COVARIANCES . AMONG SIRE BY BREED GROUP OF DAM
INTERACTION EFFECTS IN MULTIBREED SIRE
EVALUATION PROCEDURES!

M. A. Elzo?
University of Florida, Gainesville 32611

ABSTRACT

In multibreed populations, bulls need to be evaluated for additive and nonadditive
genetic effects. When the nonadditive genetic effects associated with a bull are defined as
sire X breed-group-of-dam interactions, they can be expressed as linear combinations of
interactions between alleles of one or more breeds at one or more loci. If these specific
allelic interactions are assumed to be independent, then variances and covariances between
sire X breed-group-of-dam interaction subclasses can be shown to be linear combinations of
variances and covariances of specific intra- and interlocus intra- and interbreed allelic
interactions. Furthermore, covariances between sire X breed-group-of-dam interactions due
to specific interactions at one, two, or more loci are zero. If dams are assumed to be
unrelated to bulls and among themselves, except through their sires and matemal
grandsires, efficient procedures to compute the inverse of the covariance matrices of
nonadditive genetic effects can be devised, both in subclass and in regression models.
Recursive procedures developed make possible the evaluation of large numbers of bulls for
nonadditive genetic effects using mixed-model methodology. For completeness, recursive
procedures to compute nonadditive covariance matrices in subclass and in regression
models also were developed. The prediction of nonadditive genetic values for bulls, in
addition to their additive genetic values, will help plan matings, make selection decisions
more accurate and, possibly, make economic projections better.

(Key Words: Mixed-Models, Sire Evaluation, Nonadditive Genetic Variation, Interactions,

Crossbreeding, Beef Cattle.)

Introduction

The genetic value of a sire in a multibreed
population can be defined as the sum of two
parts: one affected by additive genetic effects
and another affected by nonadditive genetic
effects (Elzo and Famula, 1985). The additive
genetic component corresponds to the expected
progeny difference (EPD) in within-breed sire
evaluation procedures. The nonadditive com-
ponent refers to the interaction between a sire
and dams of several breed compositions.
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Studies dealing with the evaluation of sire X
breed-group-of-dam (BGD) interaction effects
in cattle have considered them to be either
fixed (Koger et al,, 1975) or random with a
common variance and uncorrelated (Benyshek,
1979; Massey and Benyshek, 1981). The
genetic evaluation procedures to evaluate bulls
for additive and nonadditive genetic effects in
multibreed populations proposed by Elzo and
Famula (1985) accounted for covariances
among bull additive genetic effects only.
Covariances among bull nonadditive genetic
effects (i.e., covariances among sire X BGD
interaction effects) were assumed to be zero in
all procedures. This assumption restricted the
prediction of nonadditive genetic effects to
only those sires that had progeny with records.
Accounting for covariances among bull nonad-
ditive genetic effects in these genetic evalua-
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tion procedures will both increase the accuracy
of prediction of nonadditive genetic effects for
bulls with little information and allow the
prediction of these effects for bulls without
progeny. For instance, young bulls without
progeny will be able to be preselected for
progeny testing or for use in specific crosses.
Thus, the objectives of this paper are 1) to find
a genetic expression for the covariances among
sire X BGD interaction effects in procedures
used to evaluate bulls for nonadditive genetic
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effects in multibreed populations, 2) to develop
a recursive procedure to compute the covari-
ance matrix of sire X BGD interaction effects
ignoring inbreeding, and 3) to develop a
recursive procedure to compute the inverse of
the covariance matrix of sire X BGD interac-
tion effects ignoring breeding. This inverse is
necded to construct the left-hand side of the
mixed-model equations that compute the
predictions of additive and nonadditive bull
genetic effects in multibreed populations.

FINDING GENETIC EXPRESSIONS FOR THE SIRE x BREED-GROUP-OF-DAM INTERACTION
COVARIANCES IN MULTIBREED SIRE EVALUATION PROCEDURES

A multibreed population is defined as one composed of brecding animals of various breeds
and crossbred groups or one formed by animals from various distinct subpopulations within a
breed. For instance, a population composed of Simmental (S), Brahman (B) and S x B crossbreds
of various expected S and B fractions is a multibreed population.

Throughout this development, the following assumptions are being made: 1) traits are
determined by alleles from a large number of loci, 2) random segregation and assortment of
alleles during meiosis, 3) given a sire and dams of breed group, male and female gametes unite at
random, 4) there is one progeny per dam in a brecd group; if a dam has two or more progeny,
they are assumed to come from different dams, 5) dams are unrelated among themselves and to
sires (except for relationships among male ancestors of the dams included in the analysis), and 6)
constant additive and nonadditive genetic variances and covariances over time.

The formulas to be developed for the covariance matrices of sire X BGD interactions in the
models considered here account for inbreeding. For the sake of brevity, the recursive procedures
that compute these covariance matrices and their inverses ignore inbreeding. However,
inbreeding can be accounted for in these procedures in a manner similar to that described by Elzo
(1990) for the recursive procedures used to compute the covariance matrix of additive genetic
effects and its inverse in multibreed populations.

Multibreed bull evaluation procedures (Elzo and Bradford, 1985; Elzo and Famula, 1985)
explicitly account for additive and nonadditive genetic effects. Nonadditive genetic effects are
defined as sire X BGD interactions. Sire X BGD interactions can 1) be considered individually as
entire effects (subclass models) or 2) be explained in terms of other parameters (regression
models). One altemative is to reparameterize sire X BGD interactions in terms of intra- and
interlocus interactions among alleles of the same and of different breed origin. The incidence
matrix that relates calf records to sire X BGD interaction effects in subclass models has a single 1
in the row of a calf pointing at the sire X BGD interaction subclass the calf belongs to and zeroes
elsewhere. On the other hand, calf records also can be related to intra- and interlocus interactions
through probabilities of occurrence of these interactions. Consequently, each row of the incidence
matrix relating calf records to intra- and interlocus interactions has at least one (usually several)
nonzero value. Elzo and Famula (1985) assumed that the covariance matrix among sire X BGD
interaction effects in subclass models and in regression models was diagonal. Also, no attempt
was made to define the structure of the covariance matrix of sire X BGD interaction effects in
subclass models. Here, the assumption of diagonality of the sire X BGD interaction effects in
both subclass and regression models is dropped. Variances of and covariances among sire X BGD
interaction effects in subclass models are defined in terms of variances of intra- and interlocus
interaction effects. Intra- and interlocus interaction effects are assumed to be random and
independent of one another and of additive genetic as well as environmental random effects.
Thus, the n' type of interaction among alleles at m loci has a mean of zero and a covariance of

