Revisiting allelic frequencies estimation: A decision theory approach to derive Bayes, minimax and admissible estimators

Carlos Alberto Martínez Niño^{1,2}, Kshitij Khare², Mauricio A. Elzo¹ Department of Animal Sciences¹ Department of Statistics² University of Florida

Problem and objective

- Necessity of deriving point estimators of allelic frequencies with appealing statistical properties and biological soundness.
- Are allelic frequencies unknown constants or random variables?
- Random variation of allelic frequencies due to certain evolutionary forces (Wright, 1930; 1937).
- The aim of this study was to derive alternative estimators of allele frequencies with optimal statistical properties under a decision theory framework.

Vol. 20, 1807 GENETICS: S. WEIGHT 305
THE DISTRIBUTION OF GENE PREQUENCIES IN POPULATIONS
BY SEWALL WEIGHT

Elements of decision theory

- Parameter space θ , decision space D, observed data X, loss function $L(\theta, \delta(X))$
- Frequentist risk: $R(\theta, \delta) = E_{\theta}[L(\theta, \delta(X))].$
- Decision rules with uniformly smallest risk rarely exist (Lehmann and Casella, 1998): Use a weaker optimality criterion.
- · Bayes decision rule:

$$r(\Lambda, \delta^*) = \int_{\theta} R(\theta, \delta^*) d\Lambda(\theta) = \inf_{\delta \in D} r(\Lambda, \delta).$$

• Minimax decision rule: $\sup_{\theta \in \Theta} R(\theta, \delta^*) = \inf_{\delta \in D} \sup_{\theta \in \Theta} R(\theta, \delta)$

Appro	oach
Statistical level	Statistical-genetics level
• Loss functions: SEL, KLL, QEL.	One locus, two alleles (biallelic scenario)
• Find values of the hyperparameters such that the frequentist risk is constant (Lehmann and Casella, 1998).	Multiple loci assuming linkage equilibrium (LE) ⇒ Statistical independence.
Check for admissibility using a result from decision theory.	Multiple loci, multiple alleles scenario.

General setting and notation

Let X_1 , X_2 and X_3 be random variables indicating the number of animals having genotypes AA, AB and BB and assume Hardy-Weinberg equilibrium.

Let $\theta \coloneqq$ frequency of the "reference" allele B.

$$\mathbf{X} \coloneqq (X_1, X_2, X_3)$$

 $X|\theta \sim Trinomial(n; (1-\theta)^2, 2\theta(1-\theta), \theta^2)$

 $\theta \sim Beta(\alpha, \beta)$

Bayes estimators and risks

KLL $E_{\theta}\left[ln\left(\frac{\pi(\mathbf{X} \theta)}{\pi(\mathbf{X} \delta)}\right)\right] \underset{\delta \in D}{\operatorname{argmin}} \int_{0}^{1} L_{KL}(\theta,\delta)\pi(\theta \mathbf{X})d\theta \frac{x_{2}+2x_{3}+\alpha}{2n+\alpha+\beta}$ No closed form	Loss function	Functional form of loss function	Bayes estimator (BE)	Functional form of BE	Frequentist risk
0	SEL	$(\theta - \delta)^2$	Posterior mean	$\frac{x_2 + 2x_3 + \alpha}{2n + \alpha + \beta}$	$\frac{2n\theta(1-\theta)+[\alpha(1-\theta)-\beta\theta]^2}{(2n+\alpha+\beta)^2}$
(0 5)2	KLL	$E_{\theta}\left[ln\left(\frac{\pi(\pmb{X} \theta)}{\pi(\pmb{X} \delta)}\right)\right]$	$\underset{\delta \in D}{\operatorname{argmin}} \int\limits_{0}^{1} L_{KL}(\theta,\delta) \pi(\theta \boldsymbol{X}) d\theta$	$\frac{x_2 + 2x_3 + \alpha}{2n + \alpha + \beta}$	No closed form
QEL $\frac{(\theta - 0)^2}{\theta(1 - \theta)}$ Mean of: See next slide See next slide	QEL	$\frac{(\theta - \delta)^2}{\theta(1 - \theta)}$	Mean of: $w(\theta)\pi(\theta X)$	See next slide	See next slide

