Livestock Science 122:186-192, 2009.

1	Genetic trends in a Holstein $ imes$ Other Breeds multibreed dairy population in Central
2	Thailand
3	
4	S. Koonawootrittriron ^a , M. A. Elzo ^{b*} , T. Thongprapi ^c
5	
6	^a Department of Animal Science, Kasetsart University, Bangkok 10900, Thailand
7	^b Department of Animal Sciences, University of Florida, Gainesville, FL 32611-0910, USA
8	^c Dairy Farming Promotion Organization, Ministry of Agriculture and Cooperatives,
9	Saraburi 18180, Thailand
10	
11	* Corresponding Author. Department of Animal Sciences, University of Florida, P. O. Box
12	110910, Gainesville, FL 32611-0910, USA. Tel: +1-352-392-7564; Fax: +1-352-392-7652.
13	Email address: <u>elzo@animal.ufl.edu</u> (M. A. Elzo)
14	
15	Abstract
16	Genetic variability and genetic trends for 305-d milk yield (MY), 305-d fat yield
17	(FY), and average 305-d fat percent (FP) were evaluated using monthly test-day records from
18	first-lactation cows collected from 1991 to 2005 in 92 farms located in Central Thailand.
19	Estimates of variance and covariance components and breeding values (EBV) were obtained
20	using a multiple-trait animal model. Fixed effects were contemporary group (herd-year-
21	season), calving age, additive genetic group as a function of Holstein fraction, and non-
22	additive genetic group as function of heterosis effect. Random effects were animal and
23	residual. Program ASREML was used to perform computations. Estimates of heritabilities
24	were 0.38 ± 0.10 for MY, 0.25 ± 0.11 for FY, and 0.22 ± 0.11 for FP. Although the
25	difference between the mean MY for cows in 1991 and 2005 was 324.1 kg, the regression of

26	mean cow EBV for MY on year was 6.5 kg/yr. Differences between mean cow EBV for FY
27	and FP in 1991 and 2005 and their corresponding regressions of mean FY and FP on year
28	were all near zero. Similarly, mean EBV for sires and dams of cows also showed near zero
29	trends during these years. A factor contributing to the near complete absence of genetic
30	trends was likely the variety of criteria used by producers to choose sires and to keep dams in
31	addition to EBV (e.g., availability of semen, reproductive ability, adaptation to hot and humid
32	conditions). It also appears that high percent Holstein cows failed to reach their production
33	potential under the management, nutrition, and hot and humid climatic conditions in this
34	tropical region. Changes in nutrition and management would be needed for high percent
35	Holstein cows to show an upward trend in Central Thailand.
36	
37	Keywords: Cattle; Dairy; Genetic trends; Thailand; Tropical
38	
39	1. Introduction
40	There has been a concerted effort to increase milk production in Thailand for the past
41	35 years. This effort has been a combination of government policies, importation and
42	widespread use of Holstein semen, and extensive use of high-percent Holstein sires generated
43	in Thailand. This mating strategy has resulted in a multibreed dairy population where 90% of
44	animals are 75% Holstein or greater (Department of Livestock Development, 2006).
45	Central Thailand is the most important dairy region. In 2005, it contained
46	approximately 60% of dairy farms (12,253 farms), 70% of dairy cows (145,912 cows), and it
47	produced 66% of raw milk per day (805,083 kg) in Thailand (Department of Livestock
48	Development, 2006). The large concentration of dairy farms led to the establishment of 27