oim. Because of the assumption of independence, the matrices of covariances among individual
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sire X BGD interactions in subclass models and among intra- and interlocus interactions due to
individual sires mated to dams of several breed groups in regression models are block diagonal.
Each block is a submatrix of variances and covariances due to interaction effects at m loci, m =
1, 2,..., M loci. In subclass models, a covariance between two sire X BGD interaction effects
exists when the sires involved received the same alleles at m loci from a common ancestor and
the same interaction among alleles at m loci occurs in the two sire X BGD interaction subclasses.
In regression models, a covariance between interactions among alleles at m loci of two sires
mated to several BGD exists when these sires share the same alleles from a common ancestor at
m loci.

Let the expression sire interaction effects equal the sire x BGD interaction effects for subclass
models and intra- and interlocus interactions among a sire and several BGD for regression
models.

In subclass models, the diagonal blocks of covariances among sire interaction effects due to
interactions among alleles at m loci are as follows:

Vms {cov (si X BGDj,'qsiY X BGDj)}
C

(2 @i, ar)™ Y, min (ojmotoyma) 00, []
c=1 n=1

VmS

where

Sik, S = sire k from breed group of sires i, sire k’ from breed group of
sires i’, respectively,
BGDj, BGDy = breed groups of dams j and j’, respectively,

C = number of common ancestors between sy and Si'K’s

™ = probability that sy and s;y- received the same alleles at m loci
from common ancestor c of the k™ breed group (s~),
N = number of assumed types of interactions among alleles at m
loci,
tek”jmns tck”jmn = probabilities of interaction of type n among alleles of m loci
when alleles from common ancestor s~ interact with alleles
from BGD; and BGDy, respectively,
min (tek”jmn, tek”jmn) = smallest value of the two probabilities in brackets, and

o2 = variance of interaction n among alleles at m loci.
mn

(Qik ik’ cx”

The expression for V5 was found by conditioning the covariance between two sire X BGD
effects on the interaction effects that exist among alleles at m loci, and applying a theorem that
states that given two random variables Y and X, the var (Y) is equal to the expected value of the
variance of Y given X plus the variance of the expected value of Y given X (Theorem 7, page
159, Mood et al., 1974). Because interaction effects are assumed to be random with a mean of
zero, the second term of the covariance between any two sire X BGD effects is zero. Thus,
covariances between any two sire X BGD effects are weighted averages of interaction variances
at 1, 2, . . ., M loci. Details of this derivation are given in the appendix.

The term (ajy 'y’ k)™ min (t “imn» tck”j’mn) indicates the expected fraction of interaction of
type n at m loci among alleles identical by descent received by sy and S’ from common
ancestor s.y~ and alleles of dams from BGD; and BGDy that is expected to exist in the respective
progenies of s X BGD; and sy x BGDj.

The complete covariance matrix of sire interaction effects due to interactions at 1,2, ..., M
loci, for subclass models is Vs = block diagonal {Vpg}, m = 1, 2, . . .. M.

In regression models, the diagonal blocks of covariances among sire interaction effects among
alleles at m loci are:
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Vor = {CgV (Vikmo, Vit’mn) } |
= {2, @ik} * Vo
= AZI* Vmo (2]
where

Vikmn, Vi%’mn = interactions of type n among alleles at m loci due to the interaction of alleles
of sires ik and i'’K’, respectively, and dams of several BGD,
Vmo = diagonal (62, ), and |
* = direct product (Searle, 1966).

The complete matrix of covariances among sire interaction effects at 1,2,... M loci, for
regression models, is Vg = block diagonal {Vpg}, m = 1, 2, . . - M.

Notwithstanding the relationships that exist between subclass and regression models, they are
not equivalent models (Henderson, 1984) because their respective covariance matrices of sire
interaction effects are different. Let Zgug and Zgug be the parts of the subclass and regression
models related to sire interaction effects, where Z; is a known incidence matrix relating calf
records to sire X BGD interaction effects in vector ug and Zg is a known incidence matrix
relating calf records to intra- and interlocus interaction effects in vector ugR, through probabilities
of occurrence of these interactions (Elzo and Famula, 1985). Thus, var (Zsug) = ZsVsZs’, where
Vs = block diagonal {Vys), and var (Zgug) = ZgVgZg’, where VR = block diagonal {Vgr}.
Each covariance term in ZgVgZg’ is a linear function of the tikjmn and each term of ZgVeZy' is a
linear function of the square of the tikjmn- Thus, the subclass and the regression models are not
equivalent. Consequently, the error variances of prediction of sire x BGD interaction effects
predicted by these two models are likely to be different in most cases. Assuming that the
nonadditive effects in a regression model account for all nonadditive effects in a sire X BGD
interaction, if the number of nonadditive effects in a regression model is less than the number of
sire X BGD interaction effects in a subclass model, then the error variances of prediction of the
sire X BGD interaction effects predicted using a regression model probably will be at least as
accurate as those from a subclass model. More research is needed on this subject.

The description of subclass and regression approaches above suggests that many definitions of
interactions might be devised to suit these models. For example, alleles could be categorized by
function (e.g., structural and regulatory), by breed of origin (e.g., Simmental and Brahman), by a
combination of the two, and so on. Here, alleles are categorized by breed of origin to explain the
covariance matrices among sire interaction effects of subclass (Vs) and regression (Vg) models
in more applied terms. For simplicity, this description considers the case of two breeds (e.g., S
and B) and interactions among alleles of the same and of different breeds at one and at two loci
only. Extension to more than two breeds and more than two loci is straightforward.

Let vixmn be interaction of type n among alleles of m loci of the k't sire of the i breed group
of sires (si) and alleles of m loci of dams from breed groups of various expected fractions of S
and B (e.g., 1S OB, .75S .25B, .5S .5B, .25S .75B, 0S 1B) at m loci.

