

Association between Cow, Sire and Dam Genetic Trends for First Lactation Milk Production in 75% Holstein Crossbred Population

Mattaneeya Sarakul^{1,2}

Krongkaew Borisutsawat³, Danai Jattawa¹, Jirayut Khemsawat¹, Thanathip Suwanasopee¹, Skorn Koonawootrittriron¹ and Mauricio A. Elzo⁴

¹Department of Animal Science, Kasetsart University, Thailand ²Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Thailand ³Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Ministry of Agriculture and Cooperatives, Thailand ⁴Department of Animal Sciences, University of Florida, Gainesville, FL, USA

Thai Milking Zebu (TMZ)

Holstein

Brahman crossbred

TMZ (75%Holstein)

Source: DLD (2015)

Thai Milking Zebu (TMZ)

Adaptation

15% Holstein

Disease resistance

Medium milk production

3% Other breeds

Fertility & Reproductive

Low cost

Alternative cattle

Source: DLD (2015)

Genetic trends for milk yield of dairy cattle in Thailand

Genetic trends for milk yield of dairy cattle in Thailand

Source: Koonawootrittriron et al., (2008); Sarakul et al., (2010)

Objective

To study the association of genetic trends between cow, sire and dam for 305-d milk yield in 75% Holstein crossbred population

Dataset

- Pedigree
 - 898 cows (114 sires and 664 dams)
 - 75% Holstein and 25% Others
- Performance
 - 305-day milk yield
 - 1994 to 2015

Dataset

Materials & Methods

Statistical model

$$y = Xb + Za + e$$

Fixed effects

- Calving year-season
- Age at first calving

Random effects

- Animal
- Residual

Results and Discussion

Variance components and heritability

Parameters	305-day milk yield
Genetic variance, kg ²	96,603 ± 50,577
Environment variance, kg ²	228,087 ± 47,518
Phenotypic variance, kg ²	324,690 ± 48,389
Heritability	0.29 ± 0.15

Genetic trends

Animals	Regression coefficient (kilogram per year)	P-Value
Cows	1.88 ± 1.60	0.25
Sires	2.18 ± 2.92	0.46
Dams	0.89 ± 0.95	0.35

Genetic trends of cows, sires and dams

Conclusion

The estimated genetic trends

- 1.88 kg per year for cows,
- 2.18 kg per year for sires,
- 0.89 kg per year for dams

Cows genetic trends had higher association with sire genetic trends (r = 0.93) than dam genetic trends (r = 0.29)

Acknowledgement

Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development

Department of Animal Science, Faculty of Agriculture, Kasetsart University

University of Florida

Tropical Animal Genetic Unit

Thank you For your attention