50	The Dairy Farming Promotion Organization of Thailand (DPO) has been collecting									
51	dairy production, breed composition, and pedigree records in Central Thailand since 1991.									
52	To help dairy producers with their selection decisions for economically important traits,									
53	Kasetsart University began to conduct annual genetic evaluations with the DPO dataset in									
54	1996. Currently, estimated breeding values for purebred and crossbred animals are computed									
55	for milk yield, fat yield, fat percentage, and age at first calving using multibreed mixed model									
56	procedures (Koonawootrittriron et al., 2002). These evaluations are published and distributed									
57	to farmers in the yearly DPO Sire and Dam Summary (Dairy Farming Promotion									
58	Organization, 2006).									
59	It is important to evaluate changes over time in the DPO dairy population for									
60	economically important dairy traits, particularly since genetic evaluations began in 1996, to									
61	obtain information on the impact of the selection and mating strategies used by farmers and									
62	on aspects that need to be improved. Thus, the objective of this research was to assess									
63	genetic variability and genetic trends for first lactation 305-d milk yield (MY), 305-d fat yield									
64	(FY), and average 305-d fat percent (FP) in the DPO dairy cattle population in Central									
65	Thailand from 1991 to 2005.									
66										
67	2. Materials and methods									
68	2.1. Animals and Data									
69	The original dataset consisted of 17,085 monthly test-day records from 2,034 first									
70	lactation cows. All cows had their sire and dam identified. However, 657 (32.3%) of them									
71	needed to be eliminated because they had incomplete or no information of breed composition,									
72	birth date, calving date, and drying-off date. Thus, the resulting edited dataset had 15,260									
73	monthly test-day records from 1,377 first-lactation cows collected from 1991 to 2005 in 92									
74	farms in Central Thailand. These cows were the progeny of 378 sires and 1,176 dams.									

75	Breeds represented in the multibreed dairy population were Holstein, Brahman,
76	Jersey, Red Dane, Red Sindhi, Sahiwal, and Thai Native. However, the majority of animals
77	in the population were composed of a large Holstein fraction, and a small fraction of other
78	breeds. Thus, two breed groups were defined: Holstein (H) and Other breeds (O), where O
79	included all breeds other than Holstein. Table 1 presents numbers of cows by breed group of
80	sire \times breed group of dam combination. Most cows (86 %) were sired by purebred Holstein,
81	13% of cows were produced by crossbred Holstein sires (0.50 \leq H <1.0), and 1% of cows
82	were daughters from 5 Jersey sires. Ninety one percent of cows (1,255 of 1,377 cows), 91%
83	of dams (1,070 of 1,176 dams), and 10% of sires (35 of 378 sires) in the population were
84	crossbred. The breed composition of the DPO population was similar to the breed structure
85	of the dairy cattle population in Thailand reported by the Department of Livestock
86	Development (2004).
87	Test-day samples were measured for milk volume and analyzed for fat content (fat
88	percentage) monthly. Monthly test-day fat volume was computed as the product of test-day
89	milk volume and fat content. Monthly test-day samples were used to compute MY and FY
90	using the test-interval method (Sargent et al., 1968; Koonawootrittriron et al., 2001).
91	Monthly production yields (milk and fat) were computed using two consecutive test-day
92	production samples, and then added to obtain the accumulated 305-d productions.
93	Computations were performed using an in-house-written SAS program (SAS, 2003).
94	
95	2.2. Climate, Nutrition, and Management
96	Weather in Thailand is heavily influenced by tropical monsoons. Central Thailand
97	has daily temperatures ranging from 19° to 36° Celsius, relative humidity ranging from 48 to
98	94 %, and rainfall is approximately 1,232 mm per year (Meteorological Department, 2004).

