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Problem and objective

¢ Necessity of deriving point

estimators of allelic frequencies
with appealing statistical properties
and biological soundness.

e Are allelic frequencies unknown

constants or random variables?

¢ Random variation of allelic

frequencies due to  certain
evolutionary forces (Wright, 1930;
1937).

¢ The aim of this study was to derive

alternative estimators of allele
frequencies with optimal statistical
properties under a decision theory
framework.
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Elements of decision theory

Parameter space © , decision space
D,observed data X, loss function L(8, §(X))
Frequentist risk: R(6, ) = Eg[L(8, 5(X))].

Decision rules with uniformly smallest risk

rarely exist (Lehmann and Casella, 1998):
Use a weaker optimality criterion.

Bayes decision rule:
7(4,8%) = f, R(8,67)dA(6) = jnf r(4,6).

Minimax decision rule:
supR(6,8*) = inf supR(6, )
6eo 5€D geg

estimators (Lehmann and Casella, 1998).

Approach

Statistical level

e Loss functions: SEL, KLL,
QEL.

Bayes
estimators

« Find values of the
hyperparameters such that the
Minimax frequentist risk is constant

« Check for admissibility using a
result from decision theory.

Statistical-genetics level

* One
(biallelic scenario)

locus, two alleles

« Multiple loci assuming linkage
equilibrium (LE) = Statistical
independence.

 Multiple loci, multiple alleles
scenario.

General setting and notation

Let X3, X, and X3 be random variables indicating the number of
animals having genotypes AA, AB and BB and assume Hardy-
Weinberg equilibrium.
Let 6 := frequency of the “reference” allele B.
X = (X1,X3,X3)
X|6~Trinomial(n; (1 — 6)%,26(1 — 6),6?)

6~Beta(a, B)

Bayes estimators and risks

Loss Finctions] Functional
N form of loss Bayes estimator (BE) Frequentist risk
function a form of BE
function
SEL
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No closed form

See next slide




Bayes estimators and risks: QEL
Sy w(©)(6 — 691) (6128 o f(6 — 651)ga-2(1 - 6)>*1+F~2dp
- J’Ba(l _ 9)2x1+[3—zd0 _ 2fQEL f 9a—1(1 _ 9)zx,+/i—zdg
+ (gqm)zfgn—zu — g)21+h-24g

Finite iff 9QEL = 0.

2usta-1
pasL Xzz:—,,zi;a_z,lez+2x3+a—1>0,2x,+x2+/;71>0
o= 0, ifx,+2x+a—1<0
1, if 2+ +f—1<0
R(6,89%) f 2x1 + 2
2n (—O(a+p-2)+a—1)?
+ Jif X+ 20+ a—1>0,2x+0,+f-1>0
Gnrarp-2 o0 -0nrarpap S rutiata X1 4%, + B
- ] .
B i ifx,+2x;+a—1<0
1-6

5 if 2 +x+B—1<0
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Derivation of minimax rules

Theorem 1 (Lehmann and Casella, 1998). Let 4 be a
prior and &, a Bayes rule with respect to 4 with Bayes
risk satisfying r(4,6,) = seupR(a,csA). Then: i)g§, is

.. . €0
minimax and ii) A is least favorable.

Functional R
m Hyperparameters form of BE Frequentist risk
SEL = [|=8= |5 2
o

Van(Van + 1)

X, + 2%
n

(sx +@2),1

1
= MLE =

QEL! a=1p=1
2n

" Provided xp4+2x; + @ —1> 0, 2x,+x, + f — 1> 0.

Extension to k loci
(LE and independent priors)

0 =(01,0,..,01), X = (X1, X2, ... X1), Xi = (X15, X0, X3)
Minimize: r(,6) = Jo, - Jo, L(0.8C)) m(81X)d0; -~ dby, wrt s, vi=12,..,k

R(6,8) = f J’(i L(Bi,si(x))>1r(9|X)d€,---de

6, 6 \i=1
k k
=Z f ...fL(ei,si(X))Hn(9,|X,-)de,--»de,(
i=19; O j=1

The ntr integral in the summation (x = 1,2,..., k) can be written as:

[ vensicom@ixasx [ . [ [ .| [ TrCesby) doy oo, --ase

©n 61 Op-10ns1 O JER

= [ 1w sn@nixas,
On

Bayes estimation of 6 reduces to that of its components.

