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ABSTRACT

Multiple-trait, multibreed mixed model procedures require the inverse of a multiple-trait
heterogeneous covariance matrix of direct and maternal additive genetic effects (G-1).
Because of the heterogeneity of variances and covariances across breed groups, recursive
procedures used in single-breed populations cannot be used. Thus, recursive procedures to
directly compute G-! in multibreed populations were developed. These procedures account
for inbreeding, heterogeneity of additive genetic variances and covariances in different
breed groups and permit animals to be evaluated for different sets of traits. In addition,
computational methods to recursively obtain G were developed. These strategies simplify
the computation of best linear unbiased predictors by mixed model procedures, which are
used to predict the genetic worth of animals and to make mating plans in cases of semen
importation, stratified breeding schemes, formation of new breeds and sire evaluation for

crossbreeding purposes.

(Key Words: Mixed Models, Sire Evaluation, Additive Effects, Maternal Effects,

Crossbreeding, Beef Cattle.)

Introduction

A multibreed population can be defined as
one composed of breeding animals of several
breed groups. Breed groups can be formed by
straightbred animals or by crossbred animals.
For instance, the Simbrah population can be
considered to be multibreed because it is
composed of Simmental, Brahman and several
Simmental X Brahman breed groups. Elzo and
Famula (1985) and Elzo and Bradford (1985)
developed single-trait and multiple-trait mixed
model procedures to evaluate straightbred and
crossbred bulls using straightbred and cross-
bred progeny in multibreed populations. Un-
equal variances and covariances across breed
groups and unequal sets of traits evaluated per
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bull were accounted for. To build the mixed
model equations for these procedures, the
inverse of the matrix of covariances of additive
genetic effects (G™1) is needed. Because of the
heterogeneity of additive genetic covariances
across breed groups, G- cannot be expressed
as A-1*G,~ 1, where A-! is the inverse of the
numerator relationship matrix, Gg™! is the
matrix of additive genetic covariances among
traits and * indicates a direct product. Hence,
recursive procedures to compute G~ within a
breed (Henderson, 1975a,b, 1976a,b,c) cannot
be used in multibreed populations. Direct
computation of G-1 in large populations will
be difficult and costly, even with mainframe
computers. Thus, the objectives of this re-
search were 1) to develop recursive procedures
to compute G~ for multiple-trait mixed model
procedures in inbred and in noninbred multi-
breed populations when the matrix in additive
genetic covariances among traits differs across
breed groups and animals are allowed to be
evaluated for different sets of traits and 2) to
develop recursive procedures to compute G,
under the same conditions specified for G-1.
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RECURSIVE METHOD TO COMPUTE G

The recursive procedure to compute G will be presented first, then procedures to compute
G-L. Finally, these recursive methods will be illustrated with a small numerical example.
Animals from different breeds and from different subpopulations within a breed are dealt with in
a similar fashion by these procedures. Thus, the term “breed” will be used throughout this paper
to imply “breed or subpopulation within a breed.” In addition, the word “traits” will be used to
imply measurements of several characters in the usual sense (e.g., birth weight, weaning weight,
milk yield, etc.) and to indicate measurements of this same trait in different countries that are
treated as separate characters (c.g., weaning weight in Montana, U.S. vs Venezuela). The
expression ‘“considered for trait j” will be used to indicate that an animal is “identified in the
pedigree and its set of traits contains trait j.”

The recursive method to compute G is based on Van Vleck’s (1974) and Henderson’s (1976a)
versions of Emik and Terrill’s (1949) method to calculate A. Cases in which both sire and dam,
only sire and maternal grandsire, only sire or dam, only maternal grandsire and none of the above
ancestors of an individual are identified in the pedigree will be considered. The recursive
procedure for G has two major steps. First, data must be organized in chronological order and,
second, additive genetic covariances among animals are computed starting with the base animals
and continuing with the pedigree animals. Some definitions must now be made.

Let n be the total number of animals and J; the number of traits in the set for animal i. Define
n

a to be the Z J; X 1 vector of additive genetic effects ordered by trait within animal. Thus, the
i=1
matrix of covariances among the elements of vector a can be written as:

G = {g¢)] .1 <14 i €n Q)]

where

8ir = (&ijy} = matrix of covariances among the additive genetic values of the Jj traits for
animal 1 and the J; traits for animal i’ :

n n

The ih row-block (column-block) of G is defined to be the J; x Z Ji (Z Ji X J;) submatrix
i=1 i=1

formed by the rows (columns) of G associated with the Ji traits in the set of animal i.

