Effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and meat tenderness

K. J. Phelps¹, D. D. Johnson², M. A. Elzo², C. B. Paulk³, and J. M. Gonzalez¹

¹Kansas State University, Manhattan; ²Department of Animal Sciences, University of Florida, Gainesville; ³Department of Animal Science, Texas A&M **University, College Station**

Introduction

- > Beef tenderness is the most important attribute affecting consumer beef eating satisfaction
- > Numerous studies have indicated steaks from cattle of greater Brahman genetics are tougher than steaks from Bos taurus cattle
 - This is attributed to greater calpastatin activity (Wheeler et al., 1990; Shackelford et al., 1991; Pringle et al., 1997)
 - Causes inhibition of calpain-mediated myofibrillar protein degradation
 - > Role of calpastatin enacts on steak tenderness of Brahman cattle may be overstated
 - > Riley et al. (2005) reported calpastatin activity was poorly correlated to Warner-Bratzler shear force (WBSF)
- > Research has demonstrated steers of increased Brahman genetics have an increased expression of genes related to collagen crosslinking (Gonzalez et al., 2014)
- Indicating collagen solubility may be a contributor to tenderness of steaks from Brahman cattle

Objectives

> Examine the effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and meat tenderness of *Longissimus lumborum (LL)* steaks

Procedures

Results

Cooked steak characteristics

Warner-Bratzler shear force analysis

- As the percentage of Brahman genetics increased, LL steak thaw loss and WBSF increased (linear, P < 0.01)
- \succ There was no effect of Brahman genetics on cook loss (P = 1) 0.14)

Sensory analyses

- As the percentage of Brahman genetics increased, sensory panel scores of LL steak tenderness, connective tissue, and juiciness decreased (linear, P < 0.01)
- Indicating steak were tougher, had more connective tissue, and were less juicy
- Brahman genetics had no effect on beef flavor or off flavor scores (P > 0.35)

Myofibrillar protein degradation and collagen crosslinking

Myofibrillar protein degradation

- Steaks from steers of greater Brahman genetics had decreased intensity of 38 kDa desmin, 34 kDa troponin-T, and 30 kDa troponin-T degradation bands (linear, P < 0.03)
- \triangleright Increasing Brahman genetics increased (P = 0.04) intensity of 36 kDa degraded troponin-T band

Hydroxylysyl pyridinoline concentration

 \triangleright There was no effect (P = 0.14) of Brahman genetics on the amount of LL steak hydroxylysyl pyridinoline collagen crosslinks

Conclusions

- Longissimus lumborum steaks originating from steers of greater percentage of Brahman genetics had reduced tenderness when measured objectively and subjectively
- Trained sensory panelist detected an increase in connective tissue content as percentage of Brahman increased
- Decreases in tenderness steaks from steers with greater Brahman genetics were most likely due to the reduction in degradation of desmin and troponin-T proteins
 - Not due to increases in hydroxylysyl pyridinoline crosslinks
 - It is hypothesized Brahman genetics may increase other heat stable crosslinks, which may be responsible for the increase in connective tissue detected by panelists Next

Effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and meat tenderness

K. J. Phelps¹, D. D. Johnson², M. A. Elzo², C. B. Paulk³, and J. M. Gonzalez¹

¹Kansas State University, Manhattan; ²Department of Animal Sciences, University of Florida, Gainesville; ³Department of Animal Science, Texas A&M

University, College Station

Procedures

Animals and steak fabrication

- ➤ University of Florida Multi-breed Herd steers (n =72) born in 2012 and 2013 were classified into 4 treatment categories based on percentage of Angus and Brahman genetics
 - > 100% Angus/0% Brahman
 - > 62.5% Angus/32.5% Brahman
 - > 50% Angus/50% Brahman
 - > 0% Angus/100% Brahman
- > Steers were harvested at common compositional endpoint of 1.0-1.5 cm backfat
- > A 7.62-cm thick LL roast extending from the 13th rib towards posterior end of loin was collected from each carcass and aged 14 d
- > After aging, 3, 2.54-cm thick steaks were fabricated from each roast
 - ➤ Steak 1 → Utilized for Warner-Bratzler shear force (**WBSF**)
 - ➤ Steak 2 → Utilized for trained sensory evaluation
 - ➤ Steak 3 → Utilized for myofibrillar protein degradation and collagen crosslink analyses