Multiallelic loci

Let 6,65, ..., O, be the frequencies of the n; alleles of locus i.
Let ¥y, Y,,, ..., ¥, be random variables indicating the counts of each
one of the n; allelic variants at locus i,i = 1,2, ..., k.
Y; = (Y1, Yy, .., Yy, )~Multinomial (2n, 8;)
0; = (61,02, ..., 0, )~Dirichlet(a; = (a1, @z, .., An,))
< 0ly;~Dirichlet(ay, + Y1, @z, + V2,0 ) Ay + V)
" (5. _p. )\ gM-SEL _ (§. __ %tYyy
Under the loss 37, (8, - 6;,)", 8} = (Hji)nixl = a,
Under the loss 37, 6;(8;, — 6,)"
@ +yj=1
oYt = (g,M-QEL) T 1’
T e 0, if qj+y,-1<0

if g +y;,—1>0

Admissibility

Admissibility of one-dimensional and vector-valued estimators
was established using this theorem (Lehmann and Casella, 1998).

Theorem 2. For a possibly vector-valued parameter 6, suppose
that 6™ is a Bayes estimator having finite Bayes risk with respect
to a prior density 7 which is positive for all 8 € 0, and that the
risk function of every estimator § is a continuous function of 6.
Then 8™ is admissible.

Results and comments

fSEL gMinimaxy and @Minimaxz gre admissible, for HQEL the
property holds provided a > 1,8 > 1.

If both alleles are observed: the MLE is also minimax and
admissible. We have a Bayes, minimax, admissible and unbiased
estimator.

@M—SEL gM-Minimax; gnq gM-Minimaxz gre admissible, as well
as @M=QEL whena;, > 1,V j; = 1,2,..,n, Vi =12, ... k.

The estimators proposed here always have uniformly smaller
variance than the MLE, except for those derived from QEL which
require: a+p8>2 (biallelic  case) and 225:1 ag, > 1
(multiallelic case) to meet this property.
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Example

Beta distribution with
a =240, = 240,n = 691

Sample sizes: 1382 (A), 691 (B)
(x2,%3) = (10,25), @ = 96

Biallelic case Multiallelic case
. 6(1—-6 - 6;,(1-0;,
Var,[6¥] = % vary, [(@1™),] = %
_ 2n6(1 — ) o 2n6;, (1 - 6;)
sEL) — 2R Y mM—seLY | — 2070 T i)
Varg[6EL] = @ntatpr Var,, [(31 )1] T @n+a’)?
i 6(1-6)
Varg[6Minimar:] = . » gi-inimaxy | _ 8(1=6;)
Wz s, [ =
SM-Minimax,\ | _ 219;,(1 —6;)
Varg[8¥inimaz:] = yary[6¥] vary, (8} Z)f] S@ntnm-1?
If Xp42x3 + @ —1>0,2x,+x, + f—1>0: Ifa; +y;, —1>0:
~ 2n6(1 —6) M 2n0;,(1 - 6;)
QEL] — _ <P T ) m—oeLy | _ “n0i (L —0j)
Var[69°] = @ntatp-27 vars, [(9i )i] “n e 132

Results and comments

* For all decision rules derived from SEL, the form of the risk
functions shows that they converge to zero as n — o. QEL:
When all hyperparameters are greater than one, all the derived
risk functions converge to zero as n — co. When some alleles
are not observed and the hyperparameters corresponding to
their frequencies are smaller or equal to one, the result does
not hold.

e The impact of the use of these estimators in the many
applications they could have should be assessed either
empirically or theoretically and is an area for further research.
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