### Revisiting allelic frequencies estimation: A decision theory approach to derive Bayes, minimax and admissible estimators

Carlos Alberto Martínez Niño<sup>1,2</sup>, Kshitij Khare<sup>2</sup>, Mauricio A. Elzo<sup>1</sup> Department of Animal Sciences<sup>1</sup> Department of Statistics<sup>2</sup> University of Florida



#### Problem and objective

- Necessity of deriving point estimators of allelic frequencies with appealing statistical properties and biological soundness.
- Are allelic frequencies unknown constants or random variables?
- Random variation of allelic frequencies due to certain evolutionary forces (Wright, 1930; 1937).
- The aim of this study was to derive alternative estimators of allele frequencies with optimal statistical properties under a decision theory framework.



Vol. 20, 1807 GENETICS: S. WEIGHT 305
THE DISTRIBUTION OF GENE PREQUENCIES IN POPULATIONS
BY SEWALL WEIGHT

#### Elements of decision theory

- Parameter space  $\theta$ , decision space D, observed data X, loss function  $L(\theta, \delta(X))$
- Frequentist risk:  $R(\theta, \delta) = E_{\theta}[L(\theta, \delta(X))].$
- Decision rules with uniformly smallest risk rarely exist (Lehmann and Casella, 1998): Use a weaker optimality criterion.
- · Bayes decision rule:

$$r(\Lambda, \delta^*) = \int_{\theta} R(\theta, \delta^*) d\Lambda(\theta) = \inf_{\delta \in D} r(\Lambda, \delta).$$

• Minimax decision rule:  $\sup_{\theta \in \Theta} R(\theta, \delta^*) = \inf_{\delta \in D} \sup_{\theta \in \Theta} R(\theta, \delta)$ 





| Appro                                                                                                        | oach                                                                        |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Statistical level                                                                                            | Statistical-genetics level                                                  |
| • Loss functions: SEL, KLL, QEL.                                                                             | One locus, two alleles (biallelic scenario)                                 |
| • Find values of the hyperparameters such that the frequentist risk is constant (Lehmann and Casella, 1998). | Multiple loci assuming linkage equilibrium (LE) ⇒ Statistical independence. |
| Check for admissibility using a result from decision theory.                                                 | Multiple loci, multiple alleles<br>scenario.                                |
|                                                                                                              |                                                                             |

# General setting and notation

Let  $X_1$ ,  $X_2$  and  $X_3$  be random variables indicating the number of animals having genotypes AA, AB and BB and assume Hardy-Weinberg equilibrium.

Let  $\theta \coloneqq$  frequency of the "reference" allele B.

$$\mathbf{X} \coloneqq (X_1, X_2, X_3)$$

 $X|\theta \sim Trinomial(n; (1-\theta)^2, 2\theta(1-\theta), \theta^2)$ 

 $\theta \sim Beta(\alpha, \beta)$ 

# Bayes estimators and risks

| KLL $E_{\theta}\left[ln\left(\frac{\pi(\mathbf{X} \theta)}{\pi(\mathbf{X} \delta)}\right)\right]  \underset{\delta \in D}{\operatorname{argmin}} \int_{0}^{1} L_{KL}(\theta,\delta)\pi(\theta \mathbf{X})d\theta  \frac{x_{2}+2x_{3}+\alpha}{2n+\alpha+\beta}$ No closed form | Loss<br>function | Functional<br>form of loss<br>function                                                  | Bayes estimator (BE)                                                                                                            | Functional<br>form of BE                          | Frequentist risk                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|
| 0                                                                                                                                                                                                                                                                             | SEL              | $(\theta - \delta)^2$                                                                   | Posterior mean                                                                                                                  | $\frac{x_2 + 2x_3 + \alpha}{2n + \alpha + \beta}$ | $\frac{2n\theta(1-\theta)+[\alpha(1-\theta)-\beta\theta]^2}{(2n+\alpha+\beta)^2}$ |
| (0 5)2                                                                                                                                                                                                                                                                        | KLL              | $E_{\theta}\left[ln\left(\frac{\pi(\pmb{X} \theta)}{\pi(\pmb{X} \delta)}\right)\right]$ | $\underset{\delta \in D}{\operatorname{argmin}} \int\limits_{0}^{1} L_{KL}(\theta,\delta) \pi(\theta   \boldsymbol{X}) d\theta$ | $\frac{x_2 + 2x_3 + \alpha}{2n + \alpha + \beta}$ | No closed form                                                                    |
| QEL $\frac{(\theta - 0)^2}{\theta(1 - \theta)}$ Mean of: See next slide See next slide                                                                                                                                                                                        | QEL              | $\frac{(\theta - \delta)^2}{\theta(1 - \theta)}$                                        | Mean of: $w(\theta)\pi(\theta X)$                                                                                               | See next slide                                    | See next slide                                                                    |