99 Seasons were winter (November to February: cool [21° to 32° Celsius] and dry [70% RH,

- 101 RH, precipitation 187 mm/year]), and rainy season (July to October: hot [24° to 33° Celsius]
- and humid [79% RH, precipitation 903 mm/year]).
- 103 Grasses used in dairy farm pastures of Central Thailand were Guinea (*Panicum*
- 104 maximum; 9% to 12% CP and 50% to 52% TDN, DM basis), Ruzi (Brachiaria ruziziensis;
- 105 10% to 12% CP and 57% to 59% TDN, DM basis), Napier (Pennisetum purpureum; 11% to
- 106 12% CP and 53% to 54% TDN, DM basis), and Para (Brachiaria mutica; 10% to 11% CP
- 107 and 53% to 55% TDN, DM basis). To increase the nutritive value of pastures, some farmers
- 108 planted mixtures of grasses and legumes such as Verano stylo (Stylosanthes hamata cv.
- 109 Verano; 16% to 20% CP and 50% to 56% TDN, DM basis), Thapra stylo (Stylosanthes
- 110 guianensis CIAT 184; 14% to 18% CP and 48% to 55% TDN, DM basis), and Leucaena
- 111 (Leucaena leucocephala; 18% to 22% CP and 55% to 73% TDN, DM basis). Grasses in this
- region usually grow faster than legumes (Mclovor, 1978; Haynes, 1980; Nakamanee et al.,
- 113 2004). Thus, the composition of pastures was approximately 90% grasses (e.g., Guinea or
- 114 Ruzi) and 10% legumes (e.g., Thapra stylo).
- 115 Concentrate feed for cows was either produced by the farmers themselves, or
- 116 purchased from dairy cooperatives and local companies (e.g., Charoen Pokphand Foods
- 117 Public Co. Ltd., Bangkok, Thailand; Betagro Agro Group Co. Ltd., Bangkok, Thailand).
- 118 Concentrate mixtures contained from 15% to 19% of CP and from 70% to 75% of TDN (DM
- 119 basis). Ingredients used in the concentrate were: 1) a protein source (10% to 40% CP), e.g.,
- 120 soybean meal, brewer's grain, cotton seed meal, Para-rubber seed meal, Leucaena; 2) an
- 121 energy source (63 to 83% NFE), e.g., corn, cassava, broken rice, rice bran, fat from animals
- 122 and plants; and 3) a mineral and vitamin source, e.g., premixes such as MT MIX, Mahthong
- 123 Co. Ltd., Bangkok, and SMART MIX, BETTER PHARMA Co. Ltd., Bangkok).

124	Feeding was based on concentrate (12 to 15 kg/d, or considering 1 kg of concentrate							
125	for 2 kg of milk), and fresh grass (direct grazing or cut and carry; 30 to 40 kg/d) from farmers							
126	own land (90% of farmers) or from public areas (small holders). However, availability of							
127	forage in Thailand is limited. Except for a period of 4 months (July to October), there is							
128	insufficient fresh grass for dairy cows the rest of the year. During this 8-month period							
129	(November to June) when fresh grass is limited, farmers feed dairy cows rice straw (2 to 5%							
130	CP, 40 to 44% TDN, DM basis), urea-treated rice straw, and crop residues (cassava leaves,							
131	corn cobs, peanut leaves) as sources of fiber coupled with large amounts of concentrate to							
132	compensate for the lack of good quality forage. A free-choice mineral supplement was							
133	available throughout the year.							
134	Cows were housed in open barns. Less than 10% of farmers used fans to reduce heat							
135	stress. Nearly all dairies milked their cows twice a day. Cows were bred all year round by							
136	artificial insemination. Reasons for culling cows were mainly health (e.g., Brucellosis,							
137	Paratuberculosis, Foot and Mouth Disease, and Anaplasmosis; National Institute of Animal							
138	Health, 2006) and reproductive problems (e.g., delayed estrus, non-return to estrus, silent							
139	heats, and long days open).							
140								
141	2.3. Genetic Parameters							
142	A multiple-trait multibreed animal model was used to obtain estimates of breeding							
143	values (EBV) and of variance and covariance components. Variance and covariance							
144	components were estimated using restricted maximum likelihood procedures and computed							
145	with an average information algorithm (ASREML; Gilmour et al., 2000).							
146	Estimates of variances and covariances were subsequently used to compute							
147	heritabilities for and genetic correlations among MY, FY, and FP.							
148	The multiple-trait animal model was as follows:							

