of marker SNPs, phenotypes, and pedigree information can 

be collectively used to improve the accuracy of genetic predictions. Thus,

the objectives of this study were to estimate fraction of the genetic 

variance accounted by GeneSeek GGP-LD 9k BeadChip and to 

compare the rankings of animals evaluated with a genomic-

polygenic, genomic, and polygenic models for milk yield and fat 

yield. 
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MATERIALS AND METHODS

Data, Animals and Traits: The dataset consisted of monthly test-day milk 

yield (MY) and fat yield (FY) records from 600 first-lactation cows in 56 

farms located in Central Thailand collected from 2000 to 2013. Breeds of 

dairy cattle represented in this multibreed dairy population were Holstein, 

Brahman, Jersey, Red Dane, Red Sindhi, Sahiwal, and Thai Native. The 

percentage of Holstein in this population ranged from 46.87 to 100 %. Test-

day MY and FY were measured and collected from each individual cow 

once a month after calving until dry off. Monthly milk samples of cows were 

sent to a laboratory for milk quality analysis. 

Blood sampling and single nucleotide polymorphisms (SNPs) 

genotyping: Blood samples were taken from each cow to extract genomic 

DNA using a MasterPureTM DNA Purification Kit (Epicentre®, Madison, WI, 

USA). The genomic DNA of each sample was prepared for SNP genotyping 

with the GeneSeek Genomic Profiler low-density 9k BeadChip (GeneSeek, 

Lincoln, NE, USA). Only SNPs that were on the 29 autosomes, had a known 

map position, a call rate ≥ 90%, and a minor allele frequency ≥ 0.01 (2%) 

were selected. Finally, 8,257 SNPs were used in this study.  The number of 

SNPs per chromosomes ranged from 148 SNPs on the 28th chromosome to 

530 SNPs on the 1st  chromosome (Figure 1).

Genomic-polygenic and polygenic variance components and variance

ratios: Genomic-polygenic and polygenic variance components for MY and

FY were estimated using Markov Chain Monte Carlo (MCMC; option VCE)

procedure of the GS3 software (Legarra et al., 2010). The fixed effects were

herd-year-season, Holstein fraction and age at first calving, and the random

effects were SNPs (only for the genomic-polygenic variance component

model), animal and residual.

Table 1   Posterior means and posterior standard deviations of variance 

components for milk yield (MY) and fat yield (FY) from genomic-

polygenic and polygenic models

Variance components1
Trait

MY (kg2) FY (kg2)

VAGO 111,866 (62,722) 196.96 (126.39)

VAPO 139,287 (82,947) 265.42 (186.74)

VGTot 251,154 (90,728) 462.39 (198.04)

PheVarGP 659,001 (49,369) 1,123.91 (105.98)

VGPO 182,975 (98,441) 337.15 (224.43) 

PheVarP 644,212 (51,362) 1,091.98 (106.12)

1 VAGO = additive genomic variances, VAPO = additive polygenic variances, VGTot = total genetic variances, 

PheVarGP = phenotypic variances from genomic-polygenic models, VGPO = additive genetic variances from 

polygenic models, PheVarP = phenotypic variances from polygenic models. 

The dataset was first analyzed using a single-trait animal model. Fixed

effects were herd-year-season, Holstein fraction and age at first calving.

Random effects were animal and residual. Additive polygenic variance and

residual variance were estimated using an average information restricted

maximum likelihood (AI-REML) procedure of ASREML software (Gilmour et

al., 2006). These estimates were then used as initial values for the

estimation of genomic and polygenic variance components using GS3

software (Legarra et al., 2010).

FINAL REMARKS

 Fractions of genomic to total genetic variances were high for MY and 

FY

 Heritability estimates with the GP model were higher than  the P model 

for MY and FY 

 Rank correlations between predicted values from GP and G models  for 

MY and FY were higher than between GP and P models

“ Combining genomic SNPs, phenotypes, and pedigree 

information would help to improve accuracy of prediction 

for MY and FY in Central Thailand ”
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RESULTS AND DISCUSSION

Genomic-polygenic and polygenic variance components for MY and FY are 

presented in Table 1. Variance ratios and heritability from genomic-polygenic and 

polygenic models are presented in Table 2. The heritability estimates from 

genomic-polygenic models were 0.37 for MY and 0.40 for FY. The heritability 

estimates from polygenic models were 0.28 for MY and 0.30 for FY. Genetic 

variance and heritability estimates from genomic-polygenic models were higher 

than from polygenic models. Higher heritability estimates for MY and FY were 

obtained in Holstein-Friesian populations in temperate environments (Veerkamp 

et al., 2010; Haile‐Mariam et al., 2013). Holstein-Friesian heritabilities for MY and 

FY from genomic-polygenic models were slightly higher than estimates from 

polygenic models in Australia (Haile‐Mariam et al., 2013), but slightly lower in the 

Netherlands (Veerkamp et al., 2010). Differences in statistical models, number of 

SNPs, linkage disequilibria, and population structure may have contributed to 

these differences. The variance ratios between additive genomic variances and 

total genetic variances from genomic-polygenic model were 46 % for MY and 45 

% for FY. These percentages indicate that the  genomic information of 8,257 

SNPs  captured a large fraction of the total genetic variation for MY and FY 

in this multibreed dairy cattle population in Central Thailand.

