Animal Breeding Mimeograph Series (1998)

Asymptotic Variances of Functions of ML and REML Estimates of Variance and Covariance Components

M.A. Elzo

Animal Science Department University of Florida

Description of the Problem

Assume we have computed $\hat{\theta}$, the MLE of θ , and $\operatorname{var}(\hat{\theta}) = [I(\theta)]^{-1}$, its corresponding asymptotic variance.

We now want to compute $\hat{\phi}$, the MLE of ϕ , and $\operatorname{var}(\hat{\phi}) = [I(\phi)]^{-1}$, its asymptotic variance. Assume that $\phi = f(\theta)$, and that the inverse transformation is $f^{-1}(\phi) = \theta$. Thus, the MLE of ϕ , by the **invariance property of the MLE**, is $\hat{\phi} = f(\hat{\theta})$.

Derivation of the Asymptotic Variance of $\phi = f(\theta)$

Denote the log-likelihood of the **original variable** θ as $\ell(\theta|y)$. By the chain rule of differentiation, the first derivative of $\ell(\theta|y)$ with respect to ϕ is:

$$\frac{\partial \ell(\theta|\mathbf{y})}{\partial \phi} = \frac{\partial \ell(\theta|\mathbf{y})}{\underbrace{\partial \theta}_{u}} \frac{\partial \theta}{\underbrace{\partial \phi}_{v}}$$

and the second derivative of $\ell(\theta|y)$ with respect to ϕ is:

$$\frac{\partial^2 \ell(\boldsymbol{\Theta}|\boldsymbol{y})}{\partial \boldsymbol{\phi}} = \frac{\partial \ell(\boldsymbol{\Theta}|\boldsymbol{y})}{\underbrace{\partial \boldsymbol{\Theta}}_{\boldsymbol{u}}} \underbrace{\frac{\partial^2 \boldsymbol{\Theta}}{\partial \boldsymbol{\phi}}^2}_{\underline{\boldsymbol{U}}} + \frac{\partial}{\partial \boldsymbol{\phi}} \left[\underbrace{\frac{\partial \ell(\boldsymbol{\Theta}|\boldsymbol{y})}{\partial \boldsymbol{\Theta}}}_{\underline{\boldsymbol{\Delta}}\underline{\boldsymbol{U}}} \underbrace{\frac{\partial \boldsymbol{\Theta}}{\partial \boldsymbol{\phi}}}_{\underline{\boldsymbol{v}}} \right] \underbrace{\frac{\partial \boldsymbol{\Theta}}{\partial \boldsymbol{\phi}}}_{\underline{\boldsymbol{v}}}$$

The first part of the second term, by the chain rule, is equal to:

$$\frac{\partial}{\partial \phi} \left[\frac{\partial \ell(\theta|\mathbf{y})}{\partial \theta} \right] = \frac{\partial}{\partial \theta} \left[\frac{\partial \ell(\theta|\mathbf{y})}{\partial \theta} \right] \frac{\partial \theta}{\partial \phi}.$$

Thus, the second derivative of $\ell(\theta|y)$ with respect to ϕ is equal to:

$$\frac{\partial^2 \ell(\theta|\mathbf{y})}{\partial \phi^2} = \frac{\partial \ell(\theta|\mathbf{y})}{\partial \theta} \frac{\partial^2 \theta}{(\partial \phi)^2} + \frac{\partial^2 \ell(\theta|\mathbf{y})}{(\partial \theta)^2} \left(\frac{\partial \theta}{\partial \phi}\right)^2$$

The expectation of the second derivative of $\ell(\theta|y)$ with respect to ϕ is:

$$E_{y}\left[\frac{\partial^{2}\ell(\theta|y)}{\partial\phi^{2}}\right] = E_{y}\left[\frac{\partial^{2}(\theta|y)}{\partial\theta}\right]\frac{\partial^{2}\theta}{\left(\partial\phi\right)^{2}} + E_{y}\left[\frac{\partial^{2}\ell(\theta|y)}{\left(\partial\theta\right)^{2}}\right]\left(\frac{\partial\theta}{\partial\phi}\right)^{2}$$
$$= E[Score] = 0 \quad \text{constant} \quad \text{constant} \quad \text{w.r.t. y}$$