Bayes estimators and risks: QEL

$$\begin{split} \int_0^1 w(\theta) \Big(\theta - \hat{\theta}^{QEL}\Big)^2 \pi(\theta|\mathbf{x}) d\theta &\propto \int_0^1 (\theta - \hat{\theta}^{QEL})^2 \theta^{\alpha-2} (1 - \theta)^{2x_1 + \beta - 2} d\theta \\ &= \int_0^1 \theta^\alpha (1 - \theta)^{2x_1 + \beta - 2} d\theta - 2\hat{\theta}^{QEL} \int_0^1 \theta^{\alpha - 1} (1 - \theta)^{2x_1 + \beta - 2} d\theta \\ &+ \left(\hat{\theta}^{QEL}\right)^2 \int_0^1 \theta^{\alpha - 2} (1 - \theta)^{2x_1 + \beta - 2} d\theta \end{split}$$

Finite iff $\hat{\theta}^{QEL} = 0$.

$$R(\theta,\hat{\theta}^{QEL}) = \begin{cases} \frac{2\pi^{2}+2x_{2}+4\alpha-1}{2\pi+\alpha+\beta-2}, & \text{if } x_{2}+2x_{3}+\alpha-1>0, 2x_{1}+x_{2}+\beta-1>0\\ 0, & \text{if } x_{2}+2x_{3}+\alpha-1\leq0\\ 1, & \text{if } 2x_{1}+x_{2}+\beta-1\leq0 \end{cases}$$

$$= \begin{cases} \frac{2n}{(2n+\alpha+\beta-2)^{2}} + \frac{(-\theta(\alpha+\beta-2)+\alpha-1)^{2}}{(\theta-1-\theta)(2n+\alpha+\beta-2)^{2}}, & \text{if } x_{2}+2x_{3}+\alpha-1>0, 2x_{1}+x_{2}+\beta-1>0\\ \frac{\theta}{1-\theta}, & \text{if } x_{2}+2x_{3}+\alpha-1\leq0\\ \frac{1-\theta}{\alpha}, & \text{if } 2x_{1}+x_{2}+\beta-1\leq0 \end{cases}$$

Derivation of minimax rules

Theorem 1 (Lehmann and Casella, 1998). Let A be a prior and δ_{Λ} a Bayes rule with respect to Λ with Bayes risk satisfying $r(\Lambda, \delta_{\Lambda}) = \sup_{\theta \in \Theta} R(\theta, \delta_{\Lambda})$. Then: $i) \delta_{\Lambda}$ is minimax and ii) Λ is least favorable.

Loss function	Hyperparameters	Functional form of BE	Frequentist risk
SEL	$\alpha=\sqrt{\frac{n}{2}},\beta=\sqrt{\frac{n}{2}}$	$\frac{x_2 + 2x_3 + \sqrt{\frac{n}{2}}}{\sqrt{2n}(\sqrt{2n} + 1)}$	$\left(4\left(1+\sqrt{2n}\right)^2\right)^{-1}$
QEL^1	$\alpha=1,\beta=1$	$\frac{x_2 + 2x_3}{2n} = MLE$	$\frac{1}{2n}$

¹ Provided $x_2+2x_3+\alpha-1>0$, $2x_1+x_2+\beta-1>0$.

