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INTRODUCTION 
Some across population genome-enabled prediction studies use predictions 
obtained from individual populations or pool data to perform a single population 
analysis (de Roos et al., 2009). Recently, different methods allowing 
subpopulation-specific effects have been developed (Olson et al., 2012; de los 
Campos et al., 2015; Lehermeir et al., 2015). On one hand, pooling data and 
performing a single analysis may increase the accuracy of genome-wide 
prediction because the number of records has an important impact on it . On the 
other hand, it may decrease accuracy when the effects of QTL controlling the 
trait are not the same across populations (van den Berg et al. 2015; Wientjes et 
al., 2015). The possible existence of genotype by environment interaction, lack 
of persistence of linkage phase and variation in allelic frequencies across 
populations suggest the need for a simultaneous analysis of these populations 
without ignoring the complete population structure.  
A feature that has been overlooked in the random linear regression models used 
in genome-wide prediction is the randomness of genotypes. These are treated as 
fixed in genome-wide prediction models, while in classical quantitative genetics 
theory they are treated as random (Lynch and Walsh, 1998). In addition to be 
consistent with the classical theory, taking into account the randomness of 
genotypes permits the estimation of allelic frequencies because when treated as  
observable random variables, their joint probability mass function (pmf) depends 
on the allelic frequencies.  
Thus, the objectives of this study were to propose hierarchical Bayesian models 
to carry out genome-wide prediction accounting for randomness of marker 
genotypes, and for heterogeneity and correlation of allelic frequencies and 
population-specific allelic substitution effects for across population analysis; and 
to derive approximate expressions for Bayes factors and fractional Bayes factors 
to compare across population genome-wide prediction models with their 
corresponding null versions ignoring population structure. 

where 𝒚𝑙 , 𝒈𝑙 and 𝒆𝑙 are the vectors of phenotypic records, allelic substitution effects, and 
residuals for subpopulation 𝑙,  and 𝑊𝑙 is a (partially) observable random matrix defined as 
follows: 
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Priors for 𝑷∗ and 𝒈 in the multi-population scenario 

Let 𝑃∗ = 𝒑1
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∗ , … , 𝒑𝑚
∗ where 𝒑𝑗

∗ is the vector of allelic frequencies of the reference allele of 
the  𝑗𝑡ℎ marker in each subpopulation expressed on a subpopulation basis, that is, 𝑝𝑙𝑗

∗ + 𝑞𝑙𝑗
∗ =

1 ∀𝑙, 𝑗 where 𝑞𝑙𝑗
∗  is the corresponding frequency of the non-reference allele. To take into 

account the belief that allelic frequencies of the same marker vary across subpopulations and 
may be correlated, the prior is built based on a Dirichlet distribution. To do that, allelic 
frequencies are expressed on a complete population basis. With this parameterization 
 𝑝𝑙𝑗
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𝑙=1 ≤ 1, ∀ 𝑗 = 1,2, … , 𝑚, with equality if and only if the reference allele is fixed in all 

subpopulations and 𝑝𝑙𝑗 + 𝑞𝑙𝑗 = 𝑟𝑙𝑗 ∈ 0,1 . Let 𝒓 = 𝒓1, … , 𝒓𝒮 , 𝒓𝑙 = 𝑟𝑙1, … , 𝑟𝑙𝑚 . The two 
parameterizations of allelic frequencies are related by the one to one mapping 𝑝𝑙𝑗