Thus,

$$(-)\underbrace{E_{y}\left[\frac{\partial^{2}\ell(\theta|y)}{\left(\partial\phi\right)^{2}}\right]}_{I(\phi)} = (-)\underbrace{E_{y}\left[\frac{\partial^{2}\ell(\theta|y)}{\left(\partial\theta\right)^{2}}\right]}_{I(\theta)} \left(\frac{\partial\theta}{\partial\phi}\right)^{2}$$

Multiplication of both sides above by -1 yields:

$$I(\phi) = I(\theta) \left(\frac{\partial \theta}{\partial \phi}\right)^2 \leftarrow \text{ original variable} \\ \leftarrow \text{ transformed variable}$$

where $I(\phi) = \text{information matrix for } \phi$, and $I(\theta) = \text{information matrix for } \theta$. The asymptotic variance of ϕ is obtained by inverting $I(\theta)$. Thus,

$$\left[I(\phi)\right]^{-1} = \left[I(\theta)\right]^{-1} \left(\frac{\partial\theta}{\partial\phi}\right)^{-2} \leftarrow \text{ original variable} \leftarrow \text{ transformed variable}$$

Because $\phi = f(\theta)$, the second term of the right hand side is equal to:

$$\left(\frac{\partial \theta}{\partial \phi}\right)^{-2} = \frac{1}{\left(\frac{\partial \phi}{\partial \theta}\right)^{-2}} = \left(\frac{\partial \phi}{\partial \theta}\right)^2$$

Thus, the asymptotic variance of ϕ (scalar) is computed as follows:

$$\operatorname{var}(\phi)\Big|_{\tilde{\phi}} = \operatorname{var}(\theta)\Big|_{\tilde{\theta}} \left(\frac{\partial \phi}{\partial \theta}\right)^2 \leftarrow \operatorname{transformed variable} \leftarrow \operatorname{original variable}$$

and the asymptotic variance of ϕ (vector) is equal to:

$$\operatorname{var}(\phi)\Big|_{\hat{\phi}} = \frac{\partial \phi}{\partial \theta}^{T} \operatorname{var}(\theta)\Big|_{\hat{\phi}} \left(\frac{\partial \phi}{\partial \theta}\right).$$

Define $W = \frac{\partial \phi}{\partial \theta}.$

Thus,

$$\operatorname{var}(\phi)\Big|_{\hat{\theta}} = W'\Big|_{\hat{\theta}}\operatorname{var}(\theta)\Big|_{\hat{\theta}}W\Big|_{\hat{\theta}},$$

and the standard error of the MLE of ϕ is the square root of the variance of the MLE of ϕ .

Asymptotic Distributions

- $\hat{\theta} \sim N\left(\theta, \left(I_n(\theta)\right)^{-1}\right)$, where the sample size $n \to \infty$.
- $$\begin{split} \hat{\boldsymbol{\phi}} \sim N(\boldsymbol{\phi}, \ \boldsymbol{W}' \underbrace{(\boldsymbol{I}_n(\boldsymbol{\theta}))^{-1}}_{\operatorname{var}(\hat{\boldsymbol{\theta}})} \boldsymbol{W}) \end{split}$$

Example 1: Derivation of the variance of the REML estimate of the correlation between 2 variables.