Extension to k loci (LE and independent priors)

 $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k), \boldsymbol{X} = (\boldsymbol{X_1}, \boldsymbol{X_2}, \dots, \boldsymbol{X_k}), \boldsymbol{X_i} = (X_{1i}, X_{2i}, X_{3i})$ $\mbox{Minimize: } R(\pmb{\theta}, \pmb{\delta}) = \int_{\theta_1} \dots \int_{\theta_k} L\Big(\pmb{\theta}, \pmb{\delta}(\pmb{X})\Big) \pi(\pmb{\theta}|\pmb{X}) d\theta_1 \cdots d\theta_k, \mbox{Wrt } \delta_i, \forall \ i = 1, 2, \dots, k$
$$\begin{split} R(\boldsymbol{\theta}, \boldsymbol{\delta}) &= \int\limits_{\theta_1} \dots \int\limits_{\theta_k} \left(\sum_{i=1}^k L(\theta_i, \delta_i(\boldsymbol{X})) \right) \pi(\boldsymbol{\theta} | \boldsymbol{X}) d\theta_1 \cdots d\theta_k \\ &= \sum_{i=1}^k \int\limits_{\theta_1} \dots \int\limits_{\theta_k} L(\theta_i, \delta_i(\boldsymbol{X})) \prod_{j=1}^k \pi(\theta_j | \boldsymbol{X}_j) d\theta_1 \cdots d\theta_k \end{split}$$

 $\int\limits_{\theta_h} L(\theta_h,\delta_h(\textbf{\textit{X}}))\pi(\theta_h|\textbf{\textit{X}}_h)d\theta_h \times \int\limits_{\theta_1} \dots \int\limits_{\theta_{h-1}} \int\limits_{\theta_{h+1}} \dots \int\limits_{\theta_k} \int\limits_{j\neq h} \pi(\theta_j|\textbf{\textit{X}}_j)\,d\theta_1 \cdots d\theta_{h-1}d\theta_{h+1} \cdots d\theta_k$ $= \int L(\theta_h, \delta_h) \pi(\theta_h | \boldsymbol{X_h}) d\theta_h$

Bayes estimation of θ reduces to that of its components.

Multiallelic loci

Let $\theta_{1_i}, \theta_{2_i}, \dots, \theta_{n_i}$ be the frequencies of the n_i alleles of locus i. Let $Y_{1i}, Y_{2i}, \dots, Y_{ni}$ be random variables indicating the counts of each one of the n_i allelic variants at locus $i, i = 1, 2, \dots, k$.

$$\begin{aligned} \mathbf{Y}_i &\coloneqq \left(Y_{1_i}, Y_{2_i}, \dots, Y_{n_i}\right) \sim Multinomial(2n, \boldsymbol{\theta}_i) \\ \boldsymbol{\theta}_i &= \left(\theta_{1_i}, \theta_{2_i}, \dots, \theta_{n_i}\right) \sim Dirichlet\left(\boldsymbol{\alpha}_i = \left(\alpha_{1_i}, \alpha_{2_i}, \dots, \alpha_{n_i}\right)\right) \\ & \therefore \boldsymbol{\theta}_i \mid y_i \sim Dirichlet\left(\alpha_{1_i} + y_{1_i}, \alpha_{2_i} + y_{2_i}, \dots, \alpha_{n_i} + y_{n_i}\right) \\ \text{Under the loss } \sum_{j_i=1}^{n_i} \left(\hat{\theta}_{j_i} - \theta_{j_i}\right)^2, \boldsymbol{\hat{\theta}}_i^{\text{M-SEL}} &= \left(\hat{\theta}_{j_i}\right)_{n_i \times 1} = \frac{\alpha_{j_i} + Y_{j_i}}{2n + \sum_{j_i=1}^{n_i} \alpha_{j_i}} \end{aligned}$$

$$\begin{split} &\text{Under the loss } \Sigma_{j_{i}=1}^{n_{i}}\theta_{j_{i}}^{-1}(\hat{\theta}_{j_{i}}-\theta_{j_{i}})^{2}:\\ &\hat{\theta}_{i}^{M-QEL}=\left(\hat{\theta}_{j_{i}}^{M-QEL}\right)_{n_{i}\times 1}=\begin{cases} \frac{\alpha_{j_{i}}+y_{j_{i}}-1}{\sum_{j_{i}=1}^{n_{i}}\alpha_{j_{i}}+2n-1}, & \text{if }\alpha_{j_{i}}+y_{j_{i}}-1>0\\ 0, & \text{if }\alpha_{j_{i}}+y_{j_{i}}-1\leq 0 \end{cases} \end{split}$$

