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ABSTRACT: Restricted maximum-likelihood proce-
dures were developed to estimate additive and nonad-
ditive genetic and environmental covariances for
multiple traits in multibreed populations. The com-
putational procedure follows the expectation-maximi-
zation (EM) algorithm, where the set of equations in
the maximization step is solved by successive approxi-
mations. This computational procedure does not guar-
antee convergence to a symmetric positive-definite
covariance matrix. Thus, computer programs will need
to incorporate restrictions in the maximization step to
ensure positive definiteness of each covariance matrix.
Additive genetic and environmental covariances were
modeled in subclass form (zeros and ones in the
design matrices). Nonadditive genetic covariances

were modeled in regression form (any value between
and including zero and one in the design matrices).
Computational requirements will be larger than for
intrabreed analyses. Appropriate simplifying assump-
tions and numerical techniques (e.g., sparse and
iterative numerical techniques) will be required for
the implementation of these multibreed covariance
estimation procedures. Number of iterations (5 to 12)
and computing times (57 to 113 min) to achieve
convergence when estimating 21 genetic and environ-
mental covariances in five small simulated multibreed
data sets (two breeds, 25,200 to 50,400 calves, 120 to
135 unrelated bulls) suggest that these procedures
are computationally feasible.
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Although crossbreeding is widely practiced in the
United States, the active genetic basis of the beef
industry is formed by a large number of breeds (e.g.,
Angus, Brahman, Hereford, Limousin, Simmental)
that act independently of one another. Consequently,
genetic evaluation and selection of parents are still
formally carried out within each breed, as evidenced
by the Guidelines for Uniform Beef Improvement
Programs (BIF, 1990). Unfortunately, intrabreed
EPD cannot be used to compare bulls of the same or
different breeds for crossbreeding purposes because
they consider only additive genetic effects (each breed
has a different additive genetic base) and they ignore
nonadditive genetic effects (defined here as the
combining ability of a bull when mated to dams of
various breed compositions). If bulls are to be
compared across breeds and crossbred groups both
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additive and nonadditive genetic effects will need to be
accounted for (Elzo and Famula, 1985). In a mul-
tibreed genetic evaluation, each breed and crossbred
group may have different values for additive genetic
variances and covariances (Elzo, 1990a; Lo et al.,
1994). Similarly, each breed group combination may
have different values for nonadditive genetic variances
and covariances (Elzo, 1990b). Environmental vari-
ances and covariances may also differ across breeds
and crossbred groups. The large number of sets of
additive, nonadditive, and environmental covariances
that need to be estimated simultaneously can be
drastically reduced if multibreed covariances are
assumed to be linear functions of a small set of
covariances.

The current method of choice to estimate covari-
ances using animal breeding data is REML. However,
existing REML procedures can only estimate a single
set of covariances. Thus, the objective of this research
was to develop REML procedures for multibreed
populations that 1) account for heterogeneity of
covariances across genetic groups of animals, 2)
express additive and nonadditive genetic and environ-
mental covariances of genetic groups as linear combi-
nations of a small number of covariances, and 3)
simultaneously estimate all the sets of covariances
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used to compute all the additive and nonadditive
genetic and environmental covariances of any genetic
group given a set of base breeds.

Development of the Restricted
Maximum Likelihood Procedure to Estimate
Covariances in Multibreed Populations

The computational procedure is based on the
expectation-maximization (EM) algorithm (Dempster
et al., 1977), where the maximization step is accom-
plished by iteration.

The description of this procedure requires the use of
unfamiliar terminology as well as definitions of
multibreed additive, nonadditive, environmental, and
residual covariances. Thus, these preliminary aspects
will be explained first.

Definition of Terms

Multibreed population: a population composed of
straightbred and crossbred animals.

Breed group: a group of animals whose genetic
composition falls within a range of fractions of breeds;
for example, if five breed groups are constructed to
group animals in a two-breed population (A =breed 1,
B = breed 2), the group ranges could be as follows:
group 1 = (1.0 to .81)A (.0 to .19)B, group 2 = (.80 to
.61)A (.20 to .39)B, group 3 = (.60 to .41)A (.40 to
.59)B, group 4 = (.40 to .21)A (.60 to .79)B, and
group 5 = (.0 to .19)A (1.0 to .81)B.
Regression model: a model that defines multibreed
bull nonadditive effects in terms of intra- and inter-
breed interactions between alleles at [ loci, I =1, ..., L.
Bull model: an abbreviation of sire-maternal grand-
sire model.