Let tixjmn be the probability that interaction of type n among alleles of m loci occurs when s;
is mated to dams of the j breed group (BGDj).

Thus,

1) the Vi, and the tikjmn for one-locus (m = 1) interactions could be defined, for example, as
follows:

Vik11 = interaction effect between S alleles from sy and S alleles from dams of all
breed groups mated to s at one locus,

Vik12 = interaction effect between S alleles from s; and B alleles from dams of all
breed groups mated to sy, or vice versa, at one locus,
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Vik13 = interaction effect between B alleles from s and B alleles from dams of all
breed groups mated to sy at one locus.

Associated with every vj,, there is a set of tikimn, ON€ for each group of dams that was mated
to or potentially mated to s;. The ticjmn for one locus are:

tikj11 = probability of vy 1; when s;; is mated to BGD;,
= Pix(S) pj(S), B3]
tikj12 = probability of vi 12 when s is mated to BGD;,
= Pik(S) pi(B) + pu(B) py(S), [4]
tikj13 = probability of vj 13 when sy is mated to BGD;,
= pud(B) pj(B), [51
where
Pi(S) = probability of alleles of breed S in sy,
Pik(B) = probability of alleles of breed B in sy,
pj(S) = probability of alleles of breed S in BGD;,
pij(B) = probability of alleles of breed B in BGD:,

2) the vjymp and the tikjmn for the possible allelic interactions occurring simultaneously among
the alleles at two loci (m = 2) could be defined, for example, as follows:

Viky1 = interaction effect among two S alleles at two loci from six and two S alleles at
two loci from dams of all breed groups mated to s;; at two loci,

Vikp2 = interaction effect among two S alleles at two loci from sy and two B alleles at
two loci from dams of all breed groups mated to s;;, or vice versa,

Vik23 = interactions effect among two S alleles at two loci from sy and a S allele at
one locus and a B allele at another locus from dams of all breed groups mated
to s;ji, Or vice versa,

Viko4 = interactions effect among two B alleles at two loci from s; and a S allele at
one locus and a B allele at another locus from dams of all breed groups mated
to s, or vice versa,

Vikos = interactions effect among a S allele at one locus and a B allele at another locus
from s and a S allele at one locus and a B allele at another locus from dams of
all breed groups mated to s,

Viko6 = interactions effect among B alleles from s; and B alleles from dams of all
breed groups mated to s;; at two loci.

The probabilities of occurrence of the vy,, when sy is mated to BGD;, ie., the tyjpn, n =
1, . . ., 6, are:

tikjz1 = probability of viy»; when s; is mated to BGD;,
= [pu(S)1? [p(S)12, [6]

ticjzo = probability of vy, when sy is mated to BGD;,
= [Pw(S)1 [piB)] + [pu(B))? [pi(S)1%, [71

tij23 = probability of v;»3 when sy is mated to BGD;,
= [Pu(S)P12pi(S)p; (B)] + [pi(S)I2[2pi(S)pi(B)], [8]

tiipa = probability of vjyo4 where s;; is mated to BGD;,
= [pu(B)*[2pi(S)p; (B)] + [pi(B)P12pu(S)pu(B)] , (91

tikjzs = probability of vy o5 when s;; is mated to BGD;,
= 4pu(S)pi(B)1lp;(S)p; (B)], [10]

tikpe = probability of vy, when sy is mated to BGD;,

[pi(B)12[p;(B))>. [11]
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The definitions of interaction effects for one locus and for two loci lumped reciprocal
interbreed interactions effects together. -Had reciprocal interbreed interaction effects been
considered separately, the number of one locus and two loci interaction effects would have
increased to 4 and 10, respectively.

Although it may be desirable to define six interaction effects from a research standpoint to
study and try to understand sire X BGD interactions better, from a sire evaluation point of view
this may be unnecessary. The objective of evaluating bulls for nonadditive effects is to predict
the total interactive value of a bull when mated to groups of dams of various breed compositions.
To accomplish this goal a number of interaction effects among alleles at two loci smaller than six
could be used. This involves redefining the interaction effects at two loci. Given a set of data, a
smaller number of interaction effects will be less descriptive, but they will be predicted more
accurately. A set of three interaction effects at two loci could be defined. Two of them, vy»1 and
Vikos, would be defined as before, except that vi,s would now be named vik23. The second
interaction effect at two loci, Vix;, would now be defined to be due to interactions among S
and(or) B alleles from s;, and S and(or) B alleles from dams of all breed groups mated to s;,
with the condition that there is at least one S allele from Sik and at least one B allele from the
dams mated to sy, or vice versa. The probabilities for occurrence of these redefined interactions
at two loci, vip,, n = 1, 2, 3, are as follows: 1) tikj21 = formula [6], 2) tikj23 = formula [11], and
3) tikja = 1 - tikj21 — tikj23. Considering the three intralocus interaction effects and the three

interlocus interaction effects at two loci, the Vmo matrices are as follows: Vo = diagonal {cfl
01,013} and Vyo = diagonal {02,0%,02,).

The {o2mn}, m=1,2,n=1,2, 3, would be used to construct VR in regression models and

Vms in subclass models. Again, extension to more than two breeds is simple, although
computations become more involved, especially in large, unbalanced data sets; hence, there is a
need for efficient computational procedures to build VR and V. More important, however, is the
need for fast procedures to compute the inverses of VR and Vg, which are needed to construct the
mixed-model equations (MME) for regression and for subclass models, respectively. These
inverses will be difficult (or impossible) to obtain in large data sets, given current computer
capabilities. Thus, recursive procedures to compute directly the matrices of intralocus and
interlocus variances and covariances as well as their inverses were developed. These recursive
procedures have a pattern of computations similar to those procedures developed for additive
genetic effects in populations of one breed (Emik and Terrill, 1949; Van Vleck, 1974;
Henderson, 1975, 1976) and for multibreed populations (Elzo, 1990).