149
$$y = Xb + Z_{ga}g_a + Z_{gn}g_n + Z_aa_a + e$$

150 where

151	y = vector of MY, FY, and FP ordered by traits within cows,
152	b = vector of contemporary groups (herd-year-season; HYS) and a covariate
153	for calving age (mo),
154	g_a = vector of regression additive genetic group deviations (i.e., H - O),
155	g_n = vector of interbreed intralocus non-additive genetic group deviations
156	(i.e., heterosis effects; $\frac{1}{2}$ (HO + OH – HH – OO),
157	a_a = vector of animal additive genetic effects,
158	e = vector of residuals,
159	X = incidence matrix that relates cow records to elements of vector b,
160	Z_{ga} = matrix of expected fractions of H alleles that relates cow records to
161	elements of vector g _a ,
162	Z_{gn} = matrix of probabilities of interbreed intralocus configurations (= prob (H
163	alleles in sire) \times prob (O alleles in dam) + prob (O alleles in sire) \times prob
164	(H alleles in dam) relating cow records to elements of vector g _n ,
165	Z_a = matrix 1's and 0's that relates cow records to elements of vector a_a , and
166	subscript $1 = MY$, subscript $2 = FY$, and subscript $3 = FP$.
167	The assumptions of the model were:
168	$\begin{bmatrix} \mathbf{y} \\ \mathbf{a}_{\mathbf{a}} \\ \mathbf{e} \end{bmatrix} \sim \mathbf{MVN} \begin{pmatrix} \begin{bmatrix} \mathbf{X\beta} \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{Z}_{\mathbf{a}} \mathbf{G}_{\mathbf{a}} \mathbf{Z}'_{\mathbf{a}} + \mathbf{R} & \mathbf{Z}_{\mathbf{a}} \mathbf{G}_{\mathbf{a}} & \mathbf{R} \\ \mathbf{G}_{\mathbf{a}} \mathbf{Z}'_{\mathbf{a}} & \mathbf{G}_{\mathbf{a}} & 0 \\ \mathbf{R} & 0 & \mathbf{R} \end{bmatrix} \end{pmatrix}$

169 where

170
$$G_a = G_o \otimes A$$
, where G_o is the matrix of additive genetic covariances, A is the
171 numerator relationship matrix (Henderson, 1976), and \otimes represents direct
172 product (Searle, 1982), and

173
$$R = residual covariance matrix.$$

The EBV were computed as a weighted sum of additive group genetic effects and
random effects. Thus, the EBV for animal ij was (Koonawootrittriron et al., 2002):

$$\hat{u}_{a_{ii}} = p_{ij}g_{a_i}^\circ + \hat{a}_{a_j}$$

177 where $\hat{u}_{a_{ij}}$ is the EBV of animal ij, p_{ij} is the fraction of H alleles for animal ij, $\hat{g}_{a_i}^{\circ}$ is the

estimate of the regression additive genetic group deviation (H - O) , and $\hat{a}_{a_{ij}}$ is the prediction

179 of the random additive genetic effect for animal ij.

181 2.4. Genetic Trends

182 Weighted yearly means of EBV of cows, sires, and dams were plotted against year. 183 Weights for cow yearly means were equal to 1, and weights for sire and dam yearly means 184 were equal to their respective numbers of daughters per year. In addition, unweighted means 185 were computed for sires and dams. Differences between weighted and unweighted means 186 would help explain differences in sire usage and dam representation per year in the 187 population. These differences would give an indication of the type of sires and dams that 188 were predominantly chosen as parents in the population, and their impact on genetic yearly 189 means. 190 Linear regressions of EBV yearly means on years were computed for each trait using 191 the REG procedure of the SAS program (SAS, 2003). Pearson correlation coefficients

among cow, sire, and dam EBV were also estimated using the CORR procedure (SAS, 2003).