Additive intrabreed genetic covariance: a covari-
ance due to additive genetic effects within a breed.
Additive interbreed genetic covariance: a covari-
ance arising from differences between intrabreed
means of additive genetic effects; it is equal to twice
the segregation covariance (Lo et al., 1994).
Additive multibreed genetic covariance: an addi-
tive covariance for animals in a multibreed popula-
tion; equal to either an additive intrabreed genetic
covariance (straightbred animals) or a weighted sum
of additive intrabreed and interbreed genetic covari-
ances (progeny of at least one crossbred parent).
Nonadditive configuration: a representation of
loci using the breed of origin of the alleles. For two
breeds, A and B, there are four configurations at one
locus: A/A, A/B, B/A, and B/B; three configurations
result if A/B and B/A are defined as one configuration.
A possible set of configurations for one and two loci is
shown in Elzo (1990b).

Nonadditive intraconfiguration genetic covari-
ance: a covariance due to nonadditive genetic effects
caused by the interaction between alleles of one or
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more breeds within a nonadditive configuration.
Nonadditive configurations are to nonadditive genetic
covariances as breeds are to additive genetic covari-
ances.

Environmental intrabreed genetic covariance: a
covariance due to environmental effects within a
breed.

Environmental interbreed genetic covariance: a
covariance arising from differences between in-
trabreed means of environmental effects.
Environmental multibreed genetic covariance:
an environmental covariance equal to either an
intrabreed environmental covariance (straightbred
animals) or a weighted sum of intrabreed and
interbreed environmental covariances (progeny of one
or two crossbred parents).

Residual intrabreed, interbreed, and multibreed
genetic covariances: weighted sums of additive and
environmental intrabreed, interbreed, and multibreed
covariances.

Assumptions

The following assumptions are made: 1) traits are
determined by a large number of unlinked loci, 2)
random segregation and assortment of alleles occur
during meiosis, 3) no inbreeding, and 4) covariances
remain constant over time.

Additive Multibreed Genetic Covariances

Additive genetic covariances for each breed group
combination are assumed to be different. These
covariances are equal to the sum of two terms. The
first term is equal to the weighted sum of the
intrabreed covariances for traits Y and Z, where the
weights are the expected frequencies of each breed in
the gtb breed group combination (Elzo, 1983, 1990a;
Lo et al., 1994). The second term is equal to the
weighted sum of the interbreed covariances for traits
Y and Z, where the weights are the sum of the product
of the expected breed frequencies in the parental breed
groups (Lo et al, 1994). This second term was
assumed to be zero by Elzo (1990a). Inclusion of the
second term in the computation of multibreed additive
covariances does not affect the rules to compute the
matrix of covariances among bull additive genetic
effects (G,) or its inverse (Gg1).

Thus, the additive genetic covariance between traits
Y and Z for an animal in a noninbred multibreed
population is

nb
covy(Y,Z) = z Py, ("aYZ)b
nb-1 nb 4
+ X Y (efey + POPY) (Cavzprr
b=1 b>b [1]
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where the superscripts i, s, and d correspond to
individual animal, sire, and dam, the subscripts b and
b’ represent two breeds, and nb = number of breeds;
P> = expected fraction of breed b in animal x, x =1, s,
d; (o,v7) b = additive intrabreed covariance for breed
b; and (o,v7) by = additive interbreed covariance for
the pair of breeds b and b’.

Nonadditive Multibreed Genetic Covariances

Nonadditive genetic effects were accounted for by
means of regression procedures. Thus, nonadditive
intraconfiguration covariances between traits Y and Z
at [ loci, (ogy2);, I = 1, ... , L, need to be estimated.
These covariances are not a function of any other set
of nonadditive covariances. This characteristic makes
nonadditive covariances in regression models different
from additive genetic covariances, which are assumed
to be a function of intra- and interbreed additive
covariances.

Environmental and Residual
Multibreed Covariances

Multibreed environmental covariances could be
assumed 1) to be equal for all breeds and crossbred
groups, 2) to be different for each breed and crossbred
group (i.e., given an environment each genotype
reacts differently), and 3) something in between
alternatives 1 and 2.