RECURSIVE PROCEDURES TO COMPUTE THE MATRIX OF
SIRE x BREED-GROUP-OF-DAM INTERACTION VARIANCES AND COVARIANCES
IN SUBCLASS AND IN REGRESSION MODELS

The recursive procedures described below permit the computation of submatrices V5 and
Vmr directly when inbreeding is ignored. If inbreeding were accounted for, only the computation
of the diagonal blocks of V.5 and Vg would need to be modified. The computation of the
offdiagonal blocks of V.5 and Vg would not change.

Each of the Vg and Vg, m=1, . . -» M, submatrices is computed separately. The procedure
used to compute the submatrices Vg for subclass models is described first, followed by the one
developed to compute the Vg for regression models.

Recursive Procedure to Compute the Vs for Subclass Models

This procedure requires knowledge of the expected breed composition of the bulls and the
breed groups of dams. If male ancestors of these bulls (i.e. sires and maternal grandsires) are
known, their expected breed composition also is needed. In addition, the nonadditive variances

due to the interaction among alleles at m loci, that is, the {czmn}, n=1,.. ,Np,m=1,.. M

*
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must be known.

All bulls are evaluated for their interaction with dams of all breed groups considered, whether
or not actual matings did or will occur. Base animals (Henderson, 1976) are assumed to be
unrelated, noninbred and of known breed composition.

The recursive procedure to compute Vpg has the following steps:

1. Identify:

a) bulls to be evaluated in chronological order, from oldest (1) to youngest (ny),

b) the sire and the maternal grandsire of each bull (store a zero when any of them is
unknown),

c) the breed group of bulls and their sires and maternal grandsires as well as the
expected breed composition of each breed group.

2. Compute:

a) Vmeikik-1=1,...,Lk=1,..,K; I =number of bull breed groups, K; = number
of bulls in the i breed group. Because inbreeding is being ignored, all bulls
belonging to breed group i, i = 1, . . ., I, have the same nonadditive covariance
matrix. Thus, only I matrices of order J X J need to be computed, where J is the
number of dam breed groups. These matrices contain the nonadditive variances (O'izj)
and covariances (0j;;) due to the mating of bulls of breed groupi,i=1.. .1 to
dams of all breed groups, i.e.,jj =1,...,J. The 0'3 and the oy j are computed using

formula [1]. To find the (Vpys)ik i simply make the ik diagonal block of V5 equal
to the nonadditive covariance matrix for bulls of the i breed group. To simplify
notation, let u be the k'2 bull from the i breed group. So, for instance, (Vims)pu =

I
(Vms)ikik- Also, let U = z K;.
i=1

b) (Vms)w»u=1,..., U, u#u" The computation of these J x J offdiagonal blocks of
Vms will depend on whether the sire and(or) the matemal grandsire of bull u’ are
identified. Thus,

i) when the sire (s") and the maternal grandsire (g") of bull u’ are identified, the
offdiagonal blocks of Vg are computed as:

Vmuw' = () (Vmshs + (-25)m(VmS)ug’ [12]
ii) when only s’ is identified, the offdiagonal blocks of Vg are computed as:
Vmshww = (5™ (Vs [13]
iii) when only g’ is identified, the offdiagonal blocks of Vg are computed as:
Vmw' = (-25)m(VmS)ug’ [14]
and

iv) when neither s’ nor g’ is identified, the elements of the offdiagonal blocks of
Vs are equal to zero.

The order of the resulting symmetric matrix Vg is JU.

Recursive Procedure to Compute the V,,p for Regression Models

The same prior information required to compute the Vg for subclass models must be known
to compute the Vg for regression models. Thus, there should be information on i) the expected
breed composition of bulls and their known male ancestors as well as the dam breed groups
mated to them, and ii) the values of the nonadditive variances due to the interaction among
alleles at m loci.

In nonadditive regression models, however, bulls are evaluated for specific nonadditive effects
rather than for linear combinations of them as in nonadditive subclass models. This fact
facilitates the computation of the Vg tremendously because specific nonadditive genetic effects
are defined to be uncorrelated. Thus, Vg is equal to the direct product of Ay, and Vg, where
Ap is as defined in formula [2] and Vy,0 is a diagonal matrix of specific nonadditive effects
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among alleles at m loci. Because Vpyg is the same for all bulls, Vg could be formed by first
computing A, and then computing the direct product of Ay, * V0. A second alternative would
be to follow the rules given for the subclass model with the provision that all (Vye)y, are equal
to Vmo. For completeness, the first altemnative will be outlined. The steps are:

1. Identify animals (bulls, sires, maternal grandsires), their breed groups and their expected
breed composition as indicated in step 1 of the procedure for subclass models.
2. Compute Ap,

a. Store a 1 in the diagonal elements of Ay, ie., place a 1 in (ag)y, u=1,... U
b. Calculate the offdiagonal elements of Ap, ie., the ag)y, u=1,..., U, v #u, as
follows:

i) if the sire of bull u’ (s’) and the matemal grandsire of bull u’ (g") are known,
then compute the offdiagonal elements of Ap, as follows:

Apuw = (DT (Am)yy + (25T (am)ug' {15}
ii) if only s’ is identified, then the offdiagonal elements of A, are computed as

follows:

@muw = ()™ (amyy (16]
iii) if only g’ is known, then the offdiagonal elements of A, are computed as

follows:

(= (299 (g’ 17}

and

iv) if neither s* nor g’ are known, then (ap),y = O.

The rules to compute Ay, reduce to the well-known rules to compute A (Emik and
Terrill, 1949; Van Vleck, 1974; Henderson, 1976) when the number of loci considered for
regression models is one.

3. Compute Vp,r by multiplying each element of A by Vo The order of Vg is equal to
PU, where P = order of matrix V0 = number of specific nonadditive genetic effects
among alleles at m loci.

RECURSIVE PROCEDURES TO COMPUTE THE INVERSE OF THE MATRIX
OF SIRE x BREED-GROUP-OF-DAM INTERACTION VARIANCES AND COVARIANCES
IN SUBCLASS AND IN REGRESSION MODELS

Because the matrices Vg and Vg are block diagonal, with diagonal blocks equal to V¢ and
VmRr, computation of their inverses amounts to obtaining the inverse of each of the V5 and the
Voamr, m=1,..., M, respectively. Let C,5 be the inverse of Vi, and C,g be the inverse of
Vmr, for m =1, . . ., M. The procedure to compute the Cy,g is described first, followed by the
one to compute Cyp. Inbreeding is ignored in these procedures. If inbreeding were accounted for,
it would affect only the coefficients used by the rules to compute Cp,5 and Cyyr. The rules would

remain the same. Only the formulas and the procedures used to compute these coefficients would
change.