∗ = 𝑝𝑙𝑗 𝑟𝑙𝑗 . 
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This is the pdf of a scaled Dirichlet random vector. If 𝒓 is unknown a 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝜶𝑝, 𝜶𝑞  
prior is posed over 𝑃𝑗 = 𝒑𝑗 , 𝒒𝑗 , where 𝜶𝑝 = 𝛼1𝑝, … , 𝛼𝒮𝑝 , 𝜶𝑞 = 𝛼1𝑞 , … , 𝛼𝒮𝑞 . 
Consequently, by properties of the Dirichlet distribution it follows that 
𝒓𝑗~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 𝛼1𝑝 + 𝛼1𝑞 , … , 𝛼𝒮𝑝 + 𝛼𝒮𝑞 .  
Vector 𝒈 is given a conditional multivariate Gaussian prior: 𝒈 𝐺~𝑀𝑉𝑁 0, 𝐺 , or a conditional 

multivariate “spike and slab” prior: 𝒈𝑗 𝐺𝑗 , 𝜋0~  
𝑃𝑜𝑖𝑛𝑡 𝑚𝑎𝑠𝑠 𝑎𝑡 𝟎 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 𝜋0
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Joint pmf of marker genotypes conditional on allelic frequencies and pedigree 
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𝑊 ∈ 𝒢. The set 𝒢, that is, the support of 𝜋 𝑊 𝑃∗  and its cardinality are derived using basic 
segregation rules, expressions are presented in submitted work by Martínez et al. (2016). 
Likelihood 

Suppose that in each subpopulation there is a fraction of genotyped individuals and a fraction of 
non-genotyped or partially genotyped individuals. Let 𝑊ℴ and 𝑊𝑁 denote the observed (data) 
and non-observed (an unknown parameter) parts of 𝑊. Therefore, 𝜋 𝑊 𝑃∗ = 𝜋 𝑊ℴ , 𝑊𝑁 𝑃∗  
can be expressed as: 𝑓 𝑊ℴ 𝑊𝑁 , 𝑃∗ 𝜋 𝑊𝑁 𝑃∗ . Thus, the full likelihood has the form: 

 𝑓 𝒚, 𝑊ℴ 𝑊𝑁 , 𝒈, 𝑅, 𝑃∗ = 𝑓 𝒚 𝑊ℴ , 𝑊𝑁 , 𝒈, 𝑅, 𝑃∗ 𝑓 𝑊ℴ 𝑊𝑁 , 𝒈, 𝑅, 𝑃∗  
= 𝑓 𝒚 𝑊, 𝒈, 𝑅 𝑓 𝑊ℴ 𝑊𝑁 , 𝑃∗ . 

Full conditionals 

Only non-standard full conditionals are shown  (homoscedastic residuals, 𝒓 known ). 
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𝜋 𝑊𝑁 𝐸𝑙𝑠𝑒 ∝ 𝜋+ 𝑊 𝑃∗ exp
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Subindex 𝑘 refers to individuals with missing  genotypes in the 𝑘𝑡ℎ subset of markers. The functional form 
of ℎ 𝑊𝑀𝑘 , 𝒈𝑀𝑘 , 𝒚𝑀𝑘  can be found in Martínez et al. (2016, submitted). 
𝜋+ 𝑊 𝑃∗ = 𝑓+ 𝑊ℴ 𝑊𝑁 , 𝑃∗ 𝜋 𝑊𝑁 𝑃∗ , 𝑓+ 𝑊ℴ 𝑊𝑁 , 𝑃∗  is the part of  𝑓 𝑊ℴ 𝑊𝑁 , 𝑃∗  
depending on 𝑊𝑁 . 
Theoretical approximation to model comparison via Bayes factors and fractional Bayes 

factors 

The Bayes factor comparing two models denoted as 𝑀1 and 𝑀0 is: 
 