If multibreed environmental covariances were as-
sumed 1) to be different across breed groups, and 2)
to behave in an additive fashion, then their computa-
tion would be similar to the procedure used to compute
additive genetic covariances. Thus, the multibreed
environmental covariance between traits Y and Z
would be

nb
cov(Y,Z) = Y 1} (%vz)
b=1

nb-1 nb
+ Y (Pf) Py + p{‘, Pg) (Oe¥Z)pr >
b=1 b>b [2]

where the superscript i represents an individual
animal, the subscripts b and b’ represent two breeds,
(0eyz)p = environmental intrabreed covariance for
breed b, and (oeyz)py = environmental interbreed
covariance for the pair of breeds b and b’

The structure of the residual covariances will
depend on 1) the additive model used (animal,
reduced animal, sire-dam, bull, sire model), 2) the
ancestors identified on an animal with records, and 3)
the assumptions made with respect to multibreed
environmental covariances.

An expression for the multibreed residual covari-
ance between traits Y and Z for a bull model is the
following: ’
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cov(Y,Z) = covy(Y,Z)I — 8 .25cova(Y,Z)8

— &m8s 0625 covy(Y,Z)™8 + covo(Y,Z)i, [3]

where the superscripts i, s, and mgs refer to an
animal, its sire, and its maternal grandsire, the
subscripts v, a, and e represent residual, additive
genetic, and environmental, and §* = indicator equal to
1 if animal x is not identified and to 0 if animal x is
identified, x = s, mgs; covy(Y,Z) = cov,(Yp,Zp)i,
where the subscript D = direct genetic effects;
cova(Y,Z)5 = covy(Yp,Zp)S; and covy(Y,Z)™M8S = co-
va(Yp,Zp) ™8s,

Additive genetic covariances in Equation [3] are
computed using Equation [1] and environmental
covariances using Equation [2]. If a model includes
sires and dams, then additive dam covariances (and
multiplying factors 84 and .25) will be substituted for
those of the maternal grandsire.

Model
Let a bull model be

y=Xb +Zu +v

y ZGZ + RZG R
v 0 R 0 R [4]

where y = vector of observations on all traits
recorded per calf, b = vector of fixed effects
for the nt traits being considered; u = vector
of additive and nonadditive bull genetic effects
for nt traits; v = vector of residuals; X = inci-
dence matrix relating records to elements of b;
Z = incidence matrix relating records to ele-
ments of u; G = matrix of covariances among
elements of u; and R = matrix of covariances
among elements of v.

Bulls are assumed to be unrelated. Bull genetic
effects due to different nonadditive configurations are
assumed to be uncorrelated among themselves and to
additive genetic effects. Thus, the matrix G is block
diagonal (one block per bull), with blocks

Goe © O ... 0]
0 Gy; O ... 0
0 0 Gy, --- O
0 0 0 ...Gux

(5]

where
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Goag = nt x nt matrix of additive direct genetic
covariances for bulls of parental breed
combination g, g = 1, ... , nbgcom, where
nbgcom = number of different breed
group combinations (nbg(nbg + 1)/2, nbg
= number of breed groups); covariances
in Goag are computed using Equation [1];

Gopk = nt X nt matrix of nonadditive direct
genetic covariances; k = 1, ... K, where K

L

= 2 nl, and n/ = number of interaction
=1

effects at I loci.

Calves are assumed to be related only through their
sires and(or) maternal grandsires. Thus, residual
effects are correlated only within a calf. Consequently,
the matrix R is block diagonal, with blocks equal to
Rom*, for m =1, ... , M, and M = number of residual
subclasses (defined according to the various intra- and
interbreed genetic and environmental factors con-
tained in them). The Roy,* are nt x nt matrices of
residual covariances with zeros in the rows and
columns corresponding to missing traits in a calf.
Elements of Rgy* are computed using Equation [3].

To simplify the notation, let ¢ = [¢, ¢ 9]’ Where ¢,
is a vector of additive genetic covariances (the o,yz in
Equation [1]), ¢, is a vector of nonadditive genetic
covariances (the (o,yz);), and ¢, is a vector of
environmental covariances (the o.yz in Equation [2]).
Also, let the number of 1) additive genetic covariances
be N,, 2) nonadditive genetic covariances be Ny, 3)
environmental covariances be N, and 4) N, =N, + N,
+ Ne. Thus, each covariance in Ggag, Gonk, and Rop*
is a linear function of elements of ¢.