### Bayes estimators and risks: QEL

$$\begin{split} \int_0^1 w(\theta) \Big(\theta - \hat{\theta}^{QEL}\Big)^2 \pi(\theta|\mathbf{x}) d\theta &\propto \int_0^1 (\theta - \hat{\theta}^{QEL})^2 \theta^{\alpha-2} (1 - \theta)^{2x_1 + \beta - 2} d\theta \\ &= \int_0^1 \theta^\alpha (1 - \theta)^{2x_1 + \beta - 2} d\theta - 2\hat{\theta}^{QEL} \int_0^1 \theta^{\alpha - 1} (1 - \theta)^{2x_1 + \beta - 2} d\theta \\ &+ \left(\hat{\theta}^{QEL}\right)^2 \int_0^1 \theta^{\alpha - 2} (1 - \theta)^{2x_1 + \beta - 2} d\theta \end{split}$$

Finite iff  $\hat{\theta}^{QEL} = 0$ .

$$R(\theta,\hat{\theta}^{QEL}) = \begin{cases} \frac{2\pi^{2}+2x_{2}+4\alpha-1}{2\pi+\alpha+\beta-2}, & \text{if } x_{2}+2x_{3}+\alpha-1>0, 2x_{1}+x_{2}+\beta-1>0\\ 0, & \text{if } x_{2}+2x_{3}+\alpha-1\leq0\\ 1, & \text{if } 2x_{1}+x_{2}+\beta-1\leq0 \end{cases}$$

$$= \begin{cases} \frac{2n}{(2n+\alpha+\beta-2)^{2}} + \frac{(-\theta(\alpha+\beta-2)+\alpha-1)^{2}}{(\theta-1-\theta)(2n+\alpha+\beta-2)^{2}}, & \text{if } x_{2}+2x_{3}+\alpha-1>0, 2x_{1}+x_{2}+\beta-1>0\\ \frac{\theta}{1-\theta}, & \text{if } x_{2}+2x_{3}+\alpha-1\leq0\\ \frac{1-\theta}{\alpha}, & \text{if } 2x_{1}+x_{2}+\beta-1\leq0 \end{cases}$$

#### Derivation of minimax rules

Theorem 1 (Lehmann and Casella, 1998). Let A be a prior and  $\delta_{\Lambda}$  a Bayes rule with respect to  $\Lambda$  with Bayes risk satisfying  $r(\Lambda, \delta_{\Lambda}) = \sup_{\theta \in \Theta} R(\theta, \delta_{\Lambda})$ . Then:  $i) \delta_{\Lambda}$  is minimax and ii)  $\Lambda$  is least favorable.

| Loss<br>function | Hyperparameters                                      | Functional form of BE                                              | Frequentist risk                                |
|------------------|------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|
| SEL              | $\alpha=\sqrt{\frac{n}{2}},\beta=\sqrt{\frac{n}{2}}$ | $\frac{x_2 + 2x_3 + \sqrt{\frac{n}{2}}}{\sqrt{2n}(\sqrt{2n} + 1)}$ | $\left(4\left(1+\sqrt{2n}\right)^2\right)^{-1}$ |
| $QEL^1$          | $\alpha=1,\beta=1$                                   | $\frac{x_2 + 2x_3}{2n} = MLE$                                      | $\frac{1}{2n}$                                  |

<sup>&</sup>lt;sup>1</sup> Provided  $x_2+2x_3+\alpha-1>0$ ,  $2x_1+x_2+\beta-1>0$ .