Let the original parameter and its variance be:

$$\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{\sigma}_{11} \\ \boldsymbol{\sigma}_{12} \\ \boldsymbol{\sigma}_{22} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\theta}_1 \\ \boldsymbol{\theta}_2 \\ \boldsymbol{\theta}_3 \end{bmatrix}, \text{ and } \forall \boldsymbol{\alpha} r(\boldsymbol{\theta}) = \begin{bmatrix} \operatorname{var}(\boldsymbol{\sigma}_{11}) & \operatorname{cov}(\boldsymbol{\sigma}_{11}, \boldsymbol{\sigma}_{12}) & \operatorname{cov}(\boldsymbol{\sigma}_{11}, \boldsymbol{\sigma}_{12}) \\ & \operatorname{var}(\boldsymbol{\sigma}_{12}) & \operatorname{cov}(\boldsymbol{\sigma}_{12} \boldsymbol{\sigma}_{22}) \\ & \operatorname{Sym.} & & \operatorname{var}(\boldsymbol{\sigma}_{22}) \end{bmatrix}.$$

Let the transformed parameter be:

$$\phi = \frac{\sigma_{12}}{\sigma_{11}^{1/2} \sigma_{22}^{1/2}} \quad .$$

The derivative of ϕ with respect to θ is:

$$\frac{\partial \phi}{\partial \theta} = \begin{bmatrix} \frac{\partial \phi}{\partial \sigma_{11}} \\ \frac{\partial \phi}{\partial \sigma_{12}} \\ \frac{\partial \phi}{\partial \sigma_{22}} \end{bmatrix}$$

where, using the formula of the derivative of a ratio, i.e., $\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$,

$$\frac{\partial \phi}{\partial \sigma_{11}} = \frac{\partial \left(\frac{\sigma_{12}}{\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}}\right)}{\partial \sigma_{11}}$$

$$= \frac{\left(\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}\right) \frac{\partial \sigma_{12}}{\partial \sigma_{11}} - \sigma_{12} \left(\frac{1}{2} \sigma_{11}^{-\frac{1}{2}}\right)}{\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}}$$

$$= \frac{-\frac{1}{2} \sigma_{11}^{-\frac{1}{2}} \sigma_{12}}{\sigma_{11} \sigma_{22}} = \frac{-\frac{1}{2} \sigma_{12}}{\sigma_{11}^{\frac{3}{2}} \sigma_{22}} \Rightarrow w_{1} = \frac{-\frac{1}{2} \sigma_{12}}{\sigma_{11}^{\frac{3}{2}} \sigma_{22}}$$

$$\frac{\partial \phi}{\partial \sigma_{12}} = \frac{\partial \left(\frac{\sigma_{12}}{\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}}\right)}{\partial \sigma_{12}} = \frac{1}{\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}} \Rightarrow w_{2} = \frac{1}{\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}}$$

$$\frac{\partial \phi}{\partial \sigma_{22}} = \frac{\partial \left(\frac{\sigma_{12}}{\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}}\right)}{\partial \sigma_{22}} = \frac{\left(\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}\right) \frac{\partial \sigma_{12}}{\partial \sigma_{22}} - \sigma_{12} \left(\frac{1}{2} \sigma_{22}^{-\frac{1}{2}}\right)}{\left(\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}\right)^{2}}$$

$$= \frac{-\frac{1}{2} \sigma_{12} \sigma_{22}^{-\frac{1}{2}}}{\left(\sigma_{11}^{\frac{1}{2}} \sigma_{22}^{\frac{1}{2}}\right)^{2}} = \frac{-\frac{1}{2} \sigma_{12}}{\sigma_{11} \sigma_{22}^{\frac{3}{2}}} \Rightarrow w_{3} = \frac{-\frac{1}{2} \sigma_{12}}{\sigma_{11} \sigma_{22}^{\frac{3}{2}}}$$

$$\operatorname{var}(\phi)\Big|_{\substack{\widehat{\theta}\\ \widehat{\phi}}} = w^{T} \underbrace{\operatorname{var}(\widehat{\theta})^{-1}}_{\operatorname{var}(\widehat{\theta})} w$$

$$\mathbf{var}(\phi)\Big|_{\hat{\theta}} = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \underbrace{\begin{bmatrix} v_{\theta_1\theta_1} & v_{\theta_1\theta_2} & v_{\theta_1\theta_3} \\ v_{\theta_2\theta_1} & v_{\theta_2\theta_2} & v_{\theta_2\theta_3} \\ v_{\theta_3\theta_1} & v_{\theta_3\theta_2} & v_{\theta_3\theta_3} \end{bmatrix}}_{\begin{bmatrix} I_n(\theta) \end{bmatrix}^{-1}} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

and the standard error of the REML correlation estimate is:

$$SE(\phi)\Big|_{\substack{\partial \\ \phi \ }} = SQRT[var(\phi)]\Big|_{\substack{\partial \\ \phi \ }}.$$

Example 2: Derivation of the variance of the REML estimate of the heritability of a trait.