193

194 **3. Results and discussion**

195 3.1. Least Squares Means

196 Least squares estimates and SE for MY, FY, and FP were computed using the mixed 197 procedure of SAS with single-trait fixed models that contained the same fixed effects as the 198 multiple-trait animal model used to compute EBV and variance components. Table 2 shows 199 the least squares means for MY, FY, and FP per breed group of cow. Milk yield tended to 200 increase from cows with 50% H or less to cows $(3,508.7 \pm 340.7 \text{ kg})$ to 96.87% H and above 201 but less than 100% (4,185.2 \pm 118.8 kg). Milk yield for purebred H cows (3,810.6 \pm 120.0 202 kg) was between the milk production of $0.50 \le H < 0.75$ cows (3,643.5 ± 119.1 kg) and that 203 of $0.75 \le H < 0.875$ cows $(3,911.3 \pm 64.4 \text{ kg})$. Fat yield was highest in the $0.75 \le H < 0.875$ 204 group of cows (144.4 \pm 3.3 kg), and lowest in less than 50% H cows (117.3 \pm 17.5 kg); 205 purebred H cows had the second lowest fat yield (121.0 ± 6.2 kg). Lastly, $0.50 \le H < 0.75$ 206 cows had the largest fat percentage $(3.44 \pm 0.11 \text{ \%})$ and purebred H the lowest $(2.95 \pm 0.11 \text{ \%})$ 207 %). 208 The LS means and their SE for the H - O breed deviation were $1,010.0 \pm 870.8$ kg (P 209 = 0.15) for MY, 38.7 \pm 49.8 kg (P = 0.07) for FY, and -0.64 ± 5.28 % (P = 0.11) for FP. 210 Least squares means and SE for heterosis were 412.1 \pm 481.5 kg (P = 0.26) for MY, 23.4 \pm 211 27.8 kg (P = 0.07) for FY, and 0.03 ± 0.29 % (P = 0.81) for FP. The large SE of the 212 estimates of H - O and of heterosis were likely due to the poor representation of O in the 213 DPO dairy population. The DPO is currently expanding its recorded population of dairy 214 cows, thus, it is likely that more accurate estimates of breed group differences and of

215 heterosis effects would be obtained in the near future.

Overall, the H - O estimates in this population suggest that cows with larger H
fractions tended to produce more milk and fat, but they had lower fat percentage. Similarly,
the estimates of heterosis indicate that nonadditive genetic effects tended to increase milk

219 yield and fat yield. To attain these high levels of production under the tropical conditions in 220 Thailand, purebred H and high fraction H cows must receive appropriate nutrition, 221 management, and health care. High H fraction or purebred H cows that do not get 222 appropriate nutrition, management, and health care show health problems (e.g., thin cows, 223 weak calves, tick fever, laminitis, and ephemeral fever) and reproductive problems (silent 224 heats, low conception rates, long days-open, and long calving intervals) as well as lower 225 levels of milk and fat yields (Markvichitr et al., 1995; Punyapornwithaya et al., 2005). The 226 levels of MY (lower than that of 0.75 < H < 0.875 cows), FY (lower than 0.50 < H < 0.75227 cows), and FP (lowest of all breed groups of cows) of purebred H suggest that the level of 228 nutrition, management, health care cows received was insufficient for them to express their 229 genetic potential.

Dairy production in Thailand is based on a combination of concentrate and tropical grasses. However, because good quality forage is unavailable in Central Thailand most of the year, a way for high percent H and purebred H cows to achieve high milk and fat yields is by consuming large amounts of concentrate, which most dairy farmers in Thailand cannot afford (Tumwasorn et al., 1995). Thus, most Thai farmers prefer cows that have an H fraction no larger than 90% in order to maintain the profitability of their operations.

