Genome-wide Association Analysis for Milk Yield, Fat Yield, and Age at First Calving in the Thai Multibreed Dairy Population

Thawee Laodim^a

Skorn Koonawootrittriron^a, Mauricio A. Elzo^b, and Thanathip Suwanasopee^a ^a Department of Animal Science, Faculty of Agriculture, Kasetsart University, Chatuchak, Bangkok 10900, Thailand. ^b Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA.

Genomic Evaluation System in Thailand

Accuracy of Genomic Prediction

The utilization of significant SNPs from genome-wide association study (GWAS) help improve the accuracy of genomic selection for dairy economically important traits

OPEN access Freely available online

Best Linear Unbiased Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived Relationship Matrix

Zhe Zhang^{1,2}, Jianfeng Liu¹, Xiangdong Ding¹, Piter Bijma³, Dirk-Jan de Koning²⁺, Qin Zhang¹⁺

1 Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China, 2 The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom, 3 Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands

OPEN OACCESS Freely available online

PLOS ONE

Improving the Accuracy of Whole Genome Prediction for Complex Traits Using the Results of Genome Wide Association Studies

Zhe Zhang^{1,2}, Ulrike Ober², Malena Erbe², Hao Zhang¹, Ning Gao¹, Jinlong He¹, Jiaqi Li¹*, Henner Simianer²*

1 National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China, 2 Department for Animal Sciences, Animal Breeding and Genetics Group, Georg-August-Universität Göttingen, Göttingen, Germany

Proceedings, 10th World Congress of Genetics Applied to Livestock Production

Results of Genome Wide Association Studies Improve the Accuracy of Genomic Selection

*Zhe Zhang*¹, Jinlong He¹, Hao Zhang¹, Ping Gao¹, Malena Erbe², Henner Simianer², Jiaqi Li¹ College of Animal Science, South China Agricultural University, Guangzhou 510642, China, ²Department for Animal Sciences, Animal Breeding and Genetics Group, Georg-August-Universität Göttingen, 37075 Göttingen, Germany

Objective of this Study

To identify sets of SNP markers and genes: Milk yield

QAge at first calving

Animals and Database

Pedigree:

Animals ID

 (Animal, Sire and Dam)
 Birth date
 Breed composition

* Phenotypes:

- Milk production
- Calving date
- Date of collected data

8,361 first-lactation cows from 810 farms under Thai tropical environmental condition

Genomic SNPs Information

- Actual and imputed GGP80k SNPs makers (76,519 SNPs) from 2,661 animals
- *** 29 autosomes and X chromosome**
- *** Quality controls:**
 - □ Call rate (≥ 90%)
 - \Box Minor allele frequencies (≥ 0.01)

*** 74,144 SNPs were used for this study**

Senomic-polygenic model

<u>Where</u>

- y = vector of phenotypes (milk yield, fat yield, and age at first calving)
- b = vector of fixed effects
 - (herd-year-season, breed group, and heterosis)
- a = vector of random animal additive genetic effects

y = Xb + Za + e

- e = vector of random residuals
- X = incidence matrix related MY and FY records to elements of vector b
- Z = incidence matrix related MY and FY records to elements of vector a

Genetic variance (%) = $\frac{Var(SNP_i)}{\sigma_a^2} \times 100$

<u>Where</u>

$Var(SNP_i) = genetic variance of the ith SNPs$ $\sigma_a^2 = the total genetic variance$

(Wang et al., 2014)

Identification of Molecular Function and Biological Processes of Genes

- 0.001% of the genetic variance for milk yield, fat yield or age at first calving were selected
- □ Map2NCBI (Hanna and Riley, 2014)
- □ SNP located inside or at ≤ 2,500 bp of genes in the NCBI database
 - **PANTHER** (http://www.pantherdb.org/)
 - Molecular function
 - * Biological processes

Number of the SNP Markers by Distance between SNP and Genes in the NCBI

Distance between SNP and gene	Milk yield	Fat yield	Age at first calving
Inside gene	∫10,263	10,119	44% 10,149 38
≤ 2,500 bp	1,390	1,406 ^J	1,360 %
2,500 bp < distance ≤ 5,000 bp	855	848	878
5,000 bp < distance ≤ 25,000 bp	3,726	3,739	3,713
distance > 25,000 bp	10,342	10,287	10,555
Total	26,576	26,399	26,655

Distribution of SNPs on Chromosomes of Thai Multibreed Dairy Population

6,930 genesfor milk yield

- 6,959 genes for fat yield
- 6,922 genes
 for age at first
 calving

Distribution of 3,436 Genes Associated with Milk Yield, Fat Yield and Age at First Calving

Proportion of 3,436 Genes Associated with Three Traits based on Molecular Function

Proportion of 3,436 Genes involved in Various Biological Processes for All Three Traits

Conclusion

- Markers and genes associated with milk yield, fat yield, or age at first calving were located across chromosomes
- Genes were mostly involved in binding and catalytic activities as well as in cellular and metabolic processes

Acknowledgments

Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program

Kasetsart University, University of Florida

Development of a Dairy Genetic-Genomic Evaluation System in Thailand Project

Dairy farmers in Thailand

G