Define:

$$\begin{split} \sigma_{AA} &= \text{ additive direct genetic variance,} \\ \sigma_{AM} &= \sigma_{MA} = \text{ additive direct - maternal genetic covariance,} \\ \sigma_{MM} &= \text{ additive maternal genetic variance, and} \\ \sigma_{PP} &= \sigma_{AA} + \sigma_{AM} + \sigma_{MM} + \sigma_{BB} = \text{ phenotypic variance.} \end{split}$$

Let

$$\theta = \begin{bmatrix} \sigma_{AA} \\ \sigma_{AM} \\ \sigma_{MM} \\ \sigma_{EE} \end{bmatrix}$$

$$\phi = \frac{\sigma_{AA}}{\sigma_{PP}}$$

The REML estimate of ϕ is:

$$\hat{\phi} = \frac{\hat{\sigma}_{AA}}{\hat{\sigma}_{AA} + \hat{\sigma}_{AM} + \hat{\sigma}_{MM} + \hat{\sigma}_{EE}}$$

The variance of the REML estimate of ϕ is:

.

$$\operatorname{var}(\hat{\phi}) = w' \operatorname{var}(\hat{\theta})w$$
,

where

$$w = \frac{\partial \phi}{\partial \theta} = \begin{bmatrix} \frac{\partial \phi}{\partial \sigma_{AA}} \\ \frac{\partial \phi}{\partial \sigma_{AM}} \\ \frac{\partial \phi}{\partial \sigma_{MM}} \\ \frac{\partial \phi}{\partial \sigma_{BB}} \end{bmatrix}$$

Each term in the above vector is obtained using the derivative of a ratio, $\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$,

$$\frac{\partial \phi}{\partial \sigma_{AA}} = \frac{\partial \left(\frac{\sigma_{AA}}{\sigma_{pp}}\right)}{\partial \sigma_{AA}} = \frac{(\sigma_{pp})(1) - (\sigma_{AA})(1)}{(\sigma_{pp})^{2}}$$
$$= \frac{\sigma_{pp} - \sigma_{AA}}{(\sigma_{pp})^{2}} \Rightarrow w_{1} = \frac{\hat{\sigma}_{pp} - \hat{\sigma}_{AA}}{(\hat{\sigma}_{pp})^{2}}$$
$$\frac{\partial \phi}{\partial \sigma_{AM}} = \frac{(\sigma_{pp})(0) - (\sigma_{AA})(1)}{(\sigma_{pp})^{2}}$$
$$= \frac{-\sigma_{AA}}{(\sigma_{pp})^{2}} \Rightarrow w_{2} = \frac{-\hat{\sigma}_{AA}}{(\hat{\sigma}_{pp})^{2}}$$
$$\frac{\partial \phi}{\partial \sigma_{MM}} = \frac{-\sigma_{AA}}{(\sigma_{pp})^{2}} \Rightarrow w_{1} = \frac{-\hat{\sigma}_{AA}}{(\hat{\sigma}_{pp})^{2}}$$
$$\frac{\partial \phi}{\partial \sigma_{BB}} = \frac{-\sigma_{AA}}{(\sigma_{pp})^{2}} \Rightarrow w_{4} = \frac{-\hat{\sigma}_{AA}}{(\hat{\sigma}_{pp})^{2}}$$

Thus, the variance of the REML estimate of the heritability of a trait is equal to:

$$\mathbf{var}(\hat{\boldsymbol{\phi}}) = \begin{bmatrix} w_1 & w_2 & w_3 & w_4 \end{bmatrix} \underbrace{\left(I_n(\boldsymbol{\theta})\right)^{-1}}_{\mathbf{var}(\hat{\boldsymbol{\theta}})} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ w_4 \end{bmatrix}$$

Example 3: Derivation of the variance of the REML estimates of phenotypic covariances.

