

Genetic parameters for body temperature under hot and humid conditions in an Angus-Brahman population

Raluca Mateescu, Serdal Dikmen, Peter Hansen, and Mauricio Elzo Department of Animal Sciences

UF UNIVERSITY of FLORIDA

Climatic stress and beef cattle

- Major limiting factor of production efficiency
 - In beef cattle in tropical and subtropical environments.
 - In dairy cattle throughout most of the world.
- 50% cattle in the world maintained in hot and humid environments
 - including ~ 40% of beef cows in US.
- Substantial differences in thermal tolerance
 - Among breeds
 - Among animals within breeds
- Indication of opportunities for selective improvement.

In response to heat stress cattle will:

- Regulate internal heat production
 - Modulating basal metabolic rate
 - Changing: feed intake, growth, lactation, activity
- Regulate heat exchange
 - Increasing blood flow to the skin
 - Increasing evaporative heat loss through sweating & panting

Genetics of thermotolerance

- Heritability of rectal temperature
 - 0.19, Brahman x Angus crossbred pop. (Riley et al. 2012)
 - 0.17, dairy cattle in FL (Dikmen et al. 2012)
- Selection for improved thermal tolerance is possible
 - If we can identify animals with genetically superior core body temperature regulation when exposed to environmental thermal stress.
 - Need phenotypes and tools to make selection decisions

Reveal the **genetic architecture** of traits defining **thermal tolerance** in *Bos Indicus* influenced cattle.

UF - Multibreed Angus x Brahman Herd

- •Summer 2015, 2017
 - **286 cows**: from 100% Brahman to 100% Angus

Breed Group	Angus %	Brahman %	Angus %	Brahman %
1	100	0	100-80	0-20
2	75	25	79-60	21-40
3	62.5	37.5	62.5	37.5
4	50	50	59-40	41-60
5	25	75	39-20	61-80
6	0	100	19-0	81-100

Internal Body Temperature

- •Summer 2015, 2017
 - 286 cows: from 100% Brahman to 100% Angus
 - Vaginal temperature at 5-min intervals for 5 days
 - Air temperature and relative humidity recorded continuously in the pastures

DS1922L iButton Temperature Logger, Range: -40°C to +85°C, Resolution: 0.0625°C (11 bit) or 0.5°C (8 bit)

Environmental Measurements

- HOBO data loggers recorded every 15 minutes:
 - dry bulb temperature (T_{db})
 - relative humidity (RH)
 - dew point temperature (T_{dp})
 - black globe temperature (T_{bg})
- The temperature-humidity index (THI) was used to quantify heat stress and it was calculated as in Dikmen et al., 2008:

THI =
$$(1.8 \times T_{db} + 32) - [(0.55-0.0055 \times RH) \times (1.8 \times T_{db} - 26)]$$

Genetic Parameters - variables

- Low THI: 74 and 74.5
- High THI: 84 84.5
- Average THI: 77 77.5
- Vaginal temperature for each cow Low, High, Avg. = average temp of all the 5-min measurements when the cow was exposed to that respective THI.
- Diff THI: High-Low THI
- WOMBAT: univariate animal models genetic and residual variances, heritability.

Outside temperature - by replicate

Vaginal Temp. under high heat stress

Vaginal Temp. under low heat stress

LSMeans - 6 different breed groups

Trait	h ²
Temp Diff Hi-Low	0.27
Temp High	0.11
Temp Low	0.25
Temp Average	0.20

Trait	σ_a^2	σ^2_{e}
Temp Diff Hi-Low	0.17	0.45
Temp High	0.07	0.56
Temp Low	0.14	0.42
Temp Average	0.09	0.35

Conclusions

- Climatic stress major limiting factor of production efficiency in beef cattle in tropical and subtropical environments.
 - Expected to increase due to climate change.
- Differences in thermal tolerance exist:
 - Opportunities for selective improvement.
- **Genomic tools** are needed to select replacement heifers or bulls with increased thermotolerance.
- Development of the "cow of the future" with high productivity and resistant to heat stress will be realized through use of genomic selection.

Acknowledgments

University of Florida

- Dr. Mauricio Elzo
- Dr. Pete Hansen
- Dr. Serdal Dikmen
- Danny Driver
- Michelle Driver
- Joel Leal, Heather Hamblen, Sarah Flowers, Mesfin Gobena, Zaira Estrada
- Christina Nagy
- Adriana Zolini, William Ortiz, Samantha Eifert, Lauren Peacock

Financial Support

- USDA-NIFA Grant 2017-67007-26143
- UF Agricultural Experim. Station
- UF ANS Hatch Project
- Seminole Tribe of Florida
- Brangus Breeders Association
- Florida Beef Council
- Florida Cattlemen's Association

United States Department of Agriculture National Institute of Food and Agriculture

Comments/ Questions