236

237 3.2. Genetic Variances and Genetic Parameters

Estimates of additive genetic variances were 255,068.0 \pm 69,690.7 kg² for MY, 451.6 \pm 193.0 kg² for FY, and 0.038 \pm 0.02 %² for FP. Phenotypic variances were 663,652.0 \pm 31,610.0 kg² for MY, 1,781.6 \pm 89.5 kg² for FY, and 0.18 \pm 0.09 %² for FP. Heritability estimates were 0.38 \pm 0.10 for MY, 0.25 \pm 0.11 for FY, and 0.22 \pm 0.11 for FP. Estimates of additive genetic and phenotypic variances for MY in the DPO multibreed population were lower than estimates for H cows in Brazil (Ceron-Muñoz et al., 2004; Costa et al., 2000),

244	Colombia (Ceron-Muñoz et al., 2001, 2004; Stanton et al., 1991), and Mexico (Cienfuegos-
245	Rivas et al., 1999; Stanton et al., 1991). However, the estimate of heritability for MY was
246	higher than corresponding values in all these countries because of the much smaller estimate
247	environmental variance in the DPO dataset than in the H datasets used in those studies.
248	Differences in breed composition of animals in the DPO (multibreed, high percent H) and the
249	H populations in Brazil, Colombia, and Mexico likely account for a portion of the differences
250	in genetic and environmental variation between these populations. However, genetic and
251	environmental variances for MY in the DPO population were more similar to corresponding
252	variances in cows from herds classified as having low variability (Ceron-Muñoz et al., 2004;
253	Cienfuegos-Rivas et al., 1999; Costa et al., 2000). Considering that 90.6% of cows in the
254	DPO dataset were 75% H and higher, the lower estimates of genetic and environmental
255	variation may be an indication that feeding regimes and management practices are limiting
256	the genetic potential for MY in the DPO population. On the other hand, estimates of additive
257	genetic and phenotypic variances and heritability for FY in the DPO population were
258	somewhat higher than estimates (Costa et al., 2000) from a Brazilian H population. Genes
259	from other breeds present in the DPO population (e.g., Jersey) may be partly responsible for
260	these differences as well as differences among sires used in Thailand and in Brazil.
261	Estimates of additive genetic covariances were $8,277.6 \pm 3,111.9 \text{ kg}^2$ between MY
262	and FY, -420.0 \pm 271.0 kg*% between MY and FP, and -0.846 \pm 1.365 kg*% between FY
263	and FP, and their corresponding additive genetic correlation estimates were 0.77 ± 0.12
264	between MY and FY, -0.43 \pm 0.24 between MY and FP, and -0.20 \pm 0.36 between FY and
265	FP. These estimates of heritabilities and genetic correlations were within the range of values
266	reported in previous Thai studies (Department of Livestock Development, 2004; König et al.,
267	2005; Chanvijit et al., 2005).

270	To visualize mating patterns in the DPO population in terms of the EVB of sires and
271	dams, mean EBV for MY, FY, and FP for cows, their sires and their dams were computed by
272	breed group of cow. Similar patterns were observed for MY, FY, and FP. Thus, only mean
273	EBV for MY are shown (Table 3) and discussed here. The sires with the highest EBV for
274	MY (982.1 \pm 13.6 kg to 1,012.0 \pm 25.6 kg) were mated to dams whose breed composition
275	ranged from 87.5% to less than 100% H (second to fourth breed groups in Table 3). The
276	dams with the highest mean EBV in the DPO population were 96.87% H (1,031.7 \pm 21.0 kg),
277	whereas purebred H dams were second highest (969.1 \pm 20.8 kg). These mating patterns
278	clearly indicate that Thai farmers mated the highest EBV H sires not to purebred H dams, but
279	to upgraded dams that had some non-Holstein fraction, perhaps due to their perceived
280	superior adaptability to purebred H dams as suggested by their higher milk and fat yields, or
281	perhaps simply due to their desire to mate their highest milk producing cows to the best
282	available sires. Mean EBV for cows, sires, and dams for MY, FY, and FP were also
283	computed by breed group of dam x year to try to detect differences in mating strategies across
284	breed groups of dams over time. None were found.
285	To assess whether higher EBV bulls had been more frequently used as sires, and
286	whether higher EBV dams were more represented in the cow population within years,
287	unweighted yearly EBV means were computed for sires and dams, and compared to their
288	corresponding weighted yearly EBV means. A larger weighted than unweighted sire EBV
289	mean in a given year indicates a heavier use of high EBV sires. Similarly, a larger weighted
290	than unweighted dam EBV mean suggests a larger number of daughters from high EBV dams