Genomic-polygenic, genomic, and polygenic predictions: Genomic-

polygenic, genomic, and polygenic predictions for MY and FY were 

computed with GS3 software (Legarra et al., 2010; option BLUP; Gauss-

Seidel iteration; convergence criterion = 10-4) using VAGO, VAPO, and VE

estimates. Genomic-polygenic predictions were computed using a model 

with both genomic and polygenic effects, whereas genomic predictions were 

computed using a model with genomic effects only, and polygenic 

predictions were obtained using a model with polygenic effects only. Thus,

1) Genomic-polygenic EBV (GPEBV) were computed as the sum of 

𝜷𝑯𝑭 (HF) + additive genomic value + additive polygenic value, where 

βHF = regression coefficient estimate for Holstein fraction and HF = Holstein 

fraction of cow; 2) Genomic EBV (GEBV) were computed as the sum of 

𝜷𝑯𝑭 (HF) + additive genomic value, where additive genomic value was 

from the genomic model; and 3) Polygenic EBV (PEBV) were computed as 

the sum of 𝜷𝑯𝑭 (HF) + additive polygenic value, where additive 

polygenic values came from the polygenic model. Rankings of animals were 

analyzed using Spearman’s rank correlations. 

Table 2 Posterior means and posterior standard deviations of variance 

ratios and heritability for milk yield (MY) and fat yield (FY)

Variance ratios1
Trait

MY FY 

VAGO / VGTot 0.46 (0.22) 0.45 (0.24)

HeritabilityGP 0.37 (0.12) 0.40 (0.16)

HeritabilityP 0.28 (0.14) 0.30 (0.18)

1 VAGO = additive genomic variances, VGTot = total genetic variances, HeritabilityGP = heritability from 

genomic-polygenic model, HeritabilityP = heritability from polygenic model.

Table 3  Spearman’s rank correlation 

among genomic-polygenic, 

genomic, and polygenic 

predictions for milk yield (MY) 

and fat yield (FY)

Model1
Trait

MY FY

GP Model, G Model 0.9977 0.9973

GP Model, P Model 0.9095 0.7527

G Model, P Model 0.8892 0.7277
1 All Spearman’s rank correlations were significant 

(P < 0.0001).

Correlation between predicted animal EBV and phenotypes of genomic-

polygenic, genomic, and polygenic predictions for MY and FY are presented in 

Table 4. Correlations were ranged from 0.5201 to 0.6068 (P < 0.0001) for GP

model, 0.5183 to 0.6060 (P < 0.0001) for G model, and 0.5046 to 0.5871 (P < 

0.0001) for P model. Correlations between predicted animal EBV and 

phenotypes from the GP model (0.5201 for MY and 0.6068 for FY; P < 0.0001) 

were higher than correlations from the G (0.5183 for MY and 0.6060 for FY; 

P < 0.0001) and P models (0.5046 for MY and 0.5871 for FY; P < 0.0001). The 

results suggested that genomic information from the bovine chip with 

8,257 SNPs could be used to combine genomic, phenotypic and pedigree 

information to improve prediction accuracies in this multibreed dairy 

cattle population in Central Thailand.

Table 4 Correlation between 
predicted animal EBV and 
phenotypes of genomic-
polygenic, genomic, and 
polygenic predictions for 
milk yield (MY) and fat 
yield (FY)

Model1
Trait

MY FY

GP Model 0.5201 0.6068

G Model 0.5183 0.6060

P Model 0.5046 0.5871

1 All correlations were significant (P < 0.0001).

Spearman’s rank correlations between genomic-polygenic, genomic, and 

polygenic predictions for MY and FY are presented in Table 3. Rank 

correlations between GP and G models ranged from 0.9973 to 0.9977 

(P < 0.0001). Rank correlations between GP and P models ranged from 0.7527 

to 0.9095 (P < 0.0001) while rank correlations between G and P models ranged 

from 0.7277 to 0.8892 (P < 0.0001). Rank correlations between GP, G, and P

models were high for all traits. For MY, the rank correlation between GP and G

models (0.9977; P < 0.0001) was stronger than rank correlations between the 

GP (0.9095; P < 0.0001) and G (0.8892; P < 0.0001) models with the P model. 

For FY, the correlation between GP and G models (0.9973; P < 0.0001) was 

stronger than correlations between GP (0.7527; P < 0.0001) and G (0.7277; P < 

0.0001) with P. These high correlations indicated the possibility of 

preselecting young animals for MY and FY using a G model and later on, 

after phenotypes are collected, do a final genetic evaluation using a GP 

model.
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Figure1 Number of SNPs on each bovine chromosomes

Genomic-polygenic variance components: The additive SNP variances 

(VSNP), additive polygenic variances (VAPO), and residual variance (VE) 

estimates were used to compute genomic-polygenic variance components:  

additive genomic variances (VAGO), additive polygenic variances (VAPO),

additive genetic variances (VGTot), and phenotypic variances (PheVarGP) 

using GS3 software (option VCE). The additive genomic variances were 

computed as the product of  i=1
N 2piqi ∗ VSNPi, the total genetic variances 

were computed as VAGO + VAPO, and the phenotypic variances were 

computed as VAGO + VAPO + VE.

Polygenic variance components: Polygenic variances were additive 

genetic (VAPO), residual (VE), and phenotypic (PheVarP = VAPO + VE).


