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Problem and objective

• Necessity of deriving point
estimators of allelic frequencies
with appealing statistical properties
and biological soundness.

• Are allelic frequencies unknown
constants or random variables?

• Random variation of allelic
frequencies due to certain
evolutionary forces (Wright, 1930;
1937).

• The aim of this study was to derive
alternative estimators of allele
frequencies with optimal statistical
properties under a decision theory
framework.

Elements of decision theory 

• Parameter space , decision space
,observed data , loss function ,

• Frequentist risk: , , .

• Decision rules with uniformly smallest risk
rarely exist (Lehmann and Casella, 1998):
Use a weaker optimality criterion.

• Bayes decision rule:

	 , ∗ , ∗ inf
∈

, .

• Minimax decision rule:
sup
∈

, ∗ inf
∈
sup
∈

,

Approach 

Bayes 
estimators 

• Loss functions: SEL, KLL,
QEL.

Minimax 
estimators

• Find values of the
hyperparameters such that the
frequentist risk is constant
(Lehmann and Casella, 1998).

Admissibility

• Check for admissibility using a 
result from decision theory.

Statistical level Statistical-genetics  level

• One locus, two alleles
(biallelic scenario)

• Multiple loci assuming linkage
equilibrium (LE) ⇒ Statistical
independence.

• Multiple loci, multiple alleles 
scenario.

General setting and notation 

Let , and be random variables indicating the number of
animals having genotypes AA, AB and BB and assume Hardy-
Weinberg equilibrium.

Let ≔ frequency of the “reference” allele B.

≔ , ,

| ~ ; 1 , 2 1 ,

~ ,

Bayes estimators and risks 

Loss 
function

Functional 
form of loss 
function

Bayes estimator (BE)
Functional 
form of  BE

Frequentist risk

SEL Posterior mean
2

2
2 1 1

2

KLL argmin
∈

,
2

2
No closed form

QEL
 

1
Mean of: 
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Bayes estimators and risks: QEL
∝ 1

1 2 1

1

Finite iff 0.

, 	 2 1 0,	2 1 0	

0, 																						 	 2 1 0	
1, 																						 	2 1 0	

,
2

2 2
2 1

1 2 2
, 	 2 1 0,	2 1 0	

1
, 																						 	 2 1 0	

1
, 																						 	2 1 0	

Derivation of minimax rules

Theorem 1 (Lehmann and Casella, 1998). Let be a
prior and a Bayes rule with respect to with Bayes
risk satisfying , sup

∈
, .	 Then: 	 is

minimax and 	Λ is least favorable.

Provided 	 2 1 0,	2 1 0.	

Loss 
function

Hyperparameters 
Functional 
form of  BE

Frequentist risk
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Extension to k loci 
(LE and independent priors)
, , … , , , , … , , , ,

Minimize: , … , ⋯ , wrt , ∀	 1,2, … ,

, … , ⋯

… , ⋯ 	

The integral in the summation 1,2,… , can be written as:

, … … ⋯ ⋯

,

Bayes estimation of reduces to that of its components.

Multiallelic loci

Let , , … , be the frequencies of the alleles of locus .

Let , , … , be random variables indicating the counts of each
one of the allelic variants at locus , 1,2, … , .

≔ , ,… , ~ 2 ,
, , … , ~ , , … ,

∴ | ~ , , … ,

Under the loss ∑ ,
∑

Under the loss ∑ :

∑
, 	 1 0

0, 	 1 0	

Admissibility

Admissibility of one-dimensional and vector-valued estimators
was established using this theorem (Lehmann and Casella, 1998).

Theorem 2. For a possibly vector-valued parameter , suppose
that is a Bayes estimator having finite Bayes risk with respect
to a prior density which is positive for all ∈ Θ, and that the
risk function of every estimator is a continuous function of .
Then is admissible.

Results and comments

, and are admissible, for 	 the
property holds provided 1, 1.

If both alleles are observed: the MLE is also minimax and
admissible. We have a Bayes, minimax, admissible and unbiased
estimator.

, and are admissible, as well
as when 1, ∀	 1,2,… , , ∀	 1,2, … , .

The estimators proposed here always have uniformly smaller
variance than the MLE, except for those derived from QEL which
require: 2 (biallelic case) and ∑ 1
(multiallelic case) to meet this property.
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Frequentist variances
Biallelic case  Multiallelic case

1
2

1

2

2 1
2

2 1

2 ∗

1

2 1
1

2 1

2 1

2 1

If 	 2 1 0, 	2 1 0:
2 1

2 2

If  1 0:
2 1

2 ∗ 1

Example
Beta distribution with

240, 240, 691
Sample sizes: 1382 (A), 691 (B)

, 10, 25 ,  96

Results and comments

• For all decision rules derived from SEL, the form of the risk 
functions shows that they converge to zero as → ∞. QEL: 
When all hyperparameters are greater than one, all the derived 
risk functions converge to zero as → ∞. When some alleles 
are not observed and the hyperparameters corresponding to 
their frequencies are smaller or equal to one, the result does 
not hold.

• The impact of the use of these estimators in the many
applications they could have should be assessed either
empirically or theoretically and is an area for further research.
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