Admissibility

Admissibility of one-dimensional and vector-valued estimators was established using this theorem (Lehmann and Casella, 1998). Theorem 2. For a possibly vector-valued parameter θ , suppose that δ^{π} is a Bayes estimator having finite Bayes risk with respect to a prior density π which is positive for all $\theta \in \Theta$, and that the risk function of every estimator δ is a continuous function of θ . Then δ^{π} is admissible.

Results and comments

 $\hat{\theta}^{SEL}$, $\hat{\theta}^{Minimax_1}$ and $\hat{\theta}^{Minimax_2}$ are admissible, for $\hat{\theta}^{QEL}$ the property holds provided $\alpha > 1, \beta > 1$.

If both alleles are observed: the MLE is also minimax and admissible. We have a Bayes, minimax, admissible and unbiased

 $\widehat{\pmb{\theta}}^{M-SEL}$, $\widehat{\pmb{\theta}}^{M-Minimax_1}$ and $\widehat{\pmb{\theta}}^{M-Minimax_2}$ are admissible, as well as $\widehat{\pmb{\theta}}^{M-QEL}$ when $\alpha_{j_i}>1, \forall \, j_i=1,2,\ldots,n_i, \forall \, i=1,2,\ldots,k.$

The estimators proposed here always have uniformly smaller variance than the MLE, except for those derived from QEL which require: $\alpha + \beta > 2$ (biallelic case) and $\sum_{k_i=1}^{n_i} \alpha_{k_i} > 1$ (multiallelic case) to meet this property.

st variances
Multiallelic case
$Var_{\theta_{j_i}}\left[\left(\hat{\boldsymbol{\theta}}_i^{ML}\right)_j\right] = \frac{\theta_{j_i}(1-\theta_{j_i})}{2n}$
$Var_{\theta_{j_i}}\left[\left(\widehat{\boldsymbol{\theta}}_{i}^{M-SEL}\right)_{j}\right] = \frac{2n\theta_{j_i}(1-\theta_{j_i})}{(2n+\alpha^*)^2}$
$Var_{\theta_{j_i}}\left[\left(\widehat{\boldsymbol{\theta}}_i^{M-Minimax_i}\right)_j\right] = \frac{\theta_{j_i}(1-\theta_{j_i})}{\left(\sqrt{2n}+1\right)^2}$
$Var_{\theta_{j_i}}\left[\left(\hat{\boldsymbol{\theta}}_i^{M-Minimax_2}\right)_j\right] = \frac{2n\theta_{j_i}(1-\theta_{j_i})}{(2n+n_i-1)^2}$
$\begin{split} & \text{If } \alpha_{j_i} + y_{j_i} - 1 > 0; \\ & Var_{\theta_{j_i}} \left[\left(\widehat{\theta}_i^{M-QEL} \right)_j \right] = \frac{2n\theta_{j_i}(1-\theta_{j_i})}{(2n+\alpha^*-1)^2} \end{split}$

Results and comments

- For all decision rules derived from SEL, the form of the risk functions shows that they converge to zero as n→∞. QEL: When all hyperparameters are greater than one, all the derived risk functions converge to zero as n→∞. When some alleles are not observed and the hyperparameters corresponding to their frequencies are smaller or equal to one, the result does not hold.
- The impact of the use of these estimators in the many applications they could have should be assessed either empirically or theoretically and is an area for further research.

Acknowledgements

- Dr. Malay Ghosh, Department of Statistics, University of Florida.
- Fulbright Colombia and COLCIENCIAS.