Recursive Procedure to Compute the C,pgs for Subclass Models

The procedure to compute the Cp,s requires the same type of information to be known as that
for the procedure to calculate Vp,s. In addition, the diagonal blocks of Vg corresponding to
each breed group of bulls must be obtained in advance. These matrices are computed as
explained in step 2.a) of the procedure to construct Vpg.

The rules used to compute C,;,5 depend on the male ancestors identified for each bull. Thus,
i) when the sire (s) and the maternal grandsire (g) of bull u are known, add:
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D! to (Cnshuu

(25)m Dmu—l t0 (Crus)ss

(:0625)™ Dy ! to (Crs)gg
(125 Dy, ! to (CmS)sgs (CmS)gs
~ (.5 Dy ! to (Crsdus (Cms)su
—(:25)® Dy 1 to (CmS)ug» (CmS)gu

where Dp,! is computed as:

D™ = [(Vmshu = (25)™(Vins)ss — (0625)™ (Vms)ggl™,  [18]

ii) when only s is known, add:

Dmu_l t0 (Cun$uu
(_25)m Dmu_1 to (CmS)ss
~(.5) Dy ! to (Cms)us, (Cms)su

where Dp,, ! is computed as:

Dyt = [(Vns)uu — (:25)*(Vms)ss] L, [19]

iii) when only g is known, add:

D! to (Cs)uu
(.0625)™ Dy, ! to (Cins)gg
—~(:25)" Dy, ! to (Cnsdug, Cas)gu

where Dp, ! is computed as:

D, 1= [(Vms)yu — (.0625)™ (Vms)gg]_l, [20]

and
iv) when neither s nor g are known, add:

Dmu_l to (Cns)uu

where Dp,,~! is computed as:

Duw! = [(Vins)ual™. [21]

The matrices Dy, ! and the (Vig)xx, X = U, s, g, are of order J x J, J = number of dam breed
groups.

Recursive Procedure to Compute the C,r for Regression Models

The same assumptions and prior data needed to compute Vg apply to the computation of
Cmr- Because Vg can be written as a direct product of two matrices (i.e., Ap * Vo), its
inverse (Searle, 1966) is equal to (Ap)™! * (Vmo)!. The matrix Vo) is computed by direct
inversion of Vyo Let B, be (Ap)l. The rules used to compute B, are as follows:
i) if the sire (s) and the matemal grandsire (g) of bull u are known, add:
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dmu! o Bmuu

(:25)® dy ! to (Br)ss

(062517 dmy ) 10 (b
(125)® dyy ! to (bm)sg» (bm)gs
—(5™ dmu_l to ®mus, Gmlsu
25" dpu! to (bmug, Gmgu

where
dgy! = [1-(25)m - (.0625)m]1,
ii) if only s is known add:

dmu_l to (bmuu
(:25)™ dpy ! to (by)ss
~(5)dy! to Bmlus, Grdsu

where

dpa ! = [1-(25)711,

iii) if only g is known, add:

dmu_l to (bmuu
0625 d -1 to (brgg

(25 dpy! to (bm)ug’ (bm)gu

where
dmu! = [1-(.0625)7]1,

and
iv) if neither s nor g is known, add:

1 to (bwuu-

After the contribution of all bulls are added, By, is complete. Next, each nonzero element of
B, is multiplied by the matrix (Vy,0)~l. The matrix resulting from this direct product is Cyg.
The rules to compute (Ap)~! directly are a generalization of those given by Henderson (1975)
to compute A~1 for sires and maternal grandsires in a noninbred population. Thus, when m = 1,
(Ap)! becomes A1, the computational rules given above become those of Henderson (1975).

DISCUSSION

Traditionally, within-breed sire evaluation procedures have emphasized additive genetic
effects. Random nonadditive genetic effects usually are assumed to be negligible. This
assumption may not be true in multibreed populations or when bulls of some breed or crossbred
group are mated to dams of several breeds or crossbred groups. Benyshek (1979) and Massey
and Benyshek (1981) found significant sire X BGD interactions for various growth traits (e.g.,
birth weight, adjusted 205-d weaning weight, adjusted 365-d weight) when Limousin sires were
mated to Hereford or Angus dams. Estimates of sire X BGD interaction variances (.24% to 4% of
the total variance) generally were smaller than estimates of sire additive genetic variances (1.5%
to 6.5% of the total variance). The correlation between breeding values of sires for the same trait
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across breeds ranged from .46 to .85, indicating the possibility of changes in sire ranking across
breed group of dam and of selection errors. In cases like this, and depending on the objectives of
the evaluation and the structure and number of data, a subclass or a regression model containing
nonadditive as well as additive genetic effects should be used in the best linear unbiased
prediction (BLUP) procedure to evaluate bulls. The recursive procedures of this paper facilitate
the computation of the inverses of the matrices of nonadditive effects at one or more loci needed
for the MME in subclass and in regression multibreed bull evaluation procedures. However,
solving the MME still remains a formidable task, especially in subclass models. The evaluations
of a bull for its nonadditive genetic values when mated to dams of several breed groups are
treated as different traits in the subclass model. Also, these “traits” are correlated within m loci
(i.e., the same type of nonadditive effects at m loci may exist in subclasses sy X BGD;j and s;; X
BGDj'). In regression models, on the other hand, the “traits” are specific nonadditive effects at m
loci. These specific nonadditive effects are uncorrelated within and across m loci. Thus, the
number of nonzero elements to be added to the MME is smaller than in subclass models, but still
it is large.