Computational Procedure

The derivation of the computational procedure used
to obtain REML estimates of covariances (¢) in
multibreed populations is described in the Appendix.
The computational procedure makes use of the Expec-
tation Maximization (EM) algorithm (Dempster et
al., 1977). The EM algorithm is an iterative procedure
that has an expectation step ( E-step) and a maximi-
zation step (M-step) in each iteration. The E-step
requires the computation of sums of products of
predicted values of random effects plus their cor-
responding error variances of predictions (EVP). In
the M-step, ¢(P*+1 is computed by iteration, where
#(P+1 ig the value of ¢ that maximizes Q(¢|¢(P)
(Equation [3], Appendix). Thus, at convergence, the
M-step produces the covariance estimates for the
(p+1)th EM iteration. The M-step is accomplished by
iteration because the differentiation of Q(¢!¢(P))
with respect to ¢ results in a nonlinear set of
equations. The computing algorithm is as follows:
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Step 0. 1) Define a set of initial covariance values.
2) Compute the matrices of derivatives of
additive, nonadditive, and residual covari-
ance matrices with respect to ¢.

1) Compute the additive and nonadditive
genetic and environmental sets of mul-
tibreed covariance matrices needed in the
construction of the MME of the bull model.
2) Compute the predicted values of u, and
u, (by solving the MME of the bull model)
and v (by Equation [7], Appendix). Also,
compute the EVP of u, and u, (using
elements of the inverse of the MME) and v
(by Equation [8], Appendix).

3) Compute Sgzze'® (Equation [4], Ap-
pendix), Sonke'? (Equation [5], Appen-
dix), and Some'P (Equation [6], Appen-
dix).

1) Compute ¢(P*+1) by successive approxi-
mations (i.e., Scoring iterations) using
Equations [12] (Appendix). If the differ-
ence between the absolute values of the
estimates of ¢(P+1 and ¢(P) are less than
or equal to a vector of small values ¢ (E-
quations [13] and [14], Appendix), then
stop; otherwise, go back to the E-step and
continue with the EM iterations.

E-Step.

M-Step.

Analyses of Simulated Data Sets

Five data sets were simulated and covariance
components estimated wusing the methodology
presented here. The purpose of these analyses was to
obtain some information on the computer times and
the number of EM and Scoring iterations required to
achieve convergence in small data sets. Computations
were carried out in an IBM RS6000 workstation,
model 580, using a computer program (written in
FORTRAN and compiled using the AIX XL, FORTRAN
Compiler/6000 without any optimization) based on
the procedures described here. This program used the
FSPAK sparse-matrix routines (Perez-Enciso and
Misztal, personal communication) to invert the left-
hand side of the MME.

Simulation of Data

Two breeds (A and B), two traits per calf, and only
direct genetic effects were considered. Three additive
genetic effects, one nonadditive genetic effect, three
environmental effects and two sex effects were used in
the simulation of calf records. All effects, except sex of
calf, were simulated as random effects. The additive
genetic effects were additive intrabreed A, additive
intrabreed B, and additive interbreed AB. The nonad-
ditive genetic effect was intraconfiguration 11 (one A
allele and one B allele at one locus). Environmental
effects were intrabreed A, intrabreed B, and inter-
breed AB. Sex effects were male and female.
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Five breed groups in 20% intervals were defined.
Between 120 and 135 unrelated bulls were generated
by mating individuals of these five breed groups (15
breed group combinations). Progeny (between 25,200
and 50,400) were generated by mating these bulls to
dams of all 15 breed-group combinations. There were
between eight and nine bulls for each one of the 15
breed-group combinations. Maternal grandsires were
chosen at random among the generated bulls (except
for the avoidance of inbreeding).

The first line of each covariance in Table 1 is the
values of the priors of the covariance matrices used to
simulate calf records. Although no trait names are
needed, Trait 1 could represent birth weight and Trait
2 weaning weight; thus, numbers in Table 1 would be
in squared kilograms.

Estimation of Covariance Components

The simulated data were analyzed using a bull
model that had sex as a fixed effect and sire and
maternal grandsire additive as well as nonadditive
genetic effects and residual effects as random effects.
The vector of unknown covariances ¢ had 21 elements:
three additive genetic covariances for breed A, three
additive genetic covariances for breed B, three inter-
breed AB additive genetic covariances, three inter-

breed AB nonadditive genetic covariances, three
environmental covariances for breed A, three environ-
mental covariances for breed B, and three interbreed
AB environmental covariances.

