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ABSTRACT: Two unconstrained procedures to
ensure that intrabreed and interbreed genetic and
environmental covariance estimates from multibreed
populations are computed within the permissible
ranges were developed. These procedures were called
Partial Scoring and Cholesky Maximization. The
Partial Scoring procedure uses partial steps to keep
estimates of covariance matrices positive definite at
each expectation-maximization (EM) iteration, and
the Cholesky Maximization procedure achieves the
same goal by computing the elements of the Cholesky
Decomposition of each intrabreed and interbreed
genetic and environmental covariance matrix. Groups
of small simulated data sets containing either direct
genetic effects for two traits (90 bulls, 13,500 calves)
or direct and maternal genetic effects for a single trait
(135 bulls, 32,400 calves) were used to test the

computational feasibility of these two procedures. The
overall means (and ranges) of the numbers of
expectation-maximization iterations, times to conver-
gence, and accuracy of estimation were 10 (2 to 184),
26.2 min (4.1 to 773.2 min), and 40.1% (12.7 to
81.9%) for the Partial Scoring procedure and 7 (3 to
37), 16.7 min (9.5 to 64.6 min), and 37.8% (3.1 to
67.8%) for the Cholesky Maximization procedure.
Although the overall accuracy of both procedures was
similar, the Cholesky Maximization procedure should
be preferred because it converged faster and its
covariance estimates were less affected by the values
of the covariance priors than those computed using the
Partial Scoring strategy. Application to large un-
balanced multibreed data sets will require an iterative
version of these procedures.
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Introduction

Interest in the evaluation of straightbred and
crossbred animals in a multibreed population context
has increased in recent years. A format for interbreed
data exchange has already been proposed (Golden and
Bourdon, 1994). This data recording system will
provide the appropriate infrastructure to maintain the
large database needed for national and international
multibreed genetic evaluations.

Currently, there are 1) mixed models for predicting
additive and nonadditive genetic effects (Elzo and
Famula, 1985; Arnold et al., 1992), 2) procedures to
directly compute the inverse of the additive (Elzo,
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1990a) and nonadditive (Elzo, 1990b) multibreed
genetic covariance matrices, and 3) multibreed REML
(MREML) procedures to compute additive, nonaddi-
tive, and environmental covariances using data from
straightbred and crossbred animals (Elzo, 1994).
Unfortunately, the expectation-maximization (EM)
algorithm used to compute the MREML covariances
(MREMLEM procedure) does not guarantee that 1)
estimates of all genetic and environmental variances
will be positive (which implies that heritability
estimates will be greater than 0 and less than 1), and
2) all correlation estimates will be greater than -1
and less than 1 (Elzo, 1994). These two conditions
will be met if all matrices of covariance estimates are
symmetric positive definite.

The approaches to be used here to ensure that all
estimated genetic and environmental covariance ma-
trices are positive definite are unconstrained (i.e., no
inequality constraints are used in the maximization of
the likelihood). Thus, the objective of this research
was to develop two unconstrained strategies to ensure
that covariance matrices estimated using MREMLEM
procedures are positive definite.
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Development of the Unconstrained Strategies
for the Estimation of Positive
Definite Covariance Matrices

The terminology, assumptions, and the basic
MREMLEM methodology used for the computation of
covariance matrices were the same as those described
in Elzo (1994). Traits are assumed to be determined
by a large number of unlinked loci, there are random
segregation and assortment of alleles and absence of
inbreeding, and covariance values do not change over
time. The basic MREMLEM procedure uses a bull
model and an EM algorithm to simultaneously com-
pute genetic additive, genetic nonadditive, and en-
vironmental covariance matrices.

The main objective of the unconstrained strategies
is the modification of the set of equations to be solved
in the maximization step (M-step) of the basic
MREMLEM algorithm, so that the estimates of all
genetic and environmental covariance matrices at
each EM iteration are positive definite. To achieve this
objective, it is important that the MREMLEM equa-
tions be well behaved. However, this may not always
be the case. The MREMLEM equations have an
intrinsic degree of multicollinearity. The term intrinsic
is used because products of matrices whose elements
have known relationships among themselves are used
to compute the matrices whose traces are the elements
of the MREMLEM equations. These matrices are 1)
the matrices of derivatives of the multibreed genetic
and environmental matrices that are formed by
elements (expected fractions of breeds) that have
known relationships among themselves (e.g., the
expected breed fraction in a progeny is the mean of the
corresponding values in the parents), and 2) the
multibreed genetic and environmental covariance
matrices themselves, which are computed as linear
combinations of intrabreed and interbreed genetic and
environmental covariances, respectively. The more
similar the intrabreed and interbreed genetic and
environmental covariance matrices are, the higher the
degree of multicollinearity of the MREMLEM equa-
tions. The most extreme case would be if all covari-
ance matrices were equal, which would cause complete
confounding among intrabreed and interbreed equa-
tions (in this case a single covariance matrix should
be estimated).

The degree of multicollinearity of the MREMLEM
equations will vary widely, depending on the structure
of the multibreed data set and the values of the sets of
covariances of the various intrabreed and interbreed
additive genetic, nonadditive genetic, and environ-
mental covariances. For some data sets the algorithm
given in Elzo (1994) can be used to obtain multibreed
REML covariance estimates with one additional step
to ensure that estimates of covariance matrices are
positive definite. In other cases, however, additional
steps will be required to reduce the negative effects of
the ill conditioning of the MREMLEM equations such

that the covariance estimates are either REML or
reasonable approximations to REML ( quasi-REML).

The unconstrained strategies for the computation of
MREMLEM covariance estimates presented next in-
corporate a check for multicollinearity (computation of
the eigenvalues of the MREMLEM equations) and an
approach to reduce the ill-conditioning it causes on the
set of equations solved in the M-step. Small simulated
data sets will be used to explore the ability of these
methods to simultaneously estimate additive and
nonadditive genetic as well as environmental covari-
ances.

Unconstrained Strategies

The unconstrained strategies to compute symmetric
positive definite covariance matrices studied here
were 1) use of partial steps during the computation of
the vector of intrabreed and interbreed covariances by
Scoring iterations in the M-step of the ith EM iteration
of MREMLEM ( Partial Scoring Strategy), and 2)
estimation of the elements of the Cholesky Decomposi-
tion (Golub and Van Loan, 1989) of the intrabreed
and interbreed additive genetic, nonadditive genetic
and environmental matrices, followed by computation
of the corresponding covariance matrices by multipli-
cation of the Cholesky matrices by their transposes
( Cholesky Maximization Strategy).