The recursive method to compute G is as follows. First, identify 1) animals to be considered
in descending chronological order from 1 (oldest) to n (youngest), 2) the sire, dam and maternal
grandsire of each individual; write zero when any of them is unknown, 3) the genetic group of
each animal, 4) the expected breed composition of each genetic group, and 5) the set of traits
considered for each animal. Second, compute the additive genetic covariance (8ij.i'j’) between the
traits considered for the ith base animal (j) and those considered for the i'h base animal ("), over
all base animals. Base animals can be straightbred and(or) crossbred, and they are (or are
assumed to be) unrelated and noninbred.

Let (0jy) be the additive genetic covariance between traits j and j* for genetic group I, the
genetic group to which the i animal belongs. Thus, the gij.iy are equal to (ojj);, when i = i” and
base animal i is considered for traits j and j’, and equal to zero otherwise. Under the assumptions
of independence of loci and constant additive genetic covariances over time, it can be shown that

O = Y, fik(©oj)
i’/ ; IK\Yjy’ /K o

where fi is the expected fraction of breed K alleles in genetic group I, (0jy)k is the additive
genetic covariance between traits j and j’ in breed K and the sum is over all breeds present in the
multibreed population.

Third, compute the additive genetic covariances (gi;.rj?) between the sets of traits for the it
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(base or pedigree) animal (j) and set of traits for the i"P pedigree animal (j*), over all pedigree
animals. Computations can be performed either one row-block or one column-block at a time.

The value of the g;;; will depend on the ancestors identified for the pedigree animals and on the
traits contained in the set for each animal. Thus,

(@) when i # i’ and traits j and j° are in the set for animal i, 8ijiy is equal to:
@ 5 gijgy + S5 gijay ' 3)
if the sire (s") and the dam (d") of individual i’ are considered for traits j and j,
() 5 gy + 25 gijmy 4)

- if only s” and m’ (maternal grandsire of animal i’) are considered for traits j and j',

(i) .5 gy (5)
if only x’ is considered for traits j and j, where x’ = s’ or d,
iv) 25 gijmy ©

if only m’ is considered for traits j and j,, and
(v) O, if animal i’ has no ancestors considered for either trait j oor i
(b) when i = i’ and traits j and j° are in the set for animal i, 8ijiy is equal to:
@ O + 5 g ' )
if the sire (s) and dam (d) of animal i are considered for traits j and j,
() O + 25 ggmp ®)
if only s and m (maternal grandsire of animal i) are considered for traits j and j’, and
(i) (o) )

if only one ancestor of animal i (s, d or mgs) or no ancestor of animal i (s, d and mgs) is
considered for traits j and j'.

The above recursive procedure to compute G reduces to the one to compute A, as described
by Emik and Terrill (1949), Henderson (1976a) or Van Vleck (1974), when the set of traits is the
same for all animals and a common additive genetic covariance matrix (Gop) is assumed across
genetic groups. Under these conditions G, can be factored out so that A is computed separately

and G is computed as the direct product of A times Go.

RECURSIVE METHODS TO COMPUTE G-1

The objective of these recursive methods is to compute G-1 without previous knowledge of
G. These methods require the same type and ordering of the data specified for computing G.
Also, base animals must be assumed to be unrelated and noninbred. The rules to write G1 are
the same for multibreed populations with and without inbreeding, but the coefficients used by
these rules are different and so are the procedures to compute them. Thus, the rules used to form
G in multibreed populations with and without inbred animals are presented.
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Deriving the Computational Rules to Obtain G-1

The vector of additive genetic effects, a, expressed as a genetic model (Quaas and Pollak,
1980), can be written as:

a=.5Pa + 6 (10)

where

P = lower triangular incidence matrix relating sires and dams or sires and maternal grandsires
to progeny within traits. The row of P for the j! trait of the ith animal contains two 1’s
when the sire (s) and dam (d) of animal i are considered for trait jyalanda.5 whens and
m (maternal grandsire of animal i) are considered for trait J»a.5 when m is considered for
trait j and all zeroes when no ancestor of animal i is considered for trait jiand

6 = vector of residual random additive genetic effects.

