

Use of Young and Proven Sires with Genomic Evaluations for Improving Milk Yield in Thai Multibreed Dairy Cattle

Danai Jattawa¹, Skorn Koonawootrittriron^{1*}, Thanathip Suwanasopee¹, & Mauricio A. Elzo²

¹ Department of Animal Science, Faculty of Agriculture, Kasetsart University, 50 Ladyao, Chatuchak, Bangkok 10900, Thailand

² Department of Animal Sciences, University of Florida, Gainesville, Florida 32611-0910, USA

Advantages of Genomic Evaluation

- Reducing generation interval
 - Increasing prediction / selection accuracies
 - Speeding up genetic progress

First Dairy Genomic Evaluation in Thailand

Dairy Genomic Evaluation System in Thailand

Pedigree

Phenotypes

~ 1,000 first-lactation cows / year

Blood / Tissue Samples

- 15 sires
- 285 cows

Genomic SNP Genotyping

- LD chip for the rest cows
- Imputation technique

Genomic-Polygenic Evaluation (GEBV)

Single-Step Genomic BLUP

Objective

To investigate the genomic estimated breeding values (GEBV) and prediction accuracy for 305-d milk yield (MY) of young sires (had no or < 10 daughters) and proven sires (had ten daughters or more) in 2016 to 2018 Thai dairy genomic evaluations

Dataset

Pedigree and phenotypes

- ☐ 11,383 first-lactation cows
- ☐ 1,121 farms
- □ Daughters of 9,317 dams and 1,358 sires
 - 1,140 young sires (no or < 10 daughters)
 - 218 proven sires (≥ 10 daughters)

Genotypes

- **□** 3,261 animals
- ☐ 121 sires and 3,140 cows
- ☐ Actual and imputed 74,396 SNP (9K, 20K, 26K were imputed to 80K)

A			D	-		Q	.11	-	-	-	- 4	180	19	0	
SNPOder NAME		Chromosc	Position	SNP	JLMN S	tra:Customer	Calls	No_Calls	Call_Freq	4/A Freq A	VB_Freq B	8/B_Freq A	Freq	B_Freq	MAF
1 ARS-BFGL-	NGS-108995	0		0 [T/C]	BOT	TOP	1020	90	0.9189	0.2863	0.498	0.2157	0.5353	0.4647	0.464
2 ARS-BFGL-	NGS-114435	0	- 1	0 [A/G]	TOP	BOT	1083	27	0.9757	0.2327	0.5042	0.2632	0.4848	0.5152	0.484
3 ARS-BFGL-	NGS-2467	0		0 [T/C]	BOT	BOT	1073	37	0.9667	0.1445	0.4846	0.3709	0.3868	0.6132	0.3868
4 ARS-BFGL-	NGS-38261	0	- 1	0 [G/C]	BOT	BOT	1098	12	0.9892	0.3452	0.4982	0.1566	0.5943	0.4057	0.405
5 ARS-BFGL-	NGS-72995	0		0 [T/C]	BOT	TOP	1085	25	0.9775	0.5806	0.3244	0.0949	0.7429	0.2571	0.257
6 BTA-40029	-no-rs	0		0 [T/C]	BOT	TOP	1096	14	0.9874	0.3285	0.4681	0.2035	0.5625	0.4375	0.4375
7 BTB-01793	064	0	.)	0 [A/G]	TOP	BOT	1058	52	0.9532	0.3705	0.4745	0.155	0.6078	0.3922	0.3922
8 Hapmap39	620-BTA-113785	0	-	0 [A/C]	TOP	TOP	1095	15	0.9865	0.4064	0.4575	0.1361	0.6352	0.3648	0.3648
9 ARS-USMA	RC-Parent-AY761135-rs29003723	1	1.27E+0	8 [T/A]	BOT	TOP	1092	18	0.9838	0.1832	0.5284	0.2885	0.4473	0.5527	0.447
10 BTA-11483	4-no-rs	1	1.12E+0	8 [T/A]	BOT	BOT	1093	17	0.9847	0.4227	0.4483	0.129	0.6468	0.3532	0.3532
11 ARS-BFGL-	NGS-107347	1	9360184	8 [C/G]	TOP	TOP	1080	30	0.973	0.3333	0.4806	0.1861	0.5736	0.4264	0.426
12 ARS-BFGL-	NGS-70523	1	1.51E+0	8 [T/G]	BOT	BOT	1066	- 44	0.9604	0.3931	0.4512	0.1557	0.6187	0.3813	0.381
13 ARS-BFGL-	NGS-13683	1	1.36E+0	8 [C/G]	TOP	TOP	1092	18	0.9838	0.1676	0.5128	0.3196	0.424	0.576	0.424
14 Hapmap45	471-BTA-117823	1	4037985	0 [G/C]	BOT	BOT	1003	107	0.9036	0.2353	0.4995	0.2652	0.485	0.515	0.483
15 ARS-BFGL-	NGS-111885	1	9581937	7 [A/G]	TOP	TOP	1093	17	0.9847	0.269	0.4959	0.2351	0.5169	0.4831	0.483
16 ARS-BFGL-	BAC-11044	1	1280540	6 [T/C]	BOT	BOT	1094	16	0.9856	0.6444	0.3208	0.0347	0.8048	0.1952	0.1957
17 ARS-BFGL-	BAC-11193	1	2930354	6 [T/C]	BOT	TOP	1096	14	0.9874	0.3577	0.4854	0.1569	0.6004	0.3996	0.3996
18 ARS-BFGL-	BAC-11750	1	1977838	0 [T/C]	BOT	TOP	1103	7	0.9937	0.1396	0.4742	0.3862	0.3767	0.6233	0.376
19 ARS-BFGL-	BAC-12579	1	3933977	9 [T/C]	BOT	TOP	1084	26	0.9766	0.321	0.4751	0.2039	0.5586	0.4414	0.4414
20 ARS-BFGL-BAC-15578		1	2019242	0 [T/C]	BOT	TOP	1101	9	0.9919	0.0563	0.3515	0.5922	0.2321	0.7679	0.232
21 ARS-BFGL-	BAC-16144	1	1.13E+0	8 [A/G]	TOP	TOP	1094	16	0.9856	0.3135	0.4744	0.2121	0.5507	0,4493	0.449
22 ARS-BFGL-BAC-27364		1	843753	0 [A/C]	TOP	TOP	1055	55	0.9505	0.0919	0.4114	0.4967	0.2976	0.7024	0.297
23 ARS-BFGL-BAC-33122		1.	8742478	5 [A/G]	TOP	BOT	1094	16	0.9856	0.2185	0.5046	0.277	0.4707	0.5293	0.470
24 ARS-BFGL-	BAC-34208	1	8635159	0 [A/G]	TOP	TOP	1098	12	0.9892	0.1466	0.4863	0.367	0.3898	0.6102	0.3898
25 ARS-BFGL-	BAC-4996	1	3605944	7 [A/G]	TOP	BOT	1039	71	0.936	0.3619	0.4889	0.1492	0.6064	0.3936	0.3936
26 ARS-BFGL-	BAC-7198	1	1.2E+0	8 [A/G]	TOP	BOT	1096	14	0.9874	0.0438	0.3558	0.6004	0.2217	0.7783	0.221
27 ARS-BFGL-	NGS-100206	1	1.35E+0	8 [T/C]	BOT	TOP	1057	53	0.9523	0.2479	0.5421	0.21	0.5189	0.4811	0.481