All genetic and environmental covariances for the
two traits were estimated simultaneously. The conver-
gence criterion used for the Scoring and the EM
iterations was that the maximum absolute difference
between two iterations had to be less than a preset
small number. This number was .01 for both the
Scoring and the EM iterations.

The only set of computations that is done only once
in the computer program is the construction of 1) six
intrabreed and three interbreed matrices of deriva-
tives of additive genetic covariances for each one of the
15 breed-group combinations (15 x 9 = 135 matrices),
2) one matrix of derivatives of nonadditive genetic
covariances, and 3) six intrabreed and three inter-
breed matrices of derivatives of environmental covari-
ances resulting from the mating of sires of 15 breed-
group combinations to dams of 15 breed group
combinations (15 x 15 x 9 = 2,025 matrices).

The computations carried out in every round of EM
and Scoring iterations were as follows.

E-Step. Inverses of the matrices of covariances of
bull additive and nonadditive genetic effects and
environmental effects were computed. The number of

Table 1. Covariance priors, means, and range of values of REML estimates
for two traits from five stimulated data sets

Pairs of traits
Covariance (1,1 (1,2) (2,2)
Additive
. Intrabreed A 4.02 3.0 40.0
3.8b 2.7 40.8
(1.7, 5.7)°¢ (-6, 5.6) (17.0, 55.0)
Intrabreed B 6.0 4.0 60.0
6.2 5.2 524
(3.9, 7.6) (3.9, 6.8) (41.7, 60.3)
Interbreed AB 2.0 40 20.0
1.9 1.8 27.0
1.2, 3.2) (-3.3, 5.8) (11.1, 48.7)
Nonadditive (1 locus)
Intraconfiguration 11 3.0 4.0 30.0
4.8 5.8 38.9
4.1, 5.3) (5.0, 7.6) (32.2, 53.1)
Environmental
Intrabreed A 6.0 7.0 90.0
6.2 7.0 87.1
(4.9, 7.6) (5.7, 9.0) (72.4, 109.8)
Intrabreed B 14.0 10.0 240.0
14.1 8.8 238.9
(12.9, 15.6) (7.5, 9.4) (233.1, 249.3)
Interbreed B 4.0 8.0 60.0
43 10.1 67.8
(3.5, 4.7) (7.5, 12.7) (50.4, 85.0)

3Covariance prior.

bMean of five REML estimates.
¢(Smallest, largest) value among five REML estimates.
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matrices computed were 1) 15 additive genetic (one
for each breed-group combination), 2) one nonadditive
interbreed, and 3) 225 residual (one for each sire
breed-group combination x dam breed-group combina-
tion subclass). These matrices were used in the E- and
M-steps of this procedure.

The predicted values of the vectors u, and u, and
the matrices of their EVP were computed for all bulls.
Also, the predicted values of the v vectors and the
matrix of their EVP were computed for all calves.
These vectors and matrices were then used to compute
matrices containing the sums of products of predicted
values plus their EVP. The number of these matrices
were 1) 15 matrices for bull additive genetic effects
(Soage'P), ag = 1, ... , 15, Equation [4], Appendix), 2)
one matrix for bull nonadditive genetic effects as
regressors ( Son1e' P, Equation [5], Appendix), and 3)
225 matrices for residual effects (Some'P’, Equation
[6], Appendix).

M-Step. Matrices B,,, Bye, By, and B, and
vectors d,, d,, and d, were computed here. These are
the submatrices and subvectors of system of Equations
[12] (Appendix). Matrices B,,, B,., and B, were (9 x
9). Matrix By, was 3 x 3. Vector d, was 9 x 1, d,, was
3 x 1, and d; was 9 x 1. The estimate of ¢ for the
(p+1)th EM iteration was obtained by solving the
resulting system of equations by successive approxi-
mations. Within each Scoring iteration, Equations [12]
(Appendix) were solved by direct inversion of the {B;}
matrix and subsequent multiplication by vector {d;}.
The number of Scoring iterations to achieve conver-
gence ranged between one and five.