The covariance matrix of vector a is:

G = A-5P)IB(I-.5P)! (11)
where B = diag (bij,ij?)- The i" block of B is a Jj % J; matrix containing the covariances among the
residual additive genetic effects of the traits contained in the set for animal i. The residual
additive genetic covariances (biji) can be shown to be equal to:

@) (©Ojn - 25 gys¢ — 25 gjqy (12)
when s and d are considered for traits j and i

@) O - 25 g5 - 0625 gmjmy (13)
when only s and m are considered for traits Jj and j’,

(i) (opn - .25 8xj.xj’ (14)
when only ancestor x (s or d) is considered for traits J and j,
when only m is considered for traits j and j’, and

V) (o) (16)
when neither s, d nor m are considered for traits jand j (i.e., traits j and j’ are both contained
only in the set for animal i).

The additive genetic covariance for ancestor z (z=5s,d orm), 82,2 in formulas (12) through
(15), is equal to:

M @)z + 5 gujdry 17

when sz (sire of z) and dz (dam of z) are considered for traits jand i, where (ojj')z is the additive
genetic covariance between traits j and j’ in the genetic group of animal z,

(i) (ojj')Z + .25 8szj,mzj’ (18)
when only sz and mz (maternal grandsire of z) are considered for traits j and j’, and

(i) (oj)z (19)
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when neither sz, dz nor mz are considered for traits j and i
The inverse of G is:

Gl =3a- sPB! (a - S5P) (20)

where B! = diag {biii’}. The biii’ are the elements of the inverse of the it" block of B. The rules
to write G-1 directly can be derived by noting the contributions of the biiii’ to it, when s and d, s
and m, only s (or only d) and only m are considered for traits jand j’. Define g¥)# to be the jj’th
element of the yz®" submatrix of G-!, where Y, 2 = s, or m. Thus,

(i)  when animal i, its sire and its dam are considered for traits j and j’, add
bl o giil
25 bl 1o g
25 bl 1o gdidi’
25 b 1o gudy, gisf
—.5 biiii’ to gij-sj', gsj-ij'
-5 bl to giidi’, gdiiy

(i) when only animal i, its sire and its maternal grandsire are considered for traits j and j’,
add

bij,ij’ to gij.ij'

25 bl 1o gsisi’

0625 bl 1o gmimj’
125 b’ to gy, gmis
-5 bl o glisi, gsiif
-25 bl o giimi,” gmiif

(ili) when only animal i and its ancestor x (x = s or d) are considered for traits jand j,
add

bij.ij' to gij.ij'
25 b o guia
-5 bij-ij’ to gij-"j'_ ng.ij'

(iv) when only animal i and its maternal grandsire are considered for traits j and j’, add
bii-ii’ to gihi’
.0625 b’ o gmj.mj’
-25 bl 1o ghmi, gmiif

(v) and when only animal i is considered for traits j and j, add

b’ to gij.ij'_

The rules to build G-! in multibreed populations reduce to the rules to compute A-1, given by
Henderson in various publications (Henderson, 1975a,b, 1976a,b,c), when 1) a common additive
covariance matrix (G,) is assumed across genetic groups, 2) the set of traits is the same for all
animals and, 3) G, is factored out such that G-! is computed as the direct product of A-1 and
Go~!. Under these assumptions, matrix B-! becomes matrix D~2 of Henderson (1976a). This
emphasizes the fact that matrices B! (here) and D2 (Henderson, 1976a), although structurally
different, are equivalent in terms of function because both of them contribute with coefficients
used by recursive rules to simplify computations for G-, in multibreed populations and in single
breed populations, respectively.
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Computing G in Inbred and Noninbred Multibreed Populations

The procedure used to compute the biii’ in multibreed populations with no inbred animals
will be different from the one used in multibreed populations with inbred animals. Thus, the
computation of G-1 for each type of population will be treated separately.