Let the genetic and environmental covariances between traits i and j (i = j, or i \neq j) be:

$$\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{\sigma}_{\boldsymbol{A},\boldsymbol{A}_{j}} \\ \frac{1}{2} \boldsymbol{\sigma}_{\boldsymbol{A},\boldsymbol{M}_{j}} \\ \frac{1}{2} \boldsymbol{\sigma}_{\boldsymbol{M}_{i}\boldsymbol{A}_{j}} \\ \boldsymbol{\sigma}_{\boldsymbol{M}_{i}\boldsymbol{M}_{j}} \\ \boldsymbol{\sigma}_{\boldsymbol{E}_{i}\boldsymbol{E}_{j}} \end{bmatrix}$$

The phenotypic covariance between traits i and j is:

$$\phi = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 1 & 1 \end{bmatrix} \begin{bmatrix} \sigma_{\mathcal{A},\mathcal{A}_{j}} \\ \sigma_{\mathcal{A},\mathcal{M}_{j}} \\ \sigma_{\mathcal{M},\mathcal{A}_{j}} \\ \sigma_{\mathcal{M},\mathcal{M}_{j}} \\ \sigma_{\mathcal{B},\mathcal{B}_{j}} \end{bmatrix} = \mathcal{W}' \mathcal{O}$$

The REML estimate of the phenotypic covariance between traits i and j is:

$$\hat{\phi} = \begin{bmatrix} \mathbf{1} & \frac{1}{2} & \frac{1}{2} & \mathbf{1} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \hat{\sigma}_{A,A_j} \\ \hat{\sigma}_{A,M_j} \\ \hat{\sigma}_{M,A_j} \\ \hat{\sigma}_{M,M_j} \\ \hat{\sigma}_{E,E_j} \end{bmatrix} = w' \hat{\theta} \quad .$$

The elements of vector w were obtained as follows:

$$w_{1} = \frac{\partial \phi}{\partial \sigma_{AA_{j}}} = 1,$$

$$w_{2} = \frac{\partial \phi}{\partial \sigma_{AM_{j}}} = \frac{1}{2},$$

$$w_{3} = \frac{\partial \phi}{\partial \sigma_{MA_{j}}} = \frac{1}{2},$$

$$w_{4} = \frac{\partial \phi}{\partial \sigma_{MM_{j}}} = 1, \text{ and}$$

$$w_{5} = \frac{\partial \phi}{\partial \sigma_{BB_{j}}} = 1.$$

The variance of the REML estimate of the phenotypic covariance between traits i and j is:

$$\operatorname{var}(\hat{\phi}) = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} & 1 & 1 \end{bmatrix} \underbrace{\operatorname{var}(\hat{\theta})}_{[I(\hat{\theta})]^{-1}} \begin{bmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 1 \end{bmatrix} = w' \operatorname{var}(\hat{\theta})w.$$

The covariance matrix of REML estimates of phenotypic covariances among several traits is: $\operatorname{var}(\hat{\phi}) = W' \operatorname{var}(\hat{\theta})W$

where $W = \left\{ w_{ij} \right\}$, $i \ge j = 1, ...,$ number of traits.

Example 4: Derivation of the variance of the REML estimates of phenotypic correlations.

Consider 3 growth traits: birth weight (BW), weight gain from birth to weaning (BWG), and weight gain from weaning to 550 days of age (WHG).

Step 1. Compute $\operatorname{var}(\hat{\sigma}_{P_iP_j})$ using the expression for $\operatorname{var}(\hat{\phi}_{ij})$ above, where $\hat{\phi}_{ij}$ = phenotypic

covariances between traits i and j, and $j \ge i = 1, 2, 3$. The resulting $var(\hat{\phi})$ matrix has

dimension equal to 6 (i.e., $\frac{1}{2}(3 \times 4) = 6$).