Starting values were those of the covariances used
to simulate the data set. These were 1) the nine
additive genetic covariances (intrabreed A, intrabreed
B, and interbreed AB, 2) the three covariances for
nonadditive intraconfiguration 11, and 3) the nine
environmental covariances (intrabreed A, intrabreed
B, and interbreed AB). It took from 8 to 12 EM
iterations and between 57 min and 113 min to reach
convergence.

The mean and the (smallest, largest) values of the
REML estimates of covariances in ¢ of the five
simulated samples are shown in lines two and three of
each covariance in Table 1. The means indicate that in
these few small data sets seven covariances were
underestimated, two were equal to the parameter
values, and 12 were overestimated. The smallest and
the largest values of the covariance estimates as a
percentage of the parameter values were 7.8 and
143.5%. The average absolute difference as a percent-
age of the parameter values was 17%.

Discussion

The REML methodology presented here will be
useful not only in multibreed populations in which
breeding animals are both straightbred and crossbred
but also when straightbred animals are mated to
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animals of other breed groups (straightbred or
crossbred). In general, multibreed procedures can be
applied whenever animals from several distinct sub-
populations interbreed.

Modeling Aspects

The model used to present these procedures used a
subclass approach to additive genetic effects, whereas
a regression approach was used to account for
nonadditive genetic effects. Another alternative could
have been to use a regression approach to explain
additive genetic effects. In the case of multibreed
populations of two breeds, each bull would have up to
two predicted additive genetic values: one due to its
alleles from breed A and another from alleles of breed
B. A third one could also be predicted for additive
interbreed AB genetic effects. The matrix Z for
additive genetic effects will have up to three values
per bull (between 0 and 1). The Equation for
Qa(¢16(P)) will be similar to the one given for
nonadditive genetic covariances in regression models
(Qn(¢1¢(P), Equation [5], Appendix).

Residual covariances were explained in terms of
their additive and environmental components. An-
other option would have been to define residual
covariances as part of the ¢ vector. In this case 1) the
contributions of the residual function to additive
genetic covariances will be zero, and 2) the set of
Equations [12] (Appendix) will become block di-
agonal. Because of the large number of different
residual covariances possible per trait, simplifying
assumptions would need to be made. Possible alterna-
tives could be 1) calves from each breed-group
combination would have a unique set of residual
covariances, 2) calves from each breed group would
have a different residual covariance matrix, 3)
residual covariances could be treated as additive
genetic covariances, where each covariance would be a
linear function of intrabreed and interbreed residual
covariances, and 4) a single set of residual covariances
is used for all calves.

Although the presentation of this methodology
made use of a sire-maternal grandsire model for direct
effects only, 1) more complete models (sire-dam,
reduced animal and animal) can be programmed with
multibreed features, and 2) maternal effects can also
be included in the model and in computer programs.
Incorporation of additional animals to be evaluated in
the model and of maternal effects will increase
computing times substantially. In a bull model, the
programming of direct and maternal genetic effects is
considerably more complex than the programming of
direct genetic effects alone; however, this should be
simpler in the sire-dam and (reduced) animal models.

Computational Aspects

The analyses of the small simulated data presented
here included only one source of nonadditive variation
(intralocus interbreed). However, real data will
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probably contain additional sources of nonadditive
variation (e.g., intralocus intrabreed). Ideally all
sources of nonadditive variation should be accounted
for in the model. However, assumptions relative to the
number of loci considered for nonadditive genetic
covariances will usually need to be made because of
cost or computational feasibility. Furthermore, which
nonadditive genetic effects will be able to be included
in the mixed model used to predict the u’s and the v’s
will largely depend on the dependencies and multicol-
linearity that exist among them. These two factors
need to be closely monitored in unbalanced data sets
because missing data can cause both confounding and
multicollinearity. If this happened, further simplifying
assumptions may be needed to analyze those data
sets.

The numbers of bulls and progeny per bull in field
data sets will probably be substantially larger than
the eight or nine bulls considered in the simulated
data sets. Thus, the values of the covariance estimates
should be closer to the parameter values than the ones
obtained here, assuming that all important genetic
and environmental effects were accounted for in the
model.