Noninbred Multibreed Populations. In the absence of inbreeding, all covariance terms
between ancestors of s, d and m in equations (12) through (15) vanish. Hence, the bi;,ij’ can be
calculated with knowledge only of the additive genetic covariances of the genetic groups
involved. The bijiy are computed as follows:

M (oyh - 25 (o5)s - 25 (oj)p (21)

when s and.d are considered for traits j and j,, where (0j)s [(Gjj)p] is the additive genetic
covariance between traits j and j’ in the genetic group which s[d] belongs to,

G) @ - 25 (o)s ~ 0625 (0j)m (22)

when only s and m are considered for traits j and j, where (0jj)m is the additive genetic
covariance between traits j and j in the genetic group which m belongs to,

(i) (Oyn - .25 (oj)x (23)

when only ancestor x (s or d) is considered for traits jand j’, where X=Sifx =sand X =D if x
= d,

(v) (ojn — 0625 (ojIm (24)
when only m is considered for traits j and j’s and
V) (o3n (25)

when neither s, d nor m are considered for traits j and j'.

Subsequently the biii" are obtained by inversion of the {bjj,i) submatrices, for 1 < i < n.
Finally, application of rules (i) through (v) for 1 < i < n, yields G-L.

Inbred Multibreed Populations. When some animals in a multibreed population are inbred, the
additive genetic covariances between the ancestors considered for each inbred animal are needed
to compute the residual random additive genetic effects. However, these covariances will be
unknown because G-1 is being formed without previously computing G. Hence, equations (12)
to (15) cannot be used to compute the residual random additive genetic covariances (bjj,ij7) for
those inbred animals. A procedure that computes the b;;;; for all animals (inbred and noninbred)
in a multibreed population, without requiring previous knowledge of the additive genetic
covariances among ancestors of the inbred animals, is described below. Steps to compute the
coefficients used by the recursive rules to construct G-! are also included in this procedure. This
method is a modification of the one described by Henderson (1976a) to form A-1 using the
diagonal elements of a lower triangular matrix L (Al = (LL")™1) and of Quaas’ (1976) algorithm
to computer these elements rapidly.

Let J be the maximum number of traits contained in the set for animal i, 1 < i < n. Define
matrix (I - .5 P')C to be L, where C is a matrix obtained by Cholesky decomposition (Golub and
Van Loan, 1983) of B (i.e., B = CC’). Let U be an nJ x J matrix that stores the sum of squares of
the submatrices of each row-block of L. Let V be an nJ x J matrix that stores the block diagonal
elements of L and, temporarily, the offdiagonal submatrices of the i column block. The
recursive procedure involves computing the elements of matrix L as well as those of matrices B

and its inverse, one animal at a time, starting with the oldest one (animal 1). Thus, for the jth
animal:
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(@) compute b; = (bjjij)ng

- where

bij i = (ojj’)l - .25 Usjj’ - 25 Udjj’ (26)
when animal i, its sire (s) and its dam (d) are considered for traits j and _] where (cJJ )i is the
additive genetic covariance between traits'j and j’ m genetic group I, Ugjy is the jj'® element of
the submatrix of U for s and Uy for the jjth element of the submatrix of U for d,

= (oyh — 25 Ugy — .0625 Upyy 27

when only animals i, s and m (matemal grandsire of animal i) are considered for traits j and j’,
where Upjy is the jj' element of the submatrix of U for m,

= (©jh - 25 Uy (28)
when only animals i and x are considered for traits j and j, where x = s or d,

= (O — 0625 Uy (29)
when only animals i and m are considered for traits j and j,

= (o (30)
when no ancestor of animal i is considgred for traits j and j’, and

=0
when traits j and j° are not in the set for animal i.

Formulas (26) through (29) are simply computational expressions of formulas (12) through

(15). By definition LL’ = G, hence Uzjy is equal to g, for z = 5, d and m.
Then,

(i) invert b; and add the contributions of the inverse elements (bi} i’ corresponding to
combinations of traits evaluated for animal i to G-1, according to the rules given above. If G-1 is

too large to be stored in core, the nonzero contributions of the biii can be stored on disk or tape
accompanied by their row and column numbers.

(ii) calculate Ly by Cholesky decomposition of b; and store it in the submatrix of V
corresponding to animal i (V;).