Partial Scoring Strategy

This strategy is based on one described by Jennrich
and Schluchter (1986), which in turn is a version of a
generalized EM ( GEM) algorithm (Dempster et al.,
1977). An important characteristic of a GEM al-
gorithm is that an increase in the value of the
expected log-likelihood of the complete data in a given
step guarantees an increase in the log-likelihood of the
complete data in that step (Jennrich and Schluchter,
1986; Laird et al., 1987). Thus, because the Scoring
iterations within an M-step are a series of GEM steps,
then an increase in the value of the expected log-
likelihood of the complete data rather than the log-
likelihood of the complete data could be checked at
each Scoring iteration.

The Partial Scoring algorithm used here differs
from that of Jennrich and Schluchter (1986) in that
1) partial steps are not only used to increase the value
of the expected log-likelihood of the complete data
(Equation [3], Appendix, Elzo, 1994) during the
Scoring iterations in the M-step but also to ensure
that all estimated covariance matrices are positive
definite, 2) solutions to the MREMLEM equations are
computed by Scoring iterations, using partial steps as
needed, so that the expected log-likelihood of the
complete data is maximized within each EM iteration,
rather than by the first approximation that increases
the expected log-likelihood of the complete data
(Scoring step), and 3) ridge regression procedures
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(Hoerl and Kennard, 1970) are used to improve the
condition of the MREMLEM equations when the
reciprocal of the condition number (the ratio of the
smallest to the largest eigenvalue) is close to or
smaller than the machine’s floating point precision
(e.g., 108 for single precision). The strategy used
here is 1) to check the reciprocal of the condition
number (RCN) each time new estimates of covari-
ances were computed, and 2) to add the value of the
smallest eigenvalue to the diagonal of the MREMLEM
equations as many times as needed to increase RCN
above single machine precision (e.g., 107%). If nothing
were added to the diagonal of the MREMLEM
equations this procedure should converge to a set of
REML covariance estimates, provided that the
MREMLEM equations were well behaved. If small
positive numbers were added to the diagonal elements
of the MREMLEM equations at convergence, then the
set of covariance estimates will be biased and not
REML. However, these quasi-REML covariance esti-
mates will probably be closer to the population values
than those obtained without the use of ridge regres-
sion procedures applied to the M-step.

The steps of the partial scoring algorithm are as
follows:
Step 0.

1) Input an initial set of intrabreed and
interbreed additive and nonadditive genetic
covariances and environmental covariances ( ¢).

2) Compute the matrices of derivatives of the
multibreed additive genetic, nonadditive genetic,
and residual covariance matrices with respect to
.

3) Compute the expected log-likelihood of the
complete data (Equation [3], Appendix, Elzo,
1994), or, if feasible, the log-likelihood of the
complete data (Equation [2], Appendix, Elzo,
1994), using the initial covariance values.

E-Step.

1) Compute the additive genetic, nonadditive
genetic, and residual covariance matrices to be
used in the mixed-model equations (MME) of
the bull model.

2) Compute the predicted values of the
additive genetic, nonadditive genetic, and
residual effects and their respective error vari-
ances of prediction (EVP).

3) Compute the sums of the products of the
vectors of predicted additive and nonadditive
genetic effects per bull, and of predicted residuals
per calf, times their transposes plus their cor-
responding EVP matrices.

M-Step.

1) Compute the vector of covariance estimates
¢ for the current EM iteration by Scoring
iterations. Within each Scoring iteration perform
the following steps.

a) Check that the condition number of
the MREMLEM equations is larger than the

minimum value chosen (e.g., 10-5); if so, go

to M-Step 1b), or else add the value of the

smallest eigenvalue to the diagonal ele-

ments of the MREMLEM equations. Repeat

this step as many times as needed.

b) Check that the estimates of all covari-
ance matrices are positive definite; if not,
recompute the estimate of ¢ for the current
Scoring iteration using a partial step.
Decrease the length of the partial steps
until all estimates of covariance are positive
definite.

¢) Compute the expected log-likelihood of
the complete data (or the log-likelihood of
the complete data) and compare it with the
one from the previous Scoring iteration; if
the current value of the expected log-
likelihood of the complete data is larger
than the one from the previous Scoring
iteration, then go to the next Scoring
iteration, else use partial steps to increase
the value of the expected log-likelihood of
the complete data until this condition is
met.

d) Check that the absolute difference
between vectors of covariance estimates
from two consecutive Scoring iterations is
less than a vector of small numbers; if so, go
to M-Step 2, else continue with the Scoring
iterations until convergence is achieved.

2) Check that the vector of absolute differ-
ences between the estimates of ¢ from the
previous and the current EM iterations is less
than a vector of small numbers; if so, stop, else go
back to the E-Step of the next EM iteration.
A variation of this algorithm that used a single

Scoring step instead of Scoring iterations in the M-
Step was also tested. Test runs showed little differ-
ence in the values of the covariance estimates between
them. However, more EM iterations were required
with a single Scoring step than with Scoring itera-
tions.

Cholesky Maximization Strategy

This strategy involves a reparameterization (Bard,
1974; Harville, 1977) of the vector of covariances that
introduces a built-in restriction for positive definite-
ness of the estimates of the covariance matrices in
multibreed data sets. This is accomplished by max-
imizing the expected log-likelihood of the complete
data with respect to the elements of the Cholesky
Decomposition of the intrabreed and interbreed
genetic and environmental covariance matrices (7).
The form of the equations of the M-Step (Equations
[9] through [12], Appendix, Elzo, 1994) needs to be
modified as follows: 1) Qa, Qn, and Qy are differen-

tiated with respect to v;, and Goag, Gonk, and R;m are
differentiated with respect to either v; or «;, as
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required, in Equations [9] through [12]; 2) the
matrices Ga;gGOag, Goag Wwritten as
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are inserted in the first term of Equation [9], and
similar terms are inserted in Equations [10] and [11];
and 3) vy is substituted for ¢ in the first term of
Equations [9] through [12]. The resulting nonlinear
set of equations is .5{B;} vy = {d;}. A consequence of
maximizing with respect to vy is that the matrices of
derivatives of Equations {9] through [12] are formed
by Cholesky elements from the previous Scoring step;
thus, they need to be recomputed at each M-Step.