𝐵𝐹10 =
 𝜋1 𝜽1 𝑓1 𝒚 𝜽1 𝑑𝜽1Θ1

 𝜋0 𝜽0 𝑓0 𝒚 𝜽0 𝑑𝜽0Θ0

,  here, conditional on 𝑊,𝐵𝐹10𝑊 =
𝑓 𝒚 𝑊,𝑀1

𝑓 𝒚 𝑊0,𝑀0
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SUMMARY 
In this study, a family of models to perform single and across population 
genome-wide prediction modeling genotypes as random variables and allowing 
population-specific effects for each marker (for across population analysis) was 
developed using a hierarchical Bayes approach. Models differed in the priors 
used and assumed residual variances to be either homogeneous or heterogeneous. 
To account for randomness of genotypes, the joint probability mass function of 
marker genotypes conditional on allelic frequencies and pedigree information 
was derived. Thus, these models incorporated kinship and genotypic information 
that not only permitted to account for heterogeneity of allelic frequencies in 
across population studies, but also to include individuals with missing genotypes 
at some or all loci without the need for previous imputation. This was achieved 
by treating the non-observed genotypes as unknown model parameters. For the 
across population case, Bayes factors and fractional Bayes factors to compare 
models with their null versions (models ignoring population structure, but still 
accounting for randomness of genotypes) were derived via the Laplace 
approximation. Implementation of these models and computation of model 
comparison criteria were illustrated using simulated data. Theoretical and 
computational issues as well as possible extensions and refinements pose 
interesting problems for further research. Features of this set of models make 
them promising for genome-enabled prediction. Inclusion of information from 
the probability distribution of genotypes is perhaps the most attractive. Further 
research assessing the performance of this family of models and comparing them 
with conventional models used in genome-enabled prediction is needed. 

SIMULATION STUDY 
Two phenotypes were simulated with different number of QTL controlling the trait 
and different heritabilities. Briefly, dataset 1 involved three subpopulations with 
𝑛𝑙 ≥ 𝑚 ∀ 𝑙,  no missing genotypes and different number of generations, migration 
was allowed and the heritability of the trait was high. Dataset 2 was comprised by 
two subpopulations with 𝑚 > 𝑛 , missing genotypes, only two generations, no 
migration, and low heritability. Mating designs and selection schemes also varied 
from one dataset to the other. Consequently,  in dataset 1, subpopulations diverged 
more than in dataset 2.  
Parameter inference via MCMC  

No missing genotypes imply 𝑊𝑁 = ∅  and then, posterior sampling for the 
parameters of the 𝑊 component of the likelihood and the (hyper) parameters of the 
𝒚 component can be performed separately: Gibbs sampler for the 𝒚 component  and 
independent Metropolis-Hastings for the 𝑊 component. In the presence of missing 
genotypes: Gibbs sampler with two Metropolis steps, one to sample from 𝜋 𝑃 𝐸𝑙𝑠𝑒  
and the other to sample from 𝜋 𝑊𝑁 𝐸𝑙𝑠𝑒 .  
Table 1. Predictive abilities and accuracies in datasets 1 and 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Deviance information criterion (DIC) was also used to compare models. In dataset 1 
DIC values provided evidence in favor of full models (smaller values) while in 
dataset two DIC values were slightly smaller for null models. Bayes factors, which 
could be computed only for dataset 1 agreed with DIC, that is, favored full models.  

𝑓 𝒚 𝑊, 𝑀1 =  𝜋 𝐺   𝑓 𝒚 𝒈, 𝜎2, 𝑊 𝜋 𝒈 𝐺 𝜋 𝜎2
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𝑑𝜎2𝑑𝒈
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𝑑𝐺 

 
 
 
For each proposed model, the null model corresponds to a model ignoring structure, 
i.e., the complete population is analyzed as a single one. The model is 𝒚 = 𝑊0𝒈0 +
𝜺 , 𝑊0 = 𝑊1

′ ⋮ ⋯ ⋮ 𝑊𝒮
′ ′ , the distributional assumptions for 𝒈0  and 𝑊0  are 

simplified versions of those for 𝒈 and 𝑊. 
Fractional Bayes factor O’Hagan (1994; 1995): 