(b) compute Lj; fori + 1 < i’ < n. Temporarily store the Ly; in the Vy, i + 1 < i’ < n. The

elements of the offdiagonal submatrices Ly; (i.e., the lyj ;i) are computed using the elements of
the Vi (ie, the vyjy). Thus,

(i) when animals i, i’, s” (sire of i) and d’ (dam of i) are considered for traits j and i, the l;

i'juij’
are equal to:
S vgip + .5 vaip ifiss’<d orisd <s’
5 vey ifd’ <i<s’
S Vi ifs’<i<d’ and

0 if s and d’ <iand if j' > j
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where vyjy is the jj"® elements of the submatrix of V for s” (Vy) and vy is the jj"™ element of
the submatrix of V for d° (Vg),

(ii) when only animals i, i’, s” and m” (maternal grandsire of i") are considered for traits j and
j/, the li'j.ij' are equal to:

5 Vg + 25 vy ifism’ <s’ori<s’<m’
.5 \rs.ﬁjjt ’ if m’ <i< S'
25 Vi’ ifs"<i<m’and

ifs’andm’<iandifj >j
where viyjy is the jj' element of the submatrix of V for m’ V)

(iii) when only animals i, i’ and x"(x" = s" or d) are considered for traits j and j’, the lyj; are
equal to:

S vyip ifi<x”and
0 ifxX"<iandifj >j

(iv) when only animals i, i’ and m’ are considered for traits j and j’, the lyj;; are equal to:

25 vy ifi<m’and
0 ifm’<iandifj > j

(v) and when only animals i and i’ are considered for traits j and j’, the lyj;j are equal to zero.

(c) compute Vi Vi" (i.e., Lj;) and add it to.Ui'. the submatrix of U for the i animal, for i <i’ <
n.

After finishing with the computations for the nh animal (youngest one), G-1 is complete. If
the contributions of the b’ to G~1 were stored on disk or tape, they must now be sorted by
column number within row number, or vice versa, and those terms with equal row and column
number added. The resulting values are the nonzero elements of G-l

DISCUSSION

The methods described to compute G-1 (and G) are general in that they can be used to form
these matrices under conditions of 1) unequal genetic covariances among animals from different
genetic groups, 2) different sets of traits for each animal, 3) different pedigree information for
each animal, and 4) both inbred and noninbred animals. Allowing for these four characteristics
permits substantial flexibility in the modeling and computing strategies of multibreed BLUP
procedures. The matrix G™! can be constructed to include only the traits of interest for each
animal; this is an advantage especially when animals are being evaluated using data from highly
unbalanced designs. However, a constraint requiring that each animal and its relatives be
connected through common traits in their sets must be imposed to avoid breaking pedigree ties.
Also, G™! must include all pedigree animals connecting the animals of interest to the base
animals and to the animals with records. This implies that the methods to form G- cannot be
used to compute the inverse of a submatrix of G (e.g., the inverse of G for animals of one
generation only). Such inverses could be obtained using inversion by partitioning techniques
(Searle, 1966), as suggested by Henderson (1976a) for the inverse of a submatrix of A.
Nevertheless, this approach might not be practical if the matrices to be inverted are too large and
have no special pattern (e.g., block diagonal) to facilitate computations.

In some multibreed data sets, simplifications with respect to the four conditions specified
above will be made as part of the computing strategy. For instance, in a cattle sire evaluation
program based on progeny data, only sires and maternal grandsires could be included in G} If
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these simplifications are such that all animals are evaluated for the same set of traits and a
common additive genetic covariance matrix (G,) for all genetic groups is assumed, then G can
be expressed as A*Gg, G~ is equal to A-1*G,~1 and the methods of this paper reduce to those
of Henderson (1975a,b, 1976ab,c), as indicated previously.