### Extension to k loci (LE and independent priors)

 $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k), \boldsymbol{X} = (\boldsymbol{X_1}, \boldsymbol{X_2}, \dots, \boldsymbol{X_k}), \boldsymbol{X_i} = (X_{1i}, X_{2i}, X_{3i})$  $\mbox{Minimize: } R(\pmb{\theta}, \pmb{\delta}) = \int_{\theta_1} \dots \int_{\theta_k} L\Big(\pmb{\theta}, \pmb{\delta}(\pmb{X})\Big) \pi(\pmb{\theta}|\pmb{X}) d\theta_1 \cdots d\theta_k, \mbox{Wrt } \delta_i, \forall \ i = 1, 2, \dots, k$ 
$$\begin{split} R(\boldsymbol{\theta}, \boldsymbol{\delta}) &= \int\limits_{\theta_1} \dots \int\limits_{\theta_k} \left( \sum_{i=1}^k L(\theta_i, \delta_i(\boldsymbol{X})) \right) \pi(\boldsymbol{\theta} | \boldsymbol{X}) d\theta_1 \cdots d\theta_k \\ &= \sum_{i=1}^k \int\limits_{\theta_1} \dots \int\limits_{\theta_k} L(\theta_i, \delta_i(\boldsymbol{X})) \prod_{j=1}^k \pi(\theta_j | \boldsymbol{X}_j) d\theta_1 \cdots d\theta_k \end{split}$$

 $\int\limits_{\theta_h} L(\theta_h,\delta_h(\textbf{\textit{X}}))\pi(\theta_h|\textbf{\textit{X}}_h)d\theta_h \times \int\limits_{\theta_1} \dots \int\limits_{\theta_{h-1}} \int\limits_{\theta_{h+1}} \dots \int\limits_{\theta_k} \int\limits_{j\neq h} \pi(\theta_j|\textbf{\textit{X}}_j)\,d\theta_1 \cdots d\theta_{h-1}d\theta_{h+1} \cdots d\theta_k$  $= \int L(\theta_h, \delta_h) \pi(\theta_h | \boldsymbol{X_h}) d\theta_h$ 

Bayes estimation of  $\theta$  reduces to that of its components.

#### Multiallelic loci

Let  $\theta_{1_i}, \theta_{2_i}, \dots, \theta_{n_i}$  be the frequencies of the  $n_i$  alleles of locus i. Let  $Y_{1i}, Y_{2i}, \dots, Y_{ni}$  be random variables indicating the counts of each one of the  $n_i$  allelic variants at locus  $i, i = 1, 2, \dots, k$ .

$$\begin{aligned} \mathbf{Y}_i &\coloneqq \left(Y_{1_i}, Y_{2_i}, \dots, Y_{n_i}\right) \sim Multinomial(2n, \boldsymbol{\theta}_i) \\ \boldsymbol{\theta}_i &= \left(\theta_{1_i}, \theta_{2_i}, \dots, \theta_{n_i}\right) \sim Dirichlet\left(\boldsymbol{\alpha}_i = \left(\alpha_{1_i}, \alpha_{2_i}, \dots, \alpha_{n_i}\right)\right) \\ & \therefore \boldsymbol{\theta}_i \mid y_i \sim Dirichlet\left(\alpha_{1_i} + y_{1_i}, \alpha_{2_i} + y_{2_i}, \dots, \alpha_{n_i} + y_{n_i}\right) \\ \text{Under the loss } \sum_{j_i=1}^{n_i} \left(\hat{\theta}_{j_i} - \theta_{j_i}\right)^2, \boldsymbol{\hat{\theta}}_i^{\text{M-SEL}} &= \left(\hat{\theta}_{j_i}\right)_{n_i \times 1} = \frac{\alpha_{j_i} + Y_{j_i}}{2n + \sum_{j_i=1}^{n_i} \alpha_{j_i}} \end{aligned}$$

$$\begin{split} &\text{Under the loss } \Sigma_{j_{i}=1}^{n_{i}}\theta_{j_{i}}^{-1}(\hat{\theta}_{j_{i}}-\theta_{j_{i}})^{2}:\\ &\hat{\theta}_{i}^{M-QEL}=\left(\hat{\theta}_{j_{i}}^{M-QEL}\right)_{n_{i}\times 1}=\begin{cases} \frac{\alpha_{j_{i}}+y_{j_{i}}-1}{\sum_{j_{i}=1}^{n_{i}}\alpha_{j_{i}}+2n-1}, & \text{if }\alpha_{j_{i}}+y_{j_{i}}-1>0\\ 0, & \text{if }\alpha_{j_{i}}+y_{j_{i}}-1\leq 0 \end{cases} \end{split}$$