Warner-Bratzler shear force analysis

- Steaks cooked on open-hearth Farberware grills (Model 450-A; Yonkers, NY)
- Steaks cooked to internal temperature of 71°C and chilled 24 h at 4 ± 1°C before coring
- > 6 cores, 1.27 cm in diameter, removed parallel to muscle fiber
- Each core sheared once perpendicular to muscle fiber using an Instron testing machine (Instron, Canton, MA)

Sensory analysis

- Steaks cooked on open-hearth Farberware grills (Model 450-A; Yonkers, NY)
- Steaks cooked to internal temperature of 71°C
 - \triangleright Cut into 1.27 × 1.27 × 2.54 cm cubes
 - Two cubes of each sample presented to 8-member trained panel
- Evaluated 6 samples per session for:
- > Tenderness, connective tissue, juiciness, beef flavor intensity, and off-flavor intensity using 8-poin scales
 - > 1= extremely tough, abundant, extremely dry, extremely bland, and extreme off-flavor
 - > 8= extremely tender, none, extremely juicy, extremely intense, no off-flavor

Desmin and Troponin-T analysis

> Desmin and troponin-T degradation quantified using western blot procedures adapted from Melody et al. (2004)

Collage crosslink analysis

- 100 mg of dried sample was hydrolyzed in 2 mL 6 M HCl at 105°C
 - > Samples were diluted to 10 mL and pH raised to 7.0
- Sample concentrations of the collagen crosslink hydroxylysyl pyridinoline were analyzed using a commercial ELISA kit (8004; Quidel Corporation, San Diego, CA)

Statistical analysis

- > Data were analyzed as a generalized randomized complete block design using the MIXED procedure of SAS (SAS Institute Inc., Cary NC
- > Fixed effect: Treatment
- Random effect: Year
- Linear and quadratic contrasts for Brahman percentage were tested
- \triangleright Differences were considered significant at $P \le 0.05$ and tendencies at P > 0.05 and $P \le 0.10$

References

- Gonzalez, J. M., Johnson, D. D., Elzo, M. A., White, M. C., Stelzleni, A. M., & Johnson, S. E. (2014). Effect of Brahman genetic influence on collagen enzymatic crosslinking gene expression and meat tenderness. Animal Biotechnology, 25, 165-178.
- Melody, J. L, Lonergan, S. M., Rowe, L. J., Huiatt, T. W., Mayes, M. S., & Huff-Lonergan, E. (2004). Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. Journal of Animal Science, 82, 1195-1205.
- Pringle, T. D., Williams, S. E., Lamb, B. S., Johnson, D. D., & West, R. L. (1997). Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbred steer.
- Journal of Animal Science, 75, 2955-2961. Riley, D. G., Johnson, D. D., Chase Jr., C. C., West, R. L., Coleman, S. W., Olson, T. A., & Hammond, A. C. (2005). Factors influencing tenderness in steaks from Brahman cattle. Meat Science, 70, 347-356.
- Shackelford, S. D., Koohmaraie, M., Miller, M. F., Crouse, J. D., & Reagan, J. O. (1991). An evaluation of tenderness of the longissimus muscle of Angus by Hereford versus Brahman crossbred heifers. Journal of Animal Science, 69, 171-177.
- Wheeler, T. L., Savel, J. W., Cross, H. R., Lunt, D. K., & Smith, S. B. (1990). Mechanisms associated with the variation in tenderness of meat from Brahman and Hereford cattle. Journal of Animal Science, 68, 4206-4220.

Main Page Next

Effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and meat tenderness K. J. Phelps¹, D. D. Johnson², M. A. Elzo², C. B. Paulk³, and J. M. Gonzalez¹

University, College Station

Cooked steak characteristic results

Effect of Brahman genetics on myofibrillar protein degradation, collagen crosslinking, and meat tenderness K. J. Phelps¹, D. D. Johnson², M. A. Elzo², C. B. Paulk³, and J. M. Gonzalez¹

¹Kansas State University, Manhattan; ²Department of Animal Sciences, University of Florida, Gainesville; ³Department of Animal Science, Texas A&M

University, College Station,

Myofibrillar protein degradation and collagen crosslinking results