The methods to build G! (and G) allowed for combinations of sire and dam or maternal
grandsire because, in practice, these are the ancestors most likely to be identified in the pedigree
of an animal. However, these methods can be extended, using path coefficient principles (Wright,
1922), to account for the first paternal and maternal ancestors identified in the pedigree of an
individual. This extension affects only the fractions that multiply the elements used by the
methods to form G~ and G. Let tp and tq be the numbers of generations between animal i and
its first paternal (p) and maternal (q) ancestors considered for traits in the set for animal i. Let tp’
and tq” be the numbers of generations between animal i’ and its corresponding ancestors p’ and
q". Thus, in the method to build G: 1) the g;;yy and the gj; oy are multiplied by (.5 and (.5)'9,
respectively, and 2) the gp; i are mult1phed by (5)‘P”‘1“Jf In the method to bulld G1: 1) the
Epjpi’ and the ggj g are muluphed by (.5)2'P and (.5)29, respectively, 2) the bl i’ are multiplied
by 1 if added to g ' by (.5)2% if added to gPJ ', by (. 5)2“1 if added to g04/’, by (5)‘P+“1 if added
to gPi4i’ and gUP/', by ~(.5)¥ if added to giiPi" and gPiii’ and by —(.5)W if added to gi4” and g®+ii’,
3) the Up;jy and the Ugjy are multiplied by (.5)2'P and (.5)29, respectively, and 4) the vpiji and the
Vg'j are multiplied by (5)‘P and (.5)'9, respectively. The methods to form G-1 (and G) will have
rules for the cases when both first ancestors, only the first maternal ancestor, only the first
paternal ancestor and none of them are considered for traits in the set of an individual. The
procedures of this paper can be modified to account for these cases by substituting p’, q’, p and g
for s, m’, s and m, and ignoring the cases involving d.

IMPLICATIONS

The recursive procedures of this research greatly facilitate the computation of the mixed
model equations of multibreed evaluation procedures. These procedures permit the simultaneous
evaluation of bulls for direct and maternal additive and nonadditive genetic effects for one or
more traits. Multibreed procedures allow breeders flexibility in their selection goals. For
example, if short-term results were important, then bulls should be chosen based on the sum of
their additive and nonadditive genetic values, but for long-term improvements, additive values
should be emphasized. Also, crossbred mating strategies can be planned more accurately. These
features make multibreed procedures useful to evaluate animal in cases of recurrent rounds of

semen importation, stratified breeding schemes, formation of new breeds and sire evaluation for
crossbreeding purposes.

TABLE 1. PEDIGREE, BREED COMPOSITION AND ADDITIVE GENETIC COVARIANCES
AMONG ALL TRAITS CONSIDERED PER ANIMAL

Maternal E:::pczctcd Trait Additive covariances
Animal Sire grandsire  composition? number 11 12 22
1 A 1,2 16 6 36
2 B 1 9 5 25
3 2 SA 5B 12 12.5 55 30.5
4 1 A 1 16 6 36
5 1 SA 5B 1,2 125 55 30.5
6 2 25A .75B 2 10.75 5.25 27.75
7 3 2 SA 5B 1,2 12.5 5.5 30.5
8 3 1 J5A 25B 2 14.25 5.75 3325

®A = brecd 1; B = breed 2.
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TABLE 2. MATRIX OF ADDITIVE GENETIC COVARIANCES (G) ORDERED BY TRAIT
WITHIN ANIMAL FROM OLDEST TO YOUNGEST

|

|

16 6 0 0 0 8 4 1.5 0 0 0 1.5 ]
6 36 0 0 0 3 1.5 9 0 0 0 9
0 0 9 45 0 0 0 0 0 45 0 0
0 0 45 12.5 5.5 0 0 0 0 73715 215 275
0 0 0 55 30.5 0 0 0 0 275 1525 1525
8 3 0 0 0 ' 16 2 s 0 0 0 5
4 15 0 0 0 2 12.5 5.5 0 0 0 375
15 9 0 0 0 s 5.5 30.5 0 0 0 225
0 0 0 0 0 0 0 0 21.75 0 0 0
0 0 45 1375 275 0 0 0 0 13.625 55 1.375
0o -0 0 275 1525 0 0 0 0 55 30.5 7.625
| 1S 9 0 275 1525 75 315 225 0 1375 7.625 3325 |
NUMERICAL EXAMPLE

To illustrate the methods described above, G and G~1 are computed for a hypothetical case,
whose data are shown in Table 1. For simplicity only two breeds and two traits are considered.
The additive genetic covariances of the crossbred groups were computed using equation (2) from
the text. For instance, the additive genetic covariance between traits 1 and 2 for the genetic group
of animal 6 is .25(6) + .75(5). Animals 1 and 2 are base animals and animals 3 to 8 are pedigree
animals. The set of traits for animals 3, 5 and 7 contains traits 1 and 2, the set for animals 2 and
4 only contains trait 1 and the set for animals 6 and 8 only contains trait 2. Only male ancestors
are considered in the pedigree.