The computing times of the simulations were
probably longer than needed because the computer
program used was a research tool that has not been
optimized for speed. In addition, the computer pro-
gram had checks at various points in the computa-
tional procedure that must have added time to each
round of iteration. However, placing the covariances
used in the simulation as priors is likely to reduce the
number of EM iterations needed to achieve conver-
gence. A small test was conducted to check whether 1)
the number of EM iterations needed to achieve
convergence and 2) the convergence values would be
the same when priors were equal to and different from
the simulation covariances. Two additional small data
sets of similar structure and size to the five previous
data sets were generated. Three runs per data set
were carried out. In the first run, simulation covari-
ances were used as priors. In the second run, the prior
values used were lower than the simulation covari-
ances. In the third run, prior values higher than the
simulation covariances were used. In runs two and
three, only two prior covariance matrices were used,
one for all genetic effects and another for all environ-
mental effects. The only consequence of using these
low and high priors was the need for one additional
EM iteration to achieve convergence; all covariance
estimates at convergence were the same.

Programming Aspects

Programming these procedures is more involved
than intrabreed procedures. Because of the number of
random genetic effects to be predicted per bull may be
substantially larger than for a single breed, sparse-
matrix procedures (e.g., FSPAK, Perez-Enciso and
Misztal, personal communication) become a must if
solutions are to be obtained directly. For very large
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data sets (tens of thousands to millions of animals)
iterative procedures will be needed to compute predic-
tions of u’s and v’s as well as suitable approximations
to the EVP of the u’s and v’s.

Implications

The procedures to estimate covariance components
developed here make possible the prediction of addi-
tive and nonadditive genetic values of animals in
multibreed populations, in systematic crossbreeding
programs, semen importation and, in general, when
animals of several distinct subpopulations interbreed.
Although their computational requirements may be
substantially larger than intrabreed covariance esti-
mation procedures, the number of covariances to be
estimated can be largely decreased by using an
appropriate set of assumptions.
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Appendix

Derivation of the Computational Procedure to Estimate Covariance
Components in Multibreed Populations

The computational procedure used to solve for the REML estimates of ¢ makes use of the expectation-
maximization (EM) algorithm (Dempster et al., 1977). The EM algorithm used here is based on the general
version described by Dempster et al. (1977), which relies on the function

Q(¢’'l¢) = E[ln f(x|¢")|z,0] 11

which is assumed to exist for all pairs (¢’, ¢), where x = complete data and z = incomplete data. Also, f(x,¢) is
assumed to be an increasing function almost everywhere.

The incomplete data used here are defined to be a linear combination of the vector of observations, Ky, where
K’ is a matrix of contrasts such that KX = 0. The complete data are considered to be the vectors of unknown
random effects in the model (u and v). The log-likelihood of the complete data, L., is:

In [f(uyu,,vie)]l = constant + In [f(u,le]

+ In [f(u,leé]l + In [f(vig], 2]
where |
1 nbgcom Dag
In [fuale)] = -5 3 3 [nlGyl + u/Goou,.l,
ag=1 i=1
Oy,
In [flu,19)] = - >3 Mnl1Gyy | + u,Goru,l, and
i=1
1 M = * *
In [f(vig)] = - 5 3 YnlRg, | + v /(R )t v,

-
1]
=
™
H
[uy

and u, = vector of bull additive genetic effects; u, = vector of bull nonadditive genetic effects; nyg = number of
bulls in breed group combination ag; ny,, = total number of bulls; and n, = number of calves in calf group m.

The EM algorithm is an iterative procedure that has two steps in each iteration: 1) an expectation step (E-
step), and 2) a maximization step (M-step). The E-step consists of computing Q(¢1¢(P)), and in the M-step,
(P +1 is computed, where ¢{P*+1) is the value of ¢ that maximizes Q(¢!¢(P)). The M-step is accomplished by
iteration because the differentiation of Q(¢!¢(P) with respect to ¢ results in a nonlinear set of equations. The
derivation of the E-step and the M-step for the (p + 1)th iteration is described below.

E-step. The function Q(¢l1¢(P)), ignoring the constant term, is

Q(e16(P) = Qu(o!16P) + Qu(o1¢(P) + QuoleP). [31

The function for additive genetic covariances is

Elln [f(u,l¢)]1 K’y,¢(P]
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’ 7, (p)
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Similarly, the function for nonadditive genetic covariances is

where

and where

Qu(o19'®) = E[ln [f(unl¢)]|K'y,¢(p)]
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Finally, the function for residual covariances is

where
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and where

O mi BLUP of v_;, and
EVP of ¢ ..

var(V; — v.)