Genomic Evaluations

Pedigree and Phenotypes

• 9,339 first-lactation cows

Genotypes

• 2,661 animals

Pedigree and Phenotypes

• 10,345 first-lactation cows

Genotypes

• 2,961 animals

Pedigree and Phenotypes

• 11,383 first-lactation cows

Genotypes

3,261 animals

Top 100 sires • MY GEBV means • MY GEBV accuracies For young and proven sires

Sire rankings for MY GEBV

Standardized MY GEBV

$$y = \left(\frac{Xb + Z_gg}{4} + \frac{Za}{4} + e \right)$$

Fixed effects

- Herd-year-season
- Calving age
- Heterosis

Random effects

- Additive genetic
- residual

Numbers of Young and Proven Sires in Top 100 Rankings KASETSART

Young sires

Proven sires

Over 64% were young sires

Genomic EBV for Top 100 Sires

GEBV LSmeans for top 100 sires trended to increase from 290 kg to 312 kg

Genomic EBV for Top 100 Young and Proven Sires

Genomic EBV Accuracy for Top 100 Young and Proven Sires KASETSART

Conclusions

- Over 64% of sires that were ranked in top 100 for MY in 2016, 2017 and 2018 were young sires
- ❖ GEBV means for MY trended to increase from 278 kg (2016) to 307 kg (2018) for young sires and 302 kg (2016) to 316 kg (2018) for proven sires
- GEBV accuracy for MY trended to increase from 29.27% (2016) to 30.29% (2018) for young sires and 65.49% (2016) to 70.08% (2018) for proven sires

Wider utilization of superior sires would help speed up genetic progress for MY in Thai dairy population

Acknowledgements

Funding support

Genomic and phenotypic data support

Research collaboration

lon your bind attention

Tropical Animal Genetic Unit

Genomic EBV Accuracy for Top 100 Young and Proven Sires KASETSART

Mean prediction accuracies

from genomic-polygenic and polygenic models

		G	PM	P	M	Accuracy	
Type of animal	n	MY	FP	MY	FP	Increase	
All animals	17,363	38.4	27.5	33.1	23.6	4.5	
Non-genotyped animals	14,702	36.7	26.4	31.1	22.5	4.8	
Genotyped animals	2,661	46.2	32.5	42.6	29.1	3.5	
Genotyped cows	2,572	34.5	26.2	26.9	18.9	7.5	
Genotyped sires	89	64.5	43.8	59.9	43.2	2.6	
Genotyped proven sires	58	69.5	47.1	67.2	49.0	0.2	
Genotyped young sires	31	42.3	26.5	27.5	12.5	14.4	

Jattawa et al., 2018