Matrix G is presented in Table 2. The rules used to compute G are illustrated using the first
column-block (= first row-block).

- T — -
gll = 16 6 R g21 = 0 0 s
6 36 - -
0 0 - -
85y = | -25(16) .25(6) |, 861 = 25(0)  .25(0) .
| 256) .25(36) - -
g1=| -S500)+.250) .5(0) , and gg; = 500)+ .25(6)
i 5(0) +.25(0) .5(0) 5(0)+  .25(36)

Matrix G™! is shown in Table 3. Notice that neither the sire nor the maternal grandsire of an
of the pedigree animals is inbred. Hence, the coefficients used by the rules to build G~1 (bii-i")

can be computed using equations (12) through (16). The matrices of coefficients, bi, for the eight
animals in this example are:
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B -1 -1
bl=| 16 6 L. B2s= 9 :

6 36
- -1 -1
B=] 125-259) 55 . b= l: 16—.25(16)] ,
55 30.5
- —-l _1
bS=| 125-.0625(16)  5.5-.0625(6) , b6 = [: 27.75 :I ,

5.5-.0625(6)  30.5-.0625(36)

-1
b7 = 12.5-.25(12.5)-.0625(9) 5.5-.25(5.5) ,and

5.5-.25(5.5) 30.5-.25(30.5)

-1
b8 = 33.5-.25(30.5)-.0625(36) :l

The computations for the first column-block of matrix L (recall G = LL") are used next to
illustrate the procedure used to compute the matrices of coefficients (bi) when some animals in a
multibred population are inbred. First, we obtain the additive genetic covariance of the genetic
group for animal one (bj). Because animal 1 is a base animal,

Second, by is inverted to obtain the matrix of coefficients for animal 1 (bp),

-1

Third, Ly is computed by Cholesky decomposition of by,

Lu=| 16? o0

1.5 [36<1.5)2})5
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Fourth, Ly, 2 < i* £ 8, are computed,
L= 0 0 , L3g= S5(0) 0 '
. -

0 0

L4 = 5(4) 0 , Ls1= 25(4) 0 ,

- 25(1.5)  .25(5.809475)

Lﬂ:[ 0 25(0) ] , Lyi=|  .5(0)+.25(0) 0 , and

5(0) 5(0)

L31=[ 5(0)+.25(1.5) .5(0)+.25(5.809475)]

Fifth, LyiLi1" is computed and added to Uy, for 1 < i’ < 8. For instance,

L31L81'=|: 225 } and Ug = 0 0

If these computations are carried out for all column-blocks of L, coefficient matrices bl
through b8 are obtained. The use of the rules to form G-! will be exemplified using b7, where

b’ =| .12393651 —.22349210 = p/1.71 p’/1.72

-.22349210 04774603 b72.71 b72.72
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Animal 7 has both its sire (animal 3) and its maternal grandsire (animal 2) identified. Thus,

we must add

b7 to | g7L71 G772
| 7271 gl272 |
- -

Sb7t0 | g3131 G332
| g3231 g3

0625 b71,71 1 g21,21
125 b7L71 g g21.31 531,21
125 71726 g21.32 532,21

71,31

-5b7 10 3171

g3 1,72 g

g32,71 g32,72 g72.3 1

~25 67171 19 g2171 57121 grg
~25b71.72 g 21,72 g7221,

g7 1,32

g72,32

Application of the rules for G- to the bi, 1 < i < 8, yields matrix G-! in Table 3. Notice that
animal 6 is completely disconnected from animal 2 (animal 2 is the maternal grandsire of animal
6) because they do not share a common trait in their sets and there is no other animal linking
them. On the other hand, animals 8 and 2, even though they have no trait in common in their
sets, are connected through animal 3 (related to both animal 2 and animal 8), because the set for
animal 3 has trait 1 in common with animal 2 and trait 2 in common with animal 8. These two
cases illustrate the need for the constraint requiring common traits in the sets of relatives to

connect them.
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