 𝐹𝐵𝐹10 = 𝐵𝐹10

 𝜋0 𝜽0 𝑓0 𝒚 𝜽0
𝑐𝑑𝜽0Θ0

 𝜋1 𝜽1 𝑓1 𝒚 𝜽1
𝑐𝑑𝜽1Θ1

, 𝑐 ∈ 0,1  

Unfortunately, using the Laplace approximation requires 𝑛𝑙 ≥ 𝑚 ∀ 𝑙,  which 
currently is met by few datasets , examples can be found in the Holstein population 
of the US for certain SNP chips  (CDCB, 2016). This limits the application of our 
approximate BF and FBF (expressions not shown). For several models, the 
following approximation to the FBF can be used to compare them with their null 

versions: 𝑐𝑚 𝒮−1 2 𝑆𝑆𝑅1

𝑆𝑆𝑅0

𝑛 𝑐−1

2 𝑆𝑆𝑅1
𝑚𝒮+2 2 

𝑆𝑆𝑅0
𝑚+2 2 , 𝑆𝑆𝑅𝑖 = 𝒚′ 𝐼 − 𝐻𝑖 𝒚, where 𝐻𝑖  is the 

projection matrix onto the column space of the design matrix of  model 𝑖, 𝑖 = 0,1. 
Notice that for the 𝑚 > 𝑛 case, 𝑆𝑆𝑅𝑖 is invariant to the choice of the generalized 
inverse of 𝑊𝑖′𝑊𝑖  and therefore this FBF could potentially be used for model 
comparison. However, formally proving or disproving this statement remains an 
open problem. Some technical details are provided in submitted work by Martínez et 
al. (2016). 

CLOSING REMARKS 
The main contribution of this study is the theoretical development of a set of models 
for genome-wide prediction incorporating marker genotypes not only as explanatory 
variables of regression models, but also as realizations of random variables 
providing information about allelic frequencies and missing genotypes. Extensions 
and refinements (e.g., account for LD and mutation) pose interesting problems for 
further research. 

HIGHLIGHTS 
• New Bayesian models for across and single population genome-wide 

prediction are developed.  
• These models account for randomness of genotypes, heterogeneity and 

correlation of allelic frequencies (across populations case). 
• Missing genotypes are allowed without the need for previous imputation.  
• Bayes factors and fractional Bayes factors are approximated via Laplace’s 

method. 
• Some features of these models make them promising for genome-wide 

prediction.  

MODELS 
The complete population is defined as the set of individuals with phenotypes 
considered in the study. Suppose that there exists some criterion (e.g., 
environment, breed, line, etc.) to split this population into 𝒮 subpopulations. 
Hereinafter linkage equilibrium, Hardy-Weinberg equilibrium, known pedigree 
and no mutation are assumed. 
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𝒈1
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⋮
𝒈𝑆
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No closed form. Analytic alternative: use the Laplace approximation 

Model 

Predictive Ability 
Accuracy in testing 

population 

Accuracy in Training 

population 

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2 

𝑀1𝐺  0.29 0.019 0.27 0.04 0.32 0.17 
𝑀1𝐺𝐻 0.76 0.016 0.83 0.03 0.94 0.21 

𝑀1𝑆𝑆𝐻0.5 0.81 0.017 0.88 0.04 0.92 0.19 
𝑀1𝑆𝑆𝐻0.9 0.81 0.018 0.88 0.04 0.90 0.14 
𝑀1𝑆𝑆𝐻0.2 0.79 0.016 0.86 0.03 0.94 0.20 

𝑀0𝐺  0.53 0.004 0.50 0.07 0.55 0.24 
𝑀0𝐺𝐻 0.83 0.013 0.88 0.05 0.88 0.23 

𝑀0𝑆𝑆𝐻0.5 0.72 0.003 0.77 0.06 0.86 0.24 
𝑀0𝑆𝑆𝐻0.9 0.69 0.008 0.76 0.05 0.85 0.20 
𝑀0𝑆𝑆𝐻0.2 0.72 0.009 0.79 0.05 0.79 0.24 
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