Step 2. Compute $\operatorname{var}(\hat{\varphi}) = W' \operatorname{var}(\hat{\varphi})W$,

where

 $W' = \begin{bmatrix} w_{11} & w_{12} & w_{13} & w_{22} & w_{23} & w_{33} \end{bmatrix}.$

For any two traits i and j, the weights are :

$$w_{ii} = \frac{-\frac{1}{2}\phi_{ij}}{\hat{\phi}_{ii}^{3/2}\hat{\phi}_{jj}}$$
$$w_{ij} = \frac{1}{\hat{\phi}_{ii}^{1/2}\hat{\phi}_{jj}^{1/2}}$$
$$w_{jj} = \frac{-\frac{1}{2}\hat{\phi}_{ij}}{\hat{\phi}_{ii}^{1/2}\hat{\phi}_{jj}^{3/2}}$$

where the $\left(\hat{\phi}_{ij}\right)$ are the **REML estimates of phenotypic variances and covariances**.

The covariance matrix of the REML estimates of phenotypic variances and covariances is:

$$\operatorname{var}(\hat{\phi}) = \begin{bmatrix} \nu(\hat{\phi}_{11}) & c(\hat{\phi}_{11}, \hat{\phi}_{12}) & c(\hat{\phi}_{11}, \hat{\phi}_{13}) & c(\hat{\phi}_{11}, \hat{\phi}_{22}) & c(\hat{\phi}_{11}, \hat{\phi}_{23}) & c(\hat{\phi}_{11}, \hat{\phi}_{33}) \\ \nu(\hat{\phi}_{12}) & c(\hat{\phi}_{12}, \hat{\phi}_{13}) & c(\hat{\phi}_{12}, \hat{\phi}_{22}) & c(\hat{\phi}_{12}, \hat{\phi}_{23}) & c(\hat{\phi}_{12}, \hat{\phi}_{33}) \\ \nu(\hat{\phi}_{13}) & c(\hat{\phi}_{13}, \hat{\phi}_{13}) & c(\hat{\phi}_{13}, \hat{\phi}_{23}) & c(\hat{\phi}_{13}, \hat{\phi}_{33}) \\ \nu(\hat{\phi}_{22}) & c(\hat{\phi}_{22}, \hat{\phi}_{23}) & c(\hat{\phi}_{22}, \hat{\phi}_{33}) \\ Sym. & \nu(\hat{\phi}_{23}) & c(\hat{\phi}_{23}, \hat{\phi}_{33}) \\ \nu(\hat{\phi}_{33}) \end{bmatrix}$$

For example, the variance of the phenotypic correlation between traits 1 and 2 (e.g., BW, and BWG), is computed as follows:

$$\operatorname{var}(\hat{\varphi}_{12}) = \begin{bmatrix} w_{11} & w_{12} & 0 & w_{22} & 0 & 0 \end{bmatrix} \operatorname{var}(\hat{\phi}) \begin{bmatrix} w_{11} \\ w_{12} \\ 0 \\ w_{22} \\ 0 \\ 0 \end{bmatrix}$$

The matrix W for the 3 traits is:

$$W_{3\times6}' = \begin{bmatrix} w_{11} & w_{12} & 0 & w_{22} & 0 & 0 \\ w_{11} & 0 & w_{13} & 0 & 0 & w_{33} \\ 0 & 0 & 0 & w_{22} & w_{23} & w_{33} \end{bmatrix}$$

and the variance of the REML estimates of correlations among the 3 growth traits is: $var(\hat{\phi}) = W' var(\hat{\phi})W$.

References

Lindgren, B. W. 1976. Statistical Theory (3rd Ed.). Macmillan Publishing Co., Inc., New York.

•

Sorensen, D. 1996. Gibbs Sampling in Quantitative Genetics. Internal Report No. 82. Danish Institute of Animal Science, Research Centre Foulum, Denmark.