These computational considerations strongly suggest the need to use simplifying assumptions.
In subclass models, broader ranges might be used to define breed groups. For instance, only three
breed groups might be defined in a multibreed population of Simmental and Brahman: group 1 =
(0 to .3)S (1 to .7)B, group 2 = (.31 to .70)S (.69 to .30)B and group 3 = (.71 to 1)S (.29 to 0)B.
In regression models, interbreed nonadditive effects at m loci, m < 2, might be considered only.
Estimates of group intralocus nonadditive genetic effects have been found to produce reasonably
accurate estimates of breed-group-of-sire x BGD interactions for several growth traits (Dillard et
al., 1980; Kress et al., 1986; Elzo et al., 1990) and milk traits (Robison et al., 1981). Perhaps the
inclusion of nonadditive effects at one locus might be sufficient to account for random sire X
BGD interaction effects as well. These assumptions reduce the number of nonadditive genetic
matrices to be inverted to three in the subclass model and to two in the regression model if
intralocus intrabreed interactions are assumed to have the same variance. The three predictions of
bull nonadditive effects in subclass models will reflect the combined effect of all intralocus
interactions present in each sire X BGD subclass. In regression models, on the other hand, bulls
will have predictions of their total nonadditive intralocus intrabreed and interbreed genetic
effects. Linear combinations of these predicted values using the tivimn yield predictions of
specific sire X BGD nonadditive effects.

These recursive procedures can be used in multibreed populations with any number of base
breeds. The tiyjmn Will need to be redefined according to the assumptions made with respect to
intra- and interlocus interactions among alleles of one or more breeds at one or more loci. The
number of nonadditive genetic variances and covariances needed will also depend on the
assumptions made.

If sires of a particular breed (e.g., Simmental) are used on dams of various breeds to produce
market animals only, a subclass model could be appropriate. But, if animals of several breeds are
mated to create a multibreed population (e.g., Simbrah), then a regression model seems
reasonable. The recursive procedures of this paper allow the consideration of all covariances
among sire X BGD interaction effects both in regression and in subclass models. Accounting for
these covariances not only increases the accuracy of prediction of nonadditive genetic effects but
also allows one to obtain preliminary evaluations for bulls without progeny (e.g., young bulls) or
for bulls mated within a breed and related to bulls also used in crossbred matings.

The definition of sire x BGD interaction covariances. and the recursive procedures to compute
the matrices of sire X BGD interaction effects, developed in this research, make the evaluation of
large numbers of bulls for nonadditive genetic effects feasible. These procedures complement
those developed for additive genetic effects in multibreed populations (Elzo, 1990) and help
make possible the construction of MME for multibreed sire evaluation procedures. Because
multibreed sire evaluation procedures yield predictions of direct and maternal additive and
nonadditive bull genetic effects, they are useful in cases of semen importation, crossbreeding
mating schemes, formation of new breeds and evaluation of bulls for crossbred matings. Within-
breed or across-breeds sire summaries containing predictions of sire additive genetic values and
sire nonadditive genetic values when sires are mated to dams of various breed groups could be
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published. These summaries would be of help in making selection decisions and mating plans
within and between breeds as well as economic projections.

NUMERICAL EXAMPLE

The recursive procedures to compute Vg and Vg will be illustrated with a small hypothetical
example. Only two breeds (S and B) and a single trait are considered. It is assumed that bulls are
mated to dams of two breed groups: 1S OB and .5S .5B. Only interactions between alleles at one
locus and at two loci are assumed to be important. Furthermore, intralocus and two-locus
interactions among alleles of the same breed are assumed to have equal variance and are treated
as a single effect. Thus, there are four nonadditive effects: 1) intralocus intrabreed interactions

with variance o%l = 12, 2) intralocus interbreed interactions with variance 0%2 = 16, 3) two-locus
intrabreed interactions with variance 0’%1 = 10, and 4) two-locus interbreed interactions with

variance 0'32 = 14,

Computation of Vg and Vs for Subclass Models

There are four nonadditive effects per bull. The first two correspond to single-locus
interactions resulting from the mating of bulls to 1S OB dams and .5S .5B dams, and the second
two refer to the two-locus interactions produced by these same two types of matings.

Table 1 shows the structure of the data for the example. Also, Table 1 displays the intralocus
and two-locus interaction variances and covariances of bulls 1 to 5 when mated to dams from
breed group 1 (1S OB) and from breed group 2 (.5S .5B). Variances and covariances shown in
Table 1 are used to build Vg and Vg1, These variances and covariances were computed using
formula [1]. Because each bull belongs to a different breed group, the subscript for breed group
of bull was dropped from the t’s. As an example, the computation of the interaction variances
and covariances for bull 1 when mated to dams from breed group 1 (1S OB) and 2 (.5S .5B) is
described next.

The intralocus interaction variances and covariances for bull 1 were calculated as follows:

cov (11,11); = var(11),,

Dtr111 +ti113) 0% 1 Htinz 0%2] by formula [1],

(1+0)12+(0) 16,
12,

where t;3;; was computed using formula [3], t;;12 by formula [4] and t1113 by formula [5], and
the first 1 in cov(11,11); indicates bull 1, the second 1 breed group of dams 1 and the subscript 1
outside the closing parenthesis means 1 locus,

cov (12,12); = var (12),,

(1) [(t1211 + t1213) 0’%1 +t1212 0%2] by formula [1],

(5+0) 12 + (.5) 16,
14,

where tj511, ti212 and tj3;3 were computed by formulas [3], [4] and [5], respectively,

cov (11,12)4

(1) [min(ty111, ti211) + min (t1113, ty213)] 0%1 + min (1112, t1212) 0%2 by
formula [1],

(.5 +0) 12+ (0) 16,

6.
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TABLE 2. MATRIX OF COVARIANCES AMONG SIRE x BREED-GROUP-OF-DAM

INTERACTION EFFECTS (Vg)