# Admissibility

Admissibility of one-dimensional and vector-valued estimators was established using this theorem (Lehmann and Casella, 1998). Theorem 2. For a possibly vector-valued parameter  $\theta$ , suppose that  $\delta^{\pi}$  is a Bayes estimator having finite Bayes risk with respect to a prior density  $\pi$  which is positive for all  $\theta \in \Theta$ , and that the risk function of every estimator  $\delta$  is a continuous function of  $\theta$ . Then  $\delta^{\pi}$  is admissible.

#### Results and comments

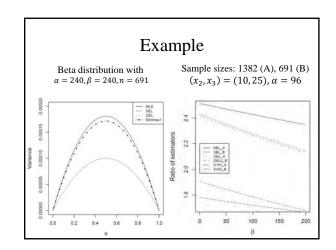
 $\hat{\theta}^{SEL}$ ,  $\hat{\theta}^{Minimax_1}$  and  $\hat{\theta}^{Minimax_2}$  are admissible, for  $\hat{\theta}^{QEL}$  the property holds provided  $\alpha > 1, \beta > 1$ .

If both alleles are observed: the MLE is also minimax and admissible. We have a Bayes, minimax, admissible and unbiased

 $\widehat{\pmb{\theta}}^{M-SEL}$ ,  $\widehat{\pmb{\theta}}^{M-Minimax_1}$  and  $\widehat{\pmb{\theta}}^{M-Minimax_2}$  are admissible, as well as  $\widehat{\pmb{\theta}}^{M-QEL}$  when  $\alpha_{j_i}>1, \forall \, j_i=1,2,\ldots,n_i, \forall \, i=1,2,\ldots,k.$ 

The estimators proposed here always have uniformly smaller variance than the MLE, except for those derived from QEL which require:  $\alpha + \beta > 2$  (biallelic case) and  $\sum_{k_i=1}^{n_i} \alpha_{k_i} > 1$ (multiallelic case) to meet this property.

| st variances                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiallelic case                                                                                                                                                                                                      |
| $Var_{\theta_{j_i}}\left[\left(\hat{\boldsymbol{\theta}}_i^{ML}\right)_j\right] = \frac{\theta_{j_i}(1-\theta_{j_i})}{2n}$                                                                                             |
| $Var_{\theta_{j_i}}\left[\left(\widehat{\boldsymbol{\theta}}_{i}^{M-SEL}\right)_{j}\right] = \frac{2n\theta_{j_i}(1-\theta_{j_i})}{(2n+\alpha^*)^2}$                                                                   |
| $Var_{\theta_{j_i}}\left[\left(\widehat{\boldsymbol{\theta}}_i^{M-Minimax_i}\right)_j\right] = \frac{\theta_{j_i}(1-\theta_{j_i})}{\left(\sqrt{2n}+1\right)^2}$                                                        |
| $Var_{\theta_{j_i}}\left[\left(\hat{\boldsymbol{\theta}}_i^{M-Minimax_2}\right)_j\right] = \frac{2n\theta_{j_i}(1-\theta_{j_i})}{(2n+n_i-1)^2}$                                                                        |
| $\begin{split} & \text{If } \alpha_{j_i} + y_{j_i} - 1 > 0; \\ & Var_{\theta_{j_i}} \left[ \left( \widehat{\theta}_i^{M-QEL} \right)_j \right] = \frac{2n\theta_{j_i}(1-\theta_{j_i})}{(2n+\alpha^*-1)^2} \end{split}$ |
|                                                                                                                                                                                                                        |



## Results and comments

- For all decision rules derived from SEL, the form of the risk functions shows that they converge to zero as n→∞. QEL: When all hyperparameters are greater than one, all the derived risk functions converge to zero as n→∞. When some alleles are not observed and the hyperparameters corresponding to their frequencies are smaller or equal to one, the result does not hold.
- The impact of the use of these estimators in the many applications they could have should be assessed either empirically or theoretically and is an area for further research.

## Acknowledgements

- Dr. Malay Ghosh, Department of Statistics, University of Florida.
- Fulbright Colombia and COLCIENCIAS.