The Cholesky Maximization strategy used a GEM
algorithm (i.e., a single Scoring step that increases
the expected log-likelihood of the complete data is
required at each M-Step). A check for ill conditioning
of the MREMLEM equations and a ridge regression
approach to reduce its effects are also included in the
algorithm. An algorithm with Scoring iterations in the
M-Step was also tested and later dropped, because it
was unstable.

The steps of the Cholesky Maximization algorithm
are as follows:
Step 0.

1) Input an initial covariance vector ¢.

2) Compute the expected log-likelihood, or the
likelihood, of the complete data using ¢.

E-Step.

Same as E-Step of the Partial Scoring al-
gorithm.

M-Step. .

1) Compute the matrices of derivatives of the
multibreed additive and nonadditive genetic and
residual covariances with respect to the vector of
Cholesky elements 7.

2) Check that the condition number of the
MREMLEM set of equations is larger than the
chosen minimum value (e.g., 1073); if not, add
the value of the smallest eigenvalue to the
diagonal elements of MREMLEM and check
again. Repeat this step as needed.

3) Compute the vector of Cholesky elements v
for the Scoring step of the current EM iteration.

4) Compute the vector of covariances ¢ using
the Cholesky elements in vector -~.

5) Check that this is a step of a GEM
algorithm. Thus, a) compute the expected log-
likelihood, or the log-likelihood, of the complete
data using the current estimate of vector ¢; and
b) if the current value of the expected log-
likelihood of the complete data is larger than the
one from the previous EM iteration, then go to
M-Step 6, else go back to M-Step 1 and use a
partial step to increase its value. Repeat these
steps as needed.

6) Check if EM algorithm converged (e.g., by
comparing the absolute difference between esti-
mates of vector ¢ in two consecutive iterations);
if convergence is achieved, then stop, else go back
to the E-Step and continue with the EM itera-
tions.

Independently, Lindstrom and Bates (1986),
Groeneveld (1994), and Meyer (1994), also suggested
maximizing the log-likelihood with respect to the
elements of the Cholesky decomposition of a covari-
ance matrix. These three papers dealt with models for
a single population (i.e., all individuals had the same
covariance matrix). Two of them (Groeneveld, 1994;
Meyer, 1994) applied the Cholesky reparameteriza-
tion to Newton-Raphson (or Quasi-Newton) and
Downhill Simplex (or Derivative Free) algorithms.
Lindstrom and Bates (1986) devised Newton-Raph-
son and EM algorithms based on a QR decomposition
(Golub and Van Loan, 1989) of the design matrices of
the linear model and on the optimization of the log-
likelihood with respect to the Cholesky elements of the
covariance matrix of random effects.

Analyses of Small Simulated Data Sets

The purpose of these analyses was to obtain
knowledge of the computational behavior of the
Partial Scoring and Cholesky Maximization al-
gorithms. All multibreed data sets used here required
partial steps and(or) ridge regression during (some
of) the EM iterations.

Computations were conducted in an IBM RS6000
workstation, model 580. The computer program used
in the computations was an upgraded version of the
MREMLEM program (Elzo, 1994), which incorpo-
rated the two unconstrained algorithms. The MREM-
LEM computer program was compiled by the AIX XL
FORTRAN Compiler/6000 and was not optimized for
either speed or memory and contained numerous
checks in various subroutines. The FSPAK routines
(M. Perez-Enciso, Univ. of Wisconsin, USA, and UdL-
IRTA, Spain; I. Misztal, Univ. of Wisconsin, USA; and
M. A. Elzo, Univ. of Florida, USA, personal communi-
cation) were included in the MREMLEM program to
obtain the inverse of the left-hand side of the MME.

Simulation of Data

Two groups of five non-inbred multibreed data sets
were generated: Group 1 had records for two traits
and only direct genetic effects, and Group 2 had
records for one trait and both direct and maternal
genetic effects.

The structure of the data sets was similar in
Groups 1 and 2. Two base breeds (A and B) and five
breed groups (at 20% intervals) were defined. A total
of 90 unrelated bulls and 13,500 calves were gener-
ated in each data set of Group 1, and 135 unrelated
bulls and 32,400 calves per data set in Group 2. There
were six bulls per breed-group combination in the data
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sets of Group 1 and nine bulls in the data sets of
Group 2. Bulls in both groups were mated to dams of
all breed-group combinations to generate calves.
The same set of genetic and environmental effects
was simulated in the data sets of Groups 1 and 2. The
only fixed effect simulated was sex of calf. All other
effects were random. The random effects were three
additive direct (intrabreed A, intrabreed B, and
interbreed AB), one nonadditive genetic (interbreed
AB at one locus), and three environmental effects
(intrabreed A, intrabreed B, and interbreed AB).

Covariance Priors

Covariances for each data set were estimated using
the Partial Scoring and the Cholesky Maximization
procedures. For each procedure, three sets of prelimi-
nary covariance values were used: higher than, equal
to, and smaller than the covariance values used to
simulate the data. Because of multicollinearity, differ-
ent preliminary covariance values were expected to
converge to somewhat different covariance estimates.
Given a data set, small differences among covariance
estimates across MREMLEM runs started with differ-
ent preliminary covariance values are an indication
that the set of equations solved in the M-step were
well behaved and(or) the computational strategy used
to account for multicollinearity was effective. The total
number of runs was 60, 15 per procedure and group of
data sets.

The covariance values used in the simulation of
data sets in Group 1 are shown in Table 1, and those
used for data sets in Group 2 are in Table 2. For each
group of data sets, one pair of covariance matrices was
defined for the low-prior runs (one genetic covariance
matrix and one environmental covariance matrix),
and another pair was defined for the high-prior runs.
Each genetic covariance so defined (low or high) was
used as the prior for all intrabreed and interbreed
additive genetic covariance matrices as well as the
interbreed nonadditive genetic covariance matrix.
Similarly, each chosen low (or high) environmental
covariance was used as prior for all intrabreed and
interbreed environmental covariance matrices. For
data sets in Group 1, 1) the low preliminary genetic
covariance matrix was (1.8, 3.0, 3.0, 18.0), 2) the low
environmental covariance matrix was (4.0, 3.0, 3.0,
60.0), 3) the high preliminary genetic covariance
matrix was (11.0, 25.0, 25.0, 110.0), and 4) the high
preliminary environmental covariance matrix was
(28.0, 25.5, 25.5, 235.0). The corresponding four
preliminary covariance matrices for data sets of Group
2 were 1) (38.0, 10.0, 10.0, 68.0), 2) (78.0), 3)
(155.0, 110.0, 110.0, 320.0), and 4) (400.0).