Vg = block diagonal {Vig Vs}

Vis=[12 6 0 0 0 0 ] 0 3 1.5
14 0 0 0 0 0 0 15 35
16 8 8 4 .4 2 4 2
14 4 7 2 35 2 3.5
14 11 2 1 7 55
Symmetric 14 1 175 55 7
15 95 1 5
14 5 .875
13 8.5
| 14
Vys= [ 10 25 0 0 0 0 0 0 625 15625 |
13 0 0 0 0 0 0 15625 8125
14 105 35 2625 875 .65625 875 .65625
13 2625 325  .65625 .8125 65625 .8125
13 11.125 21875 .1640625 3.25 2.78125
135 1640625 203125  2.78125 3.375
13.75 11.96875 0546875 .04101563
13.375 04101563  .05078125
Symmetric 11.75 7.53125
| 13.375
The two-locus interaction variances and covariances for bull 1 were obtained as follows:
cov (11,11); = (1) [(t1121 + t1123) O3y + t1122 O2,] by formula [1],

1+0)10+(0) 14,

*

where t121 was obtained by formula [6], t; 123 by formula [11] and tiz2=(01 -ty -t 123), and
the subscript 2 of cov (11,11), denotes 2 loci,

cov (12,12),

(1) [(t1221 + t1223) 0’%1 +1222 0%2] by formula [1],

(0 +.25) 10 + (.75) 14,
13,

where t)25; and ty5,3 were calculated by formulas [6] and [11], respectively, and tjp5, = (1 —

t1221 — t1223),

cov (11,12),

(1) [min (ty521, t1221) + min (t1123, t1223)] G5, + min (t1122, t1227) 052 by
formula [1],

(:25+0) 10+ (0) 14,
2.5.

The matrix Vg (Table 2) is block diagonal with two blocks: Vis and V5. To construct Vg: 1)
fill up the 2 x 2 diagonal blocks of V1s and Vg with the variances and covariances computed in
Table 1, as indicted in step 2.a) of the rules to compute Vys, 2) calculate the offdiagonal blocks
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of Vg and Vs using steps 2.b) i) to iv) of the procedure to compute Vps. For instance, the
offdiagonal blocks of bull 1 were computed as follows:

1) for Vig:

2) for Vss:

0 07by rule 2.b) iv),
0 0

5) [8 8] = [8 g] by rule 2.b) ii),

(.25) [8 g] = [g 8] by rule 2.b) iii), and

o oz s 19

by rule 2.b) i); and

0 O]by rule 2.b) iv),
00

(.5) [(0) 8] = [8 (0)] by rule 2.b) ii),

(:25)2 [g 8] = [g g] by rule 2.b) iii), and

(520 0]+ (25)2f10 2.5 |=|.625 15625
00 25 13 15625 8125

by rule 2.b) i).

The inverse of Vg (Table 3) was obtained by computing the inverse of each block, i.e.,
(Vis)™! and (Vo5)), individually. The first step was to calculate the matrices Dy,~1, for
intralocus (m = 1) and two-locus (m = 2) interactions for the five bulls (u = 1, . . ., 5).

The Dy, !, u =1, . . ., 5, were:

(12 6] = [ .10606506 —.04545454] by formula [21],
| 6 14 —04545454 09090909

(16 8] = [ .875 —05 ]by formula [21],

| 8 14 -05 .1

-1
[ [14 11]-(25)[16 8 = [ 4375 =375 by formula [19],
11 14 8 14 -375 41666667

35 &Te=[s )

12773723 -.087591247 by formula [20], and
|—.08759124  .13625304
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S (P T AL P

= [ 17396216 —09714770|by formula [18].
—09714770  .15814742

The Dy Lu=1,...,5, were:

Dy = [10  25] =[1.0505050  —02020202 by formula [21],
| 25 13 —-.02020202 .08080808

-1

Dy, = [14 10.5 = .18118467 -.14634146]by formula [21],
[10.5 14 -.14634146 .19512195

Dyl = [[13  1L1]252[14 105

| [11.1 135 105 13
= [ 28343073 -.23330678] by formula [19],
| —.23330678  .27086484

Doyl = [[13.8 12 (—(06252[14 105
| |12 134 105 13

= [ .32983939 -—.29548876] by formula [20], and

| 20548876 33962627

Dys! = [[118  75]—(252[13 111 J—(06252[10 2577
| [ 75 134 1.1 135 25 13

= [ .13784209 -.07491456] by formula [18].
| —.074914556  .12067965

The matrices D!, m=1,2, u=1, ..., 5, are now added to the appropriate locations of the
inverse of Vg, m = 1, 2, according to the rules specified here. The use of these rules will be
illustrated with bull 5. Bull 5 has its sire (bull 3) and its matemal grandsire (bull 1) identified.
Thus, 1) its contributions to C;g are: D;57! to (Cyg)ss, (.25) Dys7! to (Cyg)33, (:0625) Dys! to
(Cis)11, (-125) Dys7! 1o (Cys)3; and (Cyg)13, —(.5) Dys~! to (Cys)s3 and (Cys)35 and —(.25) Dys7!
to (Cis)s1 and (Cis)1s, and 2) its contributions to Cyg are: Dos™! to (CZS)Sg, (252 Dyst o
(C28)33, (.0625)2 Dys~! 10 (Cos)11, (125)2 Das! to (Cag)31 and (Cps)i3, «(.5)* Das~! to (Cas)ss
and (Cp5)3s and —(.25)2 Dys71 to (C,5)s1 and (Cag)1s. When the contributions of all bulls have
been added, the resulting matrix (Table 3) is the inverse of Vg.

Computation of Vg and Vgl for Regression Models

Each bull is evaluated for the four nonadditive effects defined above (i.e., intralocus
intrabreed, intralocus interbreed, two-locus intrabreed and two-locus interbreed interaction
effects). The matrices Vg, m = 1, 2, are:

Vio = diagonal {12 16} and,
Vo = diagonal {10 14},

The matrix Vi (Table 4) is block diagonal, with blocks Vg and V,g. Each block can be
written as a direct product of two matrices: Vig = A1*V g and Vg = Ap*V,o. As defined in
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TABLE 4. MATRIX OF NONADDITIVE GENETIC COVARIANCES DUE TO INTRALOCUS
AND TWO-LOCUS INTERACTION EFFECTS (Vg)