- 291 in a particular year. Patterns of sire usage and dam representation in the DPO dataset were
- similar for MY, FY, and FP, thus only those for MY are discussed here (Fig. 1). As expected
- 293 from the larger number of progeny per sire than per dam, differences between weighted and

294	unweighted yearly EBV means were larger for sires than for dams. There was, however, a
295	similar number of years when the difference between weighted and unweighted EBV mean
296	was positive (7 years for sires and dams) and negative or zero (8 negative years for sires; 3
297	negative and 5 zero years for dams). This pattern of positive and negative weighted vs.
298	unweighted yearly EBV means suggests that there was no consistent strategy for choosing
299	either sires or dams as parents. This supports the contention that Thai dairy farmers chose
300	parents using a variety of determining factors (e.g., availability of semen, cost, pedigree for
301	sires; health, reproductive ability for dams), and that EBV may not have been the most
302	important one.
303	3.4. Genetic Trends
304	Fig. 2 shows the trends for yearly EBV means of cows, their sires, and their dams for
305	MY, FY, and FP from 1991 to 2005. Genetic trends for sires were negative for MY (-5.0 \pm
306	3.5 kg/yr; P = 0.18) and FY (-0.3 \pm 0.1 kg/yr; P < 0.03), but positive for FP (0.004 \pm
307	0.001%/yr; $P < 0.01$). Contrarily, genetic trends for cows and dams were positive for MY
308	(6.5 \pm 2.1 kg/yr for cows and 17.7 \pm 2.0 kg/yr for dams; P < 0.01) and FY (0.2 kg/yr for cows
309	and 0.7 kg/yr for dams; P < 0.05), and they were negative for FP (-0.004 \pm 0.001 %/yr for
310	cows and -0.011 \pm 0.001 %/yr for dams; P < 0.01). Cow genetic trends in the DPO population
311	showed a similar pattern to the one reported by the Department of Livestock Development
312	(2004) using records from a large segment of the Thai dairy population (MY: 3.3 kg/yr; FY:
313	(0.05 kg/yr; FP: -0.002 %/yr).
314	Weighted yearly means of sire EBV were higher than those of dams for MY and FY,
315	but they were lower than those of dams for FP from 1991 to 2005 (Fig. 2). The magnitude of
316	the difference between weighted yearly mean EBV for sires and dams decreased from 1991
317	to 2005. These differences were 387.8 kg in 1991 and 142.2 kg in 2005 for MY, 14.5 kg in
318	1991 and 3.5 kg in 2005 for FY, and 0.27 % in 1991 and 0.08 % in 2005 for FP. Cow EBV

323 The genetic trends for MY, FY, and FP observed in the DPO population were likely 324 due to the upgrading of dairy cattle to Holstein promoted by the Thai government rather than 325 selection. The small genetic trends for MY, FY, and FP suggest that sires and dams in this 326 population were chosen based on considerations other than their EBV for these production 327 traits. Most Thai dairy farmers may have considered information on cost, health, 328 reproductive ability, and pedigree, in addition to production traits when selecting sires and 329 dams. Further, the availability of EBV for imported sires under Thai conditions was limited, 330 and those available had low accuracies due to small numbers of progeny. This suggests the 331 need for a comprehensive national dairy genetic evaluation to increase both accuracy of 332 genetic evaluation and availability of Thai and imported sires for artificial insemination. 333 Another factor for the low genetic trends may have been genotype by environment 334 interaction. Indirect evidence in this regard was suggested by the low levels of genetic and 335 environmental variation for MY found in the DPO multibreed population compared to those 336 from H populations in other tropical and subtropical countries (Brazil, Colombia, and 337 Mexico) discussed in section 3.2. The high % H (75% or more) of most cows (90.6%) in 338 the DPO population suggests that they may have the genetic potential to produce high levels 339 of MY. However, least squares means for MY for high % and purebred H cows in the DPO 340 population were lower than adjusted and unadjusted means reported for Brazil (Ceron-Muñoz 341 et al., 2004; Costa et al., 2000), Colombia (Ceron-Muñoz et al., 2001, 2004; Stanton et al., 342 1991), and Mexico (Cienfuegos-Rivas et al., 1999; Stanton et al., 1991). Further, cows 343 between 75% H and less than 100% H in the DPO population had higher MY, FY, and FP