Convergence, Accuracy, and Number of
Expectation-Maximization Iterations

The convergence criterion used in the computer
runs was slightly different from the one described for

the two unconstrained strategies above. Instead of
checking each covariance estimate individually, a
single number was computed. This number was
CCONYV, the ratio of the sum of the squares of the
absolute differences between covariance estimates
from the previous and the current EM iterations to the
sum of squares of the covariance estimates of the
previous EM iteration. Thus, the convergence criterion
was to check whether CCONV was less than a small
number (e.g., 10™4). The main advantage of this
criterion is its simplicity (a single comparison be-
tween unitless numbers). Another ratio, CCSIM, the
ratio of sum of the squares of the absolute differences
between the covariance estimates of the current EM
iteration and the covariance values to the sum of
squares of the covariance values, was computed to
measure the degree of separation between estimates
and actual covariance values. Finally, a measure of
the degree of closeness between estimated and actual
covariance values (ACSIM) was computed (mimick-
ing the BIF accuracy formula, BIF, 1990) as (1.0 -
square root [CCSIM]) x 100.0. As for CCONV, the
main advantage of ACSIM is its simplicity: a single
number expressed as percentage. Table 3 shows the
values of ACSIM for the Partial Scoring and the
Cholesky Maximization procedures within and across
prior covariance values and groups of data sets. To
illustrate the computation of CCONV, CCSIM, and
ACSIM, consider the estimation of three covariances
whose actual values are (10, 20, 30). Let their
estimates in the previous and the current EM
iterations be (8.5, 16.0, 34.6) and (9.0, 184, 31.2),
respectively. Thus, CCONV = 17.6/1525.4 = .0115,
CCSIM = 39.4/1400.0 = .0281, and ACSIM = 83.2%.

The distribution of the number of EM iterations
needed to achieve convergence was severely skewed
within several covariance prior x estimation procedure
subclasses. Thus, the median, rather than the mean,
of the number of EM iterations and the time until
convergence within covariance prior x estimation
procedure subclass are given in Table 3. Also, the
means of the number of EM iterations and the times
to convergence per computational procedure within
and across groups of data sets are the means of the
appropriate medians of the high, equal, and low
covariance prior x estimation procedure subclasses.

The overall mean of the number of EM iterations
needed to achieve convergence was nine, with num-
bers of EM iterations ranging from 2 to 184. Forty-
seven out of 60 analyses (78%) converged in less than
12 EM iterations. Four out of the 60 runs (7%)
required more than 20 EM iterations to achieve
convergence (three of them used the Partial Scoring
method and the remaining one the Cholesky Maximi-
zation procedure). However, in all 60 runs at least one
of the methods achieved convergence (CCONV <
.0001) in less than 20 iterations. Thus, although both
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Table 1. Relative means and ranges of covariance estimates for direct genetic effects of two traits from five
simulated data sets using two unrestricted procedures and three sets of preliminary covariance estimates

Partial Scoring

Cholesky Maximization

Covariance Trait pair Value? Low? Equal® Highd Low Equal High
Additive
Intrabreed A (1, 1 40 .6° .8 1.2 9 .8 9
2, .8)f (.2, 1.2) (.2, 2.3) (.2, 1.8) .2, 1.7 (.2, 1.8)
(1, 2) 5.0 .9 9 18 9 9 .9
(.5, 1.4) (.5, 1.4) (.5, 8.7 (.5, 1.5) (.5, 1.6) (.5, 1.5)
2, 2) 40.0 9 1.0 14 1.0 1.0 1.0
(.6, 1.3) (.8, 1.3) (.8, 2.2) (.7, 1.2) (.7, 1.5) (.7, 1.3)
Intrabreed B (1, 1) 8.0 9 1.2 1.3 1.1 1.0 1.0
(.4, 1.4) (1.0, 1.4) (1.1, 1.4) (.8, 1.5) (.8, 1.3) (.7, 1.3)
a, 2) 17.0 1.0 1.3 1.3 .9 9 .8
(.3, 1.6) (1.0, 1.8) (1.1, 1.7) (.8, 1.1) (.8, 1.0) (.7, 1.0)
2, 2) 60.0 1.0 1.3 14 .8 8 8
(.5, 1.6) (1.0, 1.6) (1.2, 1.6) (.5, 1.2) (.5, 1.2) (.5, 1.2)
Interbreed AB (1, 1) 2.0 1.5 1.5 1.9 1.8 1.8 1.9
(.1, 2.6) (.4, 2.6) (.6, 2.6) (.1, 3.9) (.2, 3.9) (.1, 4.6)
(1, 2) 4.0 1.5 1.6 2.1 2.3 2.1 2.3
(.6, 2.6) (.9, 2.5) (.9, 2.5) (.0, 5.1) (-1,52) (-1,86.2)
2, 2) 20.0 1.9 2.0 2.4 2.7 2.7 2.8
(.3, 3.1) (.6, 2.9) (.9, 3.2) (.0, 4.9) (.1, 5.0) (.1, 5.5)
Nonadditive
Interbreed AB (1 locus) (1, 1) 6.0 A 9 11 1.0 1.0 1.0
(.4, 1.2) (.7, 1.2) (.7, 1.4) (.8, 1.5) (.8, 1.4) (.8, 1.4)
a, 2) 20.0 i 9 1.0 1.0 1.0 1.0
.3, 1.2) (.8, 1.2) (.8, 1.2) (.8, 1.5) (.8, 1.4) (.8, 1.5)
2, 2) 80.0 Vi 9 1.0 1.0 1.0 1.0
(.4, 1.1) (.8, 1.1) (.8, 1.2) (.8, 1.3) (.8, 1.3) (.8, 1.3)
Environmental
Intrabreed A a, n 6.0 1.0 1.1 1.5 1.0 1.1 1.1
(.7, 1.2) (1.0, 1.2) (1.1, 2.0) (.7, 1.2) (.8, 1.2) (.7, 1.4)
(1, 2) 4.0 1.0 1.1 1.5 1.2 1.2 14
(.8, 1.4) (.9, 1.4) (1.0, 2.2) (.7, 1.4) (.7, 1.4) (.6, 1.8)
2, 2) 90.0 9 1.0 1.2 1.0 1.0 1.1
(.8, 1.0) (1.0, 1.0) (1.0, 1.4) (1.0, 1.1) .9, 1.1) (1.0, 1.1)
Intrabreed B 1, 1) 22.0 7 9 1.0 1.0 1.0 1.0
(.4, 1.0) .9, 1.0) 9, 1.1) (.8, 1.1) (.8, 1.1) (.8, 1.1)
1, 2) 45.0 6 .9 .8 1.0 1.0 1.0
3, .9 (.8, 1.0) (.8, .9) (.9, 1.1) .9, 1.0) (.9, 1.1)
2, 2) 240.0 T 9 9 1.0 1.0 1.0
.5, .9) (.8, 1.0) (.8, 1.0) (.9, 1.1) .9, 1.0) (.9, 1.0)
Interbreed AB a, n 14.0 i 1.0 11 1.0 1.0 1.0
(.5, 1.0) (.6, 1.2) (.6, 1.7 (.5, 1.6) (.5, 1.6) (.4, 1.6)
1, 2) 10.0 .8 1.0 1.3 1.0 .9 9
(.4, 1.5) (.4, 1.5) (.4, 2.1) (-5,2.0) (-6 2.00 (-6, 2.1)
2, 2) 70.0 9 1.0 1.3 9 9 .9
(.7, 1.3) (.7, 1.3) .7, 2.2) (.2, 1.6) (.3, 1.8) (.2, 1.6)

3Values of covariances used to simulate data.
Covariance priors smaller than covariances used to simulate data.
¢Covariance priors equal to covariances used to simulate data.
ovariance priors larger than covariances used to simulate data.
€Mean of five (covariance estimate/covariance value) ratios.
f(Smallest, largest) value among five (covariance estimate/covariance value) ratios.

methods controlled positive definiteness and increased
the value of the log-likelihood of the complete data, in
some cases their control of multicollinearity was
insufficient to achieve a fast rate of convergence.

The mean of the number of EM iterations needed to
achieve convergence with the Partial Scoring proce-
dure (10) was similar to that for the Cholesky
Maximization procedure (9). However, their ranges
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Table 2. Relative means and ranges of covariance estimates for direct and maternal genetic
effects of a single trait from five simulated data sets using two unrestricted
procedures and three sets of preliminary covariance estimates
Partial Scoring Cholesky Maximization
Covariance Trait pair? ValueP Low® Equald High® Low Equal High
Additive
Intrabreed A d, d) 40.0 2.1f 2.0 3.6 3.8 1.7 2.6
(1.1, 3.0)8 (1.1, 4.9) (2.7, 4.9) (2.0, 6.6) (.5, 2.8) (2.0, 3.4)
(d, m) 30.0 .0 8 1.0 -5 .0 -8
(-3, .3) (.1, 1.3) (-9, 2.1) (2.2, .2) (-3, .4) (-12,-1)
(m, m) 80.0 .6 9 1.7 1.2 9 14
.5, .7) (.7, 1.0) (.7, 2.4) (.6,16) (4, 1.7) (1.2, 1.5)
Intrabreed B d, d) 100.0 1.5 1.2 1.5 1.2 1.2 14
(.6, 3.0) 5, 1.7) (.5, 2.0) (.6, 1.7 (5, 1.6) (.7, 1.8)
(d, m) 90.0 5 9 1.0 5 7 9
(.3, .6) (.6, 1.4) (.6, 1.3) (.1, .9) (3, 1.5) (.4, 1.8)
(m, m) 140.0 v 1.0 1.4 1.0 11 1.7
(.1, 1.1) (.7, 1.4) (.7, 1.8) (.7, 1.2) (9, 1.4) (14, 2.2)
Interbreed AB (d, d) 50.0 4 1.0 1.1 2.1 1.8 14
.0, .8) (.5, 2.1) (.5, 2.6) (.2, 5.0) (4, 3.5) (.8, 1.9)
(d, m) 20.0 .0 -29 -2.8 -3.6 -5.0 —4.5
(2.9, 2.,5) (-55,2.5) (-6.1, 2.5) (-11.0, 1.8) (9.2, -1.0) (-9.1, .7)
(m, m) 150.0 .6 8 8 1.6 1.6 1.6
(.3, .8) (.4, 1.1) (.4, 1.0) (.9, 29 (7, 3.7 (.5, 2.6)
Nonadditive
Interbreed AB (1 locus) (d, d) 70.0 1.8 2.1 2.2 19 2.5 2.4
(1.1, 2.5) (1.8, 2.5) (1.9, 2.8) (1.7, 2.3) (1.9, 34) (1.9, 3.4)
(d, m) 60.0 2 .8 8 2 5 6
(-2, .3) (.2, 1.3) (.2, 1.3) (1, .3) (4, .8 4, .7
(m, m) 120.0 5 7 1.3 5 6 1.2
(.1, .6) 1, .9) (.1, 1.9) (4, 6) (4, .7) (12,13
Environmental
Intrabreed A (e, e) 200.0 1.2 1.2 8 13 1.4 11
(.8, 1.4) (.8, 1.4) (.6, 1.2) (1.2, 1.4) (1.1, 1.6) (.9, 1.1)
Intrabreed B (e, e) 240.0 1.1 1.2 9 1.2 1.3 1.1
(4, 1.4) (1.0, 1.3) (.6, 1.2) (1.1, 1.3) (1.0, 1.7) (.8, 1.2)
Interbreed AB (e, e) 180.0 1.0 1.0 1.0 1.1 14 9
(.6, 1.3) (.9, 1.2) (.8, 1.4) (9, 1.5) (1.1, 1.8) (.7, 1.3)

3d = direct, m = maternal, and e = environmental.
alues of covariances used to simulate data.

®Covariance priors smaller than covariances used to simulate data.

ovariance priors equal to covariances used to simulate data.

®Covariance priors larger than covariances used to simulate data.

Mean of five (covariance estimate/covariance value) ratios.

&(Smallest, largest) value among five (covariance estimate/covariance value) ratios.

were substantially different: 2 to 184 for the Partial
Scoring procedure and 2 to 37 for the Cholesky
Maximization procedure. This was reflected in the
overall mean and range of the time needed to achieve
convergence: 26.2 min (4.1 to 773.2 min) for the
Partial Scoring method and 16.7 min (9.5 to 64.6
min) for the Cholesky Maximization procedure. The
overall accuracy (ACSIM) was higher for the Partial
Scoring (42.3%) than for the Cholesky Maximization
(37.8%) procedure (Table 3). However, this advan-
tage of the Partial Scoring over the Cholesky Maximi-
zation procedure was not uniform across groups of
data sets. The Partial Scoring method was 1.3% less

accurate for data sets in Group 1 and 9.9% more
accurate in data sets of Group 2 than the Cholesky
Maximization procedure.

Estimates of Covariances by
Unconstrained Procedures

Tables 1, 2, 4, 5, and 6 present various means and
ranges of estimates of intra- and interbreed additive
genetic, interbreed genetic, and intra- and interbreed
environmental covariances. For the sake of clarity,
and to allow comparison of differences in estimation
across covariances, these same tables present means
and ranges of covariance estimated in relative terms,
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Table 3. Number of expectation-maximization (EM) iterations, computing times, and
accuracy of estimation of covariances using two unrestricted procedures

Partial Scoring

Cholesky Maximization

Data set Priors? Tter? Time® ACSIMY Tter Time ACSIM
Two traits, direct
genetic effects Low 14 29.9 43.8 9 16.9 53.7
(2, 15) (4.1, 33.6) (27.8, 55.6) (8, 17) (15.0, 32.0) (40.4, 65.5)
Equal 11 22.7 63.7 7 13.3 52.7
2, 13) (4.1, 25.9) (51.2, 81.9) (6, 12) (114, 22.8) (40.7, 66.1)
High 12 24.8 48.9 10 18.8 53.7
(2, 16) 4.1, 35.7) (39.2, 55.6) (5, 37) (9.5, 64.6) (37.7, 67.8)
Al 12 25.8 52.1 9 16.9 53.4
(2, 16) (4.1, 35.7) (27.8, 81.9) (5, 37) (9.5, 64.6) (37.7, 67.8)
One trait, direct and
maternal genetic effects Low 9 39.8 32.5 4 149 21.3
(6, 23) (20.8, 84.0) (12.7, 41.2) 4, 5) (13.5, 16.7) (8.9, 35.6)
Equal 6 21.5 38.3 7 23.1 19.9
(2, 181) (7.5, 756.5) (26.9, 48.7) (4, 12) (14.0, 38.2) (3.1, 38.8)
High 5 18.4 25.2 3 11.2 25.1
(2, 184) (7.1, 773.2) (23.0, 28.7) (3, 4) (10.1, 12.6) (12.5, 35.5)
All° 7 26.6 32.0 5 16.4 22.1
(2, 184) (7.1, 773.2) (12.7, 48.7) (3, 12) (10.1, 38.2) (3.1, 38.8)
Al® 10 26.2 40.1 7 16.7 37.8
(2, 184) (4.1, 773.2) (12.7, 81.9) (3, 37) (9.5, 64.6) (3.1, 67.8)

2Covariance priors smaller than, equal to, and larger than covariances used to simulate data.

Iter = median and range of number of EM iterations until convergence.

°Time = median and range of minutes needed until convergence.

dACSIM = Mean and range of the percentage of accuracy of estimated covariances over five simulated data sets.
®Mean and ranges of Iter, time, and ACSIM.

Table 4. Relative means and ranges across covariance estimates from
two types of data sets using two unrestricted procedures

Data set Covariance priors? Partial Scoring Cholesky Maximization
Two traits, direct genetic
effects Low 9b 1.2
(.1, 3.1)¢ (-5,5.1)
Equal 11 1.2
(.2, 2.9) (-6, 5.2)
High 14 1.2
.2, 3.7) (-6, 6.2)
All 1.1 1.2
.2, 3.7 (-6, 6.2)
One trait, direct and
maternal genetic effects Low 8 9
(-2.9, 3.0) (-11.0, 6.6)
Equal 8 8
(-5.5, 4.9) (-9.2, 3.7)
High 11 9
(-6.1, 4.9) (-9.1, 3.4)
All 9 9
(-6.1, 4.9) (-11.0, 6.6)
All All 1.0 11
(-6.1, 4.9) (-11.0, 6.6)

8Covariance priors smaller than, equal to, and larger than covariances used to simulate data.

'Mean of (covariance estimate/covariance value) ratios across covariances and simulated data sets.

¢(Smallest, largest) value (covariance estimate/covariance value) ratios across covariances and simu-
lated data sets.
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Table 5. Relative means and ranges of covariance estimates for direct genetic
effects of two traits from five simulated data sets and three sets of
preliminary covariance estimates using two unrestricted procedures

Cholesky
Covariance Trait pair Value? Partial Scoring Maximization
Additive
Intrabreed A (1, 1) 4.0 b 9
(.2, 2.3)¢ (.2, 1.8)
(1, 2) 5.0 1.2 9
(.5, 3.71) (.5, 1.6)
(2, 2) 40.0 1.1 1.0
(.6, 2.2) (.7, 1.5)
Intrabreed B (1, 1) 8.0 11 1.0
(.4, 1.4) (.7, 1.5)
a, 2) 17.0 1.2 9
(.3, 1.8) (.7, 1.1)
2, 2) 60.0 1.2 8
(.5, 1.6) (.5, 1.2)
Interbreed AB 1, 1) 2.0 1.6 1.8
.1, 2.7 (.1, 4.6)
1, 2) 4.0 1.7 2.2
(.6, 2.6) (-1, 6.2)
2, 2) 20.0 2.1 2.8
(.3, 3.1) (.0, 5.5)
Nonadditive
Interbreed AB (1 locus) (1, 1) 6.0 9 1.0
. (.4, 1.4) (.8, 1.5)
(1, 2) 20.0 9 1.0
(.3, 1.2) (.8, 1.5)
2, 2) 80.0 .9 1.0
(.4, 1.2) (.8, 1.3)
Environmental
Intrabreed A 1, 1) 6.0 1.2 1.1
.7, 2.0) (.7, 1.4)
1, 2) 4.0 1.2 1.2
(.8, 2.2) (.6, 1.8)
(2, 2) 90.0 1.0 1.0
(.8, 1.4) (.9, 1.1)
Intrabreed B 1, 1 22.0 9 1.0
(.4, 1.1) (.8, 1.1)
1, 2) 45.0 .8 1.0
(.3, 1.1) .9, 1.1)
2, 2) 240.0 .8 1.0
(.5, 1.0) .9, 1.1)
Interbreed AB 1, 1) 14.0 1.0 1.0
(.5, 1.7) (.4, 1.6)
(1, 2) 10.0 1.0 1.0
(.4, 2.1) (-6, 2.1)
2, 2) 70.0 1.0 9
(.7, 2.1) (.2, 1.8)

8Values of covariances used to simulate data.

bMean of 15 (covariance estimate/covariance value) ratios.
“(Smallest, largest) value among 15 (covariance estimate/covariance value) ratios.

i.e., each mean and range of a covariance estimate was
divided by its actual value. To obtain actual means
and ranges of covariance estimates, relative means
and ranges within covariances need to be multiplied
by the covariance values (Tables 1, 2, 5, and 6).

Covariance Means and Ranges Within Prior Values.
One of the reasons for testing three different sets of
prior covariance values was to determine whether, in
the absence of reasonable priors (e.g., covariance
estimates from intrabreed analyses), it would be



326 ELZO

Table 6. Relative means and ranges of covariance estimates for direct and
maternal genetic effects of a single trait from five simulated data

sets and three sets of preliminary covariance estimates

using two unrestricted procedures

Cholesky
Covariance Trait pair? ValueP Partial Scoring Maximization
Additive
Intrabreed A d, d) 40.0 2.6° 2.7
(1.1, 4.9)4 (.5, 6.6)
(d, m) 30.0 .6 -4
(-9, 2.1) (22, .4)
(m, m) 80.0 1.0 1.2
(.5, 2.4) (.4, 1.7
Intrabreed B d, d) 100.0 14 1.3
(.5, 3.0) (.5, 1.8)
(d, m) 90.0 .8 T
(.3, 1.3) (.1, 1.8)
(m, m) 140.0 1.0 1.3
(.1, 1.8) (.7, 2.2)
Interbreed AB d, d) 50.0 .8 1.8
(.0, 2.6) (.2, 5.0)
(d, m) 20.0 -19 —44
(-6.1, 2.5) (-11.0, 1.8)
(m, m) 150.0 7 1.6
(.3, 1.1) (.5, 3.7)
Nonadditive
Interbreed AB (1 locus) d, d) 70.0 2.1 2.3
(1.5, 2.6) (1.7, 3.4)
(d, m) 60.0 6 4
(-2, 1.3) (1, .8)
(m, m) 120.0 .8 .8
(.1, 1.9) (.4, 1.3)
Environmental
Intrabreed A (e, e) 200.0 1.0 1.3
(.6, 1.4) (.9, 1.6)
Intrabreed B (e, e) 240.0 1.0 1.2
. (4, 1.4) (.8, 1.7)
Interbreed AB (e, e) 180.0 1.0 11
(.6, 1.4) (.7, 1.8)

2d = direct, m = maternal, and e = environmental.

alues of covariances used to simulate data.

®Mean of 15 (covariance estimate/covariance value) ratios.
d(Smallest, largest) value among 15 (covariance estimate/covariance value) ratios.

preferable to start the EM iterations with priors that
underestimated covariances rather than with priors
that overestimated the actual covariance values. The
ACSIM values of Table 3 show that the Cholesky
Maximization procedure was less affected by prelimi-
nary covariance values than the Partial Scoring
procedure. Furthermore, comparison of covariance
estimates from low, equal, and high priors (Tables 1,
2, and 4) suggests that the covariance estimates by
the Partial Scoring method tended to follow the prior
covariance values; low priors produced covariance
estimates that were (on the average) lower than the
covariance values, high priors produced estimates
higher than covariance values, and priors equal to the
covariance values yielded the best covariance esti-
mates. This occurred because the Partial Scoring

procedure frequently required a large number of
partial steps to generate a complete set of positive
definite estimates of covariance matrices; thus, the
resulting step was too small to appreciably change the
values of the estimates of the covariance matrices
from the previous Scoring iteration. The Cholesky
Maximization procedure, on the other hand, showed
little or no influence of the prior covariances on the
covariance estimates (Tables 1, 2, and 4). This made
covariance estimates by the Cholesky Maximization
procedure for individual data sets more credible than
those estimated by the Partial Scoring approach.
Thus, the Cholesky Maximization procedure should be
preferred to the Partial Scoring procedure, particu-
larly for traits without reliable covariance priors.
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Intrabreed and Interbreed Covariance Means and
Ranges. The ratios of individual intra- and interbreed
genetic and environmental covariances are presented
by procedure and covariance prior within procedure in
Tables 1 and 2, and by procedure averaged across
covariance priors in Tables 5 and 6, for data sets in
Group 1 and Group 2, respectively.

Environmental covariances were estimated 20%
more accurately than genetic covariances, and this
occurred across procedures and groups of data sets.
The absolute means of the relative environmental and
genetic covariance estimates were 1.1 and 1.3, respec-
tively. The poorest estimates were those for interbreed
additive genetic effects, which, on average, were
overestimated by 100% (absolute mean 2.0). These
results were expected given the small number of bulls
relative to the substantially larger number of calves in
each sample.

Comparison of relative covariance values across
groups of data sets indicates that covariances tended
to be overestimated (absolute mean 1.2, Table 4) in
data sets from Group 1 (two traits, direct genetic
effects only) and underestimated (absolute mean .9,
Table 4) in those from Group 2 (one trait, direct and
maternal genetic effects). This occurred because most
intra- and interbreed additive genetic as well as
interbreed nonadditive genetic covariances between
direct and maternal effects were underestimated by
both the Partial Scoring and the Cholesky Maximiza-
tion procedures (Table 2), particularly when low
covariance values were used as priors.

Discussion

Computational Aspects

The Partial Scoring and Cholesky Maximization
procedures managed to maintain positive definiteness
of the estimated covariance matrices, and both proce-
dures yielded similar overall means of relative covari-
ance values and accuracies (Tables 3 and 4).
However, their computational behavior with some
data sets was substantially different, particularly in
terms of the number of iterations required to achieve
convergence. The Partial Scoring procedure tended to
stay closer to the preliminary values used to start the
algorithm, and convergence tended to proceed in short
decreasing steps. The Cholesky Maximization proce-
dure, on the other hand, tended to fluctuate more
across EM iterations, and convergence tended to be
achieved following a serrated path (not all EM
iterations decreased the value of CCONV).

No relationship between speed of convergence and
the reciprocal of the condition number MREMLEM
equations, above the value of 1075 allowed, was
observed. In fact, the analyses that required the
largest numbers of EM iterations (181 and 184) had a
value of 102 for the reciprocal of the condition
number.

The value of the accuracy of estimation ACSIM at
convergence was largely determined during the first
two to six EM iterations, regardless of the convergence
value CCONV during these iterations. Thus, a smaller
value of CCONV may be appropriate (e.g., 10~3 or
even 102), especially in data sets larger than the
ones tested here.

The fact that the accuracy and the value of the
covariance estimates at convergence were not exactly
the same when different covariance priors were used
(Tables 1, 2, 3, and 4) suggests that the set of
covariance priors affected the level of multicollinearity
of the MREMLEM equations and that this effect did
not disappear with subsequent EM iterations. The
method most affected was the Partial Scoring, particu-
larly for covariance estimates from Group 1. On the
other hand, results from individual runs using the
Cholesky Maximization procedure were much more
similar across covariance priors, especially for data
sets from Group 1. From a practical standpoint, a
possible alternative would be to make several runs per
data set, each with a different set of covariance priors,
and the final set of covariance estimates would be the
set of average values across runs. Perhaps a minimum
of three sets of starting covariances should be used.
Given the tendency of the Partial Scoring procedure to
follow the prior covariance values, the three sets of
preliminary covariances for analyses of actual data
sets should be close to the population values. A
feasible set of covariance priors equivalent to the
“equal” values utilized here would be the use of 1)
estimates of intrabreed additive and environmental
covariances from actual large population analyses as
intrabreed additive and environmental priors, 2) the
mean of the corresponding intrabreed covariances as
interbreed additive and environmental covariance
priors, and 3) covariances due to sire x breed group of
dam interactions as interbreed nonadditive covari-
ances at one locus, if available, else use values similar
to those of the additive covariance priors. Next, two
other vectors of covariance priors could be generated,
one with values smaller than and another with values
greater than the base vector. For the Cholesky
Maximization procedure the choice of priors is less
critical, although a good set of three vectors would
probably give better estimates than a poor one.

Modeling and Programming Aspects

The main difference between the Partial Scoring
and Cholesky Maximization procedures was the com-
putation of the Cholesky elements of the intra- and
interbreed genetic and environmental covariances at
each EM iteration in the Cholesky Maximization
procedure. This additional set of computations showed
no increase in mean computing times per EM iteration
(2.6 min for Partial Scoring and 2.4 min for Cholesky
Maximization). This indicates that the partial steps
used by the Partial Scoring procedure took a longer
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time to control positive definiteness than the computa-
tion of the elements of the Cholesky Decomposition of
the covariance matrices by the Cholesky Maximization
procedure.

The expected log-likelihood and the actual log-
likelihood of the complete data were computed at each
Scoring and EM iteration for the Partial Scoring
method and at each EM iteration for the Cholesky
Maximization procedure. Both measures performed
equally well to ensure that the log-likelihood of the
complete data was increased at each step.

Covariances in data sets from Group 1 (two traits
with direct genetic effects only) were estimated more
accurately than those from Group 2 (a single trait
with direct and maternal effects), even though data
sets in Group 2 were constructed with a larger number
of bulls than those in Group 1. This was expected
because 1) a sire model, rather than a sire-maternal
grandsire model, is actually used for the maternal
component, and 2) a calf record supplies information
for many more different covariances (direct and
maternal) per trait than in analyses involving direct
genetic effects only. For example, a record of an
animal in Group 2 contributes to the estimation of 15
direct and maternal intrabreed and interbreed genetic
and environmental covariances, as opposed to two
records per animal jointly contributing to the estima-
tion of 21 direct intra- and interbreed genetic and
environmental covariances in Group 1.

The accuracies of estimation of the individual
covariances obtained here were reasonable, given the
small size of the simulated data sets used. Data sets
containing tens of thousands of straightbred and
crossbred bulls mated to dams of various breed groups
would probably yield estimates of covariances of
substantially higher accuracy. However, the computa-
tion of intrabreed and interbreed covariances in large
unbalanced multibreed field data sets poses additional
challenges not found in the small well-structured
simulated data sets used here to test the Partial
Scoring and Cholesky Maximization procedures. Some
of these additional factors that must be considered are
as follows: 1) multibreed data sets will probably
contain more than two base breeds, thus increasing
the number of covariances to be estimated, particu-
larly the number of interbreed covariances; 2) a set of
simplifying assumptions will be needed to help decide
which intrabreed and(or) interbreed covariances will
be considered to be equal, particularly in analyses of
multibreed populations composed of more than two
base breeds; 3) connectedness across multibreed
contemporary groups will need to be checked, because
data sets will be much less structured than the ones
used here; 4) a much more complex model, particu-
larly the part that accounts for group genetic effects
and environmental fixed effects, will probably need to
be used to describe a calf record; and 5) iterative
procedures, rather than direct sparse procedures, will
need to be used to solve for the MME.

Implications

The Partial Scoring and Cholesky Maximization
procedures described here were successful in keeping
estimates of intrabreed and interbreed variances and
covariances in multibreed population within their
permissible boundaries. However, because covariance
estimates from the Cholesky Maximization procedure
were much less affected by covariance priors than
those from the Partial Scoring procedure, the
Cholesky Maximization procedure should be preferred.
Both procedures can be used in structured or in
unstructured field data sets. Additional considerations
(connectedness, simplifying assumptions, iterative
strategies) will need to be taken into account when
analyzing large unbalanced muitibreed data sets.
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