Vg = block diagonal {ViR Vagr}

VeR=[12 0 0 0 ] ] 0 ] 3 ]
6 0o o0 o0 o0 o0 o0 o0 4
12 0 6 0 3 0o 3 0
16 o0 8 0o 4 o0 4
12 0 15 0 6 0
Symmetric 16 0 2 0 8
12 0 75 0
16 0 1
12 0
16
Vpr=[10 0 0 0 0 0 0 ] 625 0 ]
14 0 0 0 0 0 0 0 875
10 0 25 0 625 0 625 0
14 0 35 0 875 0 875
10 0 15625 0 25 0
14 0 21875 0 3.5
Symmetric 10 0 0390625 0
14 0 0546875
10 0

formula [1], the elements of A, are probabilities that two bulls received the same alleles at m
loci considering all common ancestors. The matrix Vg was computed in two steps. In step 1,
matrices A; and A, were formed by using rules 2.a. and 2.b. i) to iv) of the procedure to
construct Ay,. For example: 1) the elements of the first row of A; were: (aj);; = 1, (aj)12 = 0,
(ap13 =0, (a4 = 0, (a1)15 = .25, and 2) the elements of the first row of Ay were: (a)1; = 1,
(@212 =0, (ap)13 =0, (a2)14 = 0, (a2)15 = .0625. After the five bulls were processed, the resulting
matrices were A; and A,. In step 2, Vig and Vg were computed as direct products of A;*V g
and A»*V, respectively. For instance, the nonzero 2 X 2 submatrices of bull 1 contributing to
Vir and Vyp were:

1) between bull 1 and itself,

@iz 0]=[12 0],
0 16 0 16
1210 0}=[10 07,

0 14 0 14
and 2) between bulls 1 and 5,

(Vir)1s (.25)[1(2) 12]:[(3) 2]

(25210 07=[ 625 0 7.
0 14| |o 875

The computation of the inverse of Vg (Table 5), that is, Cr, also proceeded in two steps. The
first step consisted of obtaining the inverses of A; and A, (i.e., B; and B,) using the recursive

Vi

V2r11

(Var)15
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procedure to compute By, for m = 1, 2. To illustrate this procedure, bull 5 will be used again.
Because the sire (bull 3) and the maternal grandsire (bull 1) of bull 5 are known, rules i) of the
procedure to build By, apply. The contributions of bull 5 to: 1) B; were: dis71 to (by)ss, (.25)
dis! to (by)33, (:0625) dis~! to ()11, (.125) djs~! to (by)s; and (by)13, ~(.5) dys~! to (b1)s3 and
(bl)35 and —(.25) dls_l to (bl)Sl and (bl)ISv where (115_l =(1-.25 —.0625)—1, and 2) B2 were:
dz57! to (by)ss, (:25)2 das! to (bp)33, (.0625)2 das~! 1o (by)1y, (125)2 dos! to (b2)31 and (by);3,
~(.5)2 das71 to (by)s3 and (by)3s and —(:25) dys~! to (by)s; and (by);s, where dps = (1 - (25)2 -
(.0625)>)"1. The complete B; and B, matrices are:

B; = [ 1.09090909 .0 18181818 .0 —-36363636 |
14 —.66666667 —26666667 .0
1.6969697 .0 -.72727273
Symmetric 1.06666667 .0
B 1.45454545 _
and, _
By=| 1.0041841 .0 0167364 .0 —-.06694561
1.07058824 -.26666667 —0627451 .0
1.13361227 .0 -.26778243
Symmetric 1.00392157 .0

i 1.07112971 |

In the second step to form Cy, the direct products by Bp*Vpo !, m = 1, 2, were computed. The
matrices Vpyg~l, m = 1, 2, were obtained by. direct inversion of Vi, m = 1, 2. The Vot
matrices were:

Vig!

diagonal {.08333333 .0625} and
V!

diagonal {.1 .07142867).

As an example, the nonzero submatrices of Cgp for bull 1 were:

1) between bull 1 and itself,

(CR)11 = 1.09090909 * diagonal {.08333333 .0625)
= diagonal {.09090909 .06818182}
and
(Cp)11 = 1.0041841 * diagonal {.1 .07142857}
= diagonal {.10041841 .07172744},
2) between bull 1 and bull 3,
(Cip)13 = .18181818 * diagonal {.08333333 .0625}
= diagonal {.00167364 .00119546},
and
(Car)13 = 0167364 * diagonal {.1 .07142857)
= diagonal {.00167364 .001194546},
and 3) between bull 1 and bull 5,
(Cim)1s = —36363636 * diagonal {.08333333 0625)
= diagonal {-.03030303 —-.02272727}
and
Cr)is —06694561 * diagonal {.1 .07142857)

diagonal {—.00669456 —.00478183).
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IMPLICATIONS

Additive as well as nonadditive genetic ef-
fects are important sources of variation in mul-
tibreed populations. However, straightbred and
crossbred bulls used for crossbreeding purposes
currently are evaluated using intrabreed sire
evaluation procedures. Sire X breed group of
dam interaction effects are ignored in intrabreed
procedures. The genetic interpretation of sire x
breed group of dam interactions given in this re-
search makes it computationally feasible to
evaluate large numbers of bulls for these
nonadditive genetic effects. Because covari-
ances among sire X breed group of dam interac-
tions are accounted for, sires also can be
evaluated for matings not made through progeny
from relatives that have them. Mating and selec-
tion decisions as well as economic projections
can be made more accurately.
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APPENDIX

Derivation of Formula [1]
VmS = {COV(Sik X BGDj' Si'K X BGDj') }.

Conditioning each covariance term in Vpg
on the interaction effects present among alleles
at m loci, and applying Theorem 7, page 159
in Mood et al. (1974), we obtain:

Vms = {E[cov(sy X BGDy, siyv X BGDy) In]
n
+ cov(si X BGDjin], E[s; X BGDy In])},
n

where n represents the nth interaction among
alleles at m loci, E denotes expectation and |
means given. The second term of this expres-
sion is zero because all random interaction
effects were assumed to have mean equal to
zero. Thus,

Nm
{3, P(sc X BGD;

n=1

A sy X BGDy Iy, }

Vms

<
)
!

Y @)™ Y, min
c=1 n=1

(P(scx” X BGDjln), P(sqir X BGDy In))o,, )

5
Il

C c
{Z (A jw,cx)™ Z min
(tcy ima’ Loy mn)62 }

where P means probability and N means
intersection.