344 than purebred H (Table 2). These aspects suggest that purebred Holstein cows failed to reach 345 their production potential under the management, nutrition, and hot and humid climate 346 conditions in this tropical region. Unfortunately specific information on management 347 practices, feeding regimes, nutritional value of diets, and information on other traits (cow 348 weights, body condition) that would have helped characterize the existence of genotype by 349 environment interaction in the DPO population were unavailable. However, efforts to 350 improve data collection, nutrition, management, and health aspects as well as increase the 351 number of farms and animals with records in this population are being pursued. The 352 economic situation of most dairy farmers in Thailand makes it unlikely for rapid 353 improvement of environmental conditions to occur. Thus, one alternative to help improve 354 dairy production in Thailand would be to include adaptability traits (e.g., heat and humidity 355 tolerance, tolerance to insects), reproduction, and production traits in dairy selection 356 programs. This would permit the identification of animals that are both well adapted and 357 productive under Thai production conditions. 358 Economically, the most important dairy traits in Thailand are MY and FP. Milk price 359 in Thailand is primarily determined by amount of milk produced, with additions and 360 deductions due to milk components (FP, solids-non-fat) and milk quality (bacterial score, 361 somatic cell count; Rhone et al., 2007; Sangjan and Koonawootrittriron, 2007). Dairy farm 362 revenues could be substantially increased if there were a consistent strategy to choose sires 363 from year to year. Given a price range that a farmer could afford, artificial insemination sires 364 could be chosen based on high EBV for MY and FP. Another aspect that needs to be 365 improved is the accuracy of animal evaluations. This implies that a substantially larger 366 number of dairy herds and cows should provide individual animal information for genetic 367 evaluation purposes. Currently, only two organizations produce dairy genetic evaluations in 368 Thailand: the DPO and the Department of Livestock Development. The number of cows

369 providing information to these two organizations is only 23, 000, which represents only 11% 370 of the total number of dairy cows (208,831 cows; Department of Livestock Development, 371 2006) in Thailand. Thus, to substantially increase the accuracy of Thai genetic evaluations, it 372 is imperative to increase the number of cows that participate in genetic evaluation programs. 373 A national dairy genetic evaluation system would need to be implemented to optimize the use 374 of the information from the various subpopulations, and achieve the maximum genetic trends 375 feasible under Thai environmental conditions.

376

378

377 4. Conclusions

Genetic trends in the Holstein × Other Breeds dairy cattle population in Central 379 Thailand from 1991 to 2005 were small for MY, and near zero for FY and FP. A National 380 Sire Evaluation needs to be implemented to improve the accuracy of genetic evaluations and 381 to increase the availability of Thai and imported sires evaluated under Thai conditions for 382 artificial insemination. The pricing system for milk may need to be changed to stimulate herd 383 size growth and to increase the number of dairy farms willing to participate in genetic

384 improvement programs in Thailand.

385

386 References

387	Ceron-Muñoz, M. F., Tonhati, H., Costa, C., Benavides, F. 2001. Genotype by environment
388	interaction in Colombian Holstein. Arch. Latinoamer. Prod. Anim. 9, 74-78.

389 Ceron-Muñoz, M. F., Tonhati, H., Costa, C., Rojas-Sarmