Development of a daily stochastic dynamic dairy simulation model including the 12 traits in the Net Merit index UF FLORIDA The Foundation for The Gator Nation # K. Kaniyamattam, M. A. Elzo, A. De Vries Department of Animal Sciences, University of Florida, Gainesville Contact karunbrav@ufl.edu Abstract # 64974 Our main objective was to incorporate 12 different genetic traits of economic interest for each individual animal in an existing dynamic, stochastic dairy simulation model. **Specific objectives** were simulation of: - A. True Breeding Values - B. Environmental Components - C. Phenotypic Performance - D. Estimated Breeding Values #### A. True Breeding Values (TBV) - TBV_{ik} = $\frac{1}{2}$ (TBV_{sk} + TBV_{dk}) + $\frac{1}{2}$ (1-(F_s+F_d)/2)) * m_{ik}, for each animal (i) with sire (s) and dam (d) for each trait (k). m_{ik} was the Mendelian sampling effect for kth trait of the animal i. F_s and F_d were the inbreeding coefficient of the sire and the dam respectively. - TBV_{sk} and TBV_{dk} were computed by multiplying 12 * 12 Cholseky decomposed genetic covariance matrix from table 1, times a 12 * 1 matrix of inverse of random numbers (~ N(0, 1)). #### **B. Environmental Components** - The Cholesky decomposition of the environmental covariance matrix (12 by 12) multiplied by a 12 * 1 matrix of inverse of random numbers (~ N(0, 1)) yielded environmental component for each of the twelve traits (from Table 1). - Environmental component was split into a permanent (PERM) and a temporary (DAILY) component. #### C. Phenotypic performance - Phenotypes were based on a) average herd performance and b) phenotypic deviation (ΔP). - $\Delta P = TBV + PERM + DAILY$. - In the dairy model, a cow's production, fertility and survival risk depended on ΔP , as well as on herd performance. ### Table 1. Genetic (above diagonal) and phenotypic correlations between twelve traits | | Traits | | | | | | | | | | | Units | | |------------------|--------|-------|---------|-------|-------|------------------|-------|-----------|-------|-------|-------|-------|-----------| | | Milk | Fat | Protein | PL | SCS | Body size | Udder | Feet/legs | DPR | HCR | CCR | CA\$ | | | Milk | 1.00 | 0.43 | 0.83 | 0.10 | 0.02 | -0.10 | -0.10 | -0.02 | -0.23 | -0.03 | -0.16 | 0.19 | Kilogram | | Fat | 0.69 | 1.00 | 0.59 | 0.15 | -0.09 | -0.07 | -0.07 | 0.01 | -0.15 | 0.03 | -0.10 | 0.13 | Kilogram | | Protein | 0.90 | 0.75 | 1.00 | 0.13 | 0.04 | -0.17 | -0.14 | -0.01 | -0.18 | -0.07 | -0.15 | 0.22 | Kilogram | | PL | 0.15 | 0.17 | 0.16 | 1.00 | -0.45 | -0.27 | 0.18 | 0.14 | 0.64 | 0.32 | 0.62 | 0.40 | Months | | SCS | -0.10 | -0.10 | -0.10 | -0.40 | 1.00 | -0.07 | -0.23 | -0.15 | -0.27 | -0.12 | -0.25 | -0.14 | Log | | Body size | 0.06 | 0.05 | 0.05 | -0.20 | -0.11 | 1.00 | 0.45 | 0.38 | -0.12 | -0.02 | -0.15 | -0.16 | Composite | | Udder | -0.02 | -0.05 | -0.06 | 0.15 | -0.30 | 0.45 | 1.00 | 0.45 | 0.09 | 0.03 | 0.04 | 0.10 | Composite | | Feet/legs | -0.14 | -0.11 | -0.18 | 0.08 | -0.02 | 0.35 | 0.40 | 1.00 | 0.03 | -0.01 | -0.04 | -0.01 | Composite | | DPR | -0.10 | -0.10 | -0.10 | 0.20 | -0.05 | 0.00 | 0.00 | 0.00 | 1.00 | 0.41 | 0.87 | 0.35 | Percent | | HCR | -0.05 | -0.05 | -0.05 | 0.10 | -0.04 | -0.02 | -0.05 | -0.05 | 0.10 | 1.00 | 0.54 | 0.16 | Percent | | CCR | -0.10 | -0.10 | -0.10 | 0.40 | -0.20 | -0.10 | 0.03 | -0.04 | 0.70 | 0.45 | 1.00 | 0.34 | Percent | | CA\$ | 0.02 | 0.02 | 0.02 | 0.20 | -0.03 | -0.10 | 0.00 | -0.02 | 0.09 | 0.16 | 0.20 | 1.00 | Dollars | #### D. Estimated Breeding Values (EBV) - EBV is used for selection decisions. - EBV_{ik} = Norm.Inv (Corr. Rand_{tk}, condMean_{ik}, condStd_{ik}) * corr_{EBVk vsTBVk} where Corr. Rand_{tk} was the correlation between the random number used for estimation of a trait k to a 13^{th} random number (t), condMean_{ik} = TBVMean_{pk} + corr_{EBVk vsTBVk} * (TBV_{ik} TBVMean_{pk}), condStd_{ik} = $\sqrt{1 \text{Reliability}}$ * Std_k and TBVMean_{pk} is the average TBV of animals in each parity (p) for each trait (k) at the start of the updating day. (corr_{EBVkvsTBVk}) was the correlation between the EBV and TBV of each trait k. #### Illustration of Model Behavior - Simulation of 1000 cow dairy herd, 100 replicates. - Monthly removal of 20% surplus young females based on either lowest EBV of milk or lowest EBV of fertility (DPR). Table 2. Change in average TBV in a decade and phenotypes at end of simulation for cows | Milk | DPR | |--------|--| | 1103 | 901 | | 54 | 50 | | 36 | 32 | | 10.05 | 10.65 | | -0.55 | -0.59 | | -1.50 | -1.51 | | 0.41 | 0.51 | | 0.75 | 0.80 | | 2.91 | 4.31 | | 1.32 | 1.88 | | 1.56 | 2.83 | | 43.31 | 44.26 | | 1183 | 1161 | | 30.09% | 31.47% | | 115 | 112 | | 12577 | 12395 | | 1163 | 1116 | | 34% | 35% | | | 1103
54
36
10.05
-0.55
-1.50
0.41
0.75
2.91
1.32
1.56
43.31
1183
30.09%
115
12577
1163 | # Outlook and future work Evaluation of dairy herd reproductive programs on genetic progress and profitability.