The EM algorithm requires the function Q(¢1¢(P)) to increase at each EM iteration. This is accomplished by
choosing ¢(P*1) as the value that maximizes Q(¢1¢(P)). However, to compute ¢(P*1) by maximizing Q(¢14(P))
in the M-step, only Sgage'®’, Sonke(P’, and Sgme' P’ are needed (i.e., the complete Q(¢1¢(P) function does not
need to be computed). Thus, the quantities that need to be computed in the E-step are Sgage'®, Sgnke' P, and
Some' P, which are functions of the predicted values of u,, u,, and v and their respective EVP. The predicted
values of u, and u, are obtained by solving the mixed-model equations (MME) for the bull model (Equation [4]
in the main text) and their EVP from elements of the inverse of the left-hand side. The predicted values of v are
computed as

v =y - Xb° - Z4q, [71

and their EVP as
var(¢ — v) = XCUX' + XC!2Z' + ZC2X' + Z(C227’, (81
where the {CU} are submatrices of the inverse of the left-hand side of the MME for the bull model.
M-step. The vector ¢(P+D) is computed by maximizing the function Q(¢|¢(P)). This requires differentiating

Qa(916(P)), Qu(o16(P) and Q ¢1¢(P)) with respect to ¢ and equating the resulting set of equations to zero.
The derivative of the additive genetic function is

9Q,( 919 obg 1 aGOagG 1 %Go0ag nbgepm 1 %Cosg (
a - J_ — — _ _ p)
{ 9%; B agz;l nagtl'Goag 9y 0g a¢j > agz=’1 trGoagTﬂGo 8% |’

(9]

N
2 9G
where G(_);gGOag, GOag written as jzl —a%%-, was inserted in the first term.
A similar strategy is used to obtain the derivative of the nonadditive and residual functions. Thus, the
derivative of the nonadditive genetic function is

3Q, (4147 -1 %onk ,_; 9Conk -1 aGOnkG—l
{ = | outrCon 9; Conk 99; ¢+ | Con 9%; Onksgi).}’

9¢; [10]
and the derivative of the residual function is
3Q,(#14™) = 3Ry, 17Rom - 1R, .
v = _ * — * _ * — * _ (p) .
The set of equations to be solved in the M-step is
aa 0 aa| | ¢, d,
0 B O én|=|dnj,
B,0 B, |l%] lde [12]

where

nbgcom M . . .
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ag=1
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and where
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B, = { Yy nm(tr(R(’;m)-ll);mi(R;m)-ln(’;mj)} , for ij =N, + N, + 1, ..., N
m=1

nbgcom M .

da = { 21 6-GogDoagiGoagSipe + 21 tr(RSm)_lD;mi(ROm)_lsgo)} yfori=1,.., Ny
ag= m=
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and

M
d. = { )Y tr(RSm)‘lDZmi(RZm)“lsﬁg.)} ,fori=N, + N, +1,..,N,.

m=1

Equations [12]: 1) are nonlinear in ¢, thus, ¢(P*D) must be computed iteratively (i.e., by successive
approximations [Harville, 1977; Harville and Callahan, 1990]), 2) are equal to those obtained by a Scoring
Algorithm applied to maximizing Q(¢14(P)) (R. L. Quaas, Cornell University, personal communication), and 3)
have no built-in restrictions on the values of the covariances, thus there is no guarantee that all parameters
being estimated will be within the parameter space. Thus, computer programs need to incorporate restrictions to
ensure that estimates of covariance matrices are symmetric positive definite (or at least symmetric positive
semidefinite) at each Scoring iteration and at each EM iteration. Restriction strategies that could be considered
include 1) barrier and penalty functions (Fletcher, 1974; Ryan, 1974; Harville, 1977), 2) gradient projection
methods (Sargent, 1974; Harville, 1974), and 3) direct search methods (Swann, 1974).

The convergence criterion used to stop the Scoring and the EM iterations was that the absolute change in the
estimates of covariances of two successive iterations was small (Bard, 1974; Searle et al., 1992). Thus,
convergence was achieved when

l¢(ptD — ¢(P| < ¢, [13]

where e is a vector of small numbers. The values of e can be either set in advance or computed by the program
(Bard, 1974). In the second case, Bard (1974) recommended using Marquardt’s (1963) expression

§ = T1(¢§p) + 72) . [14]

where 73 = 10# and 7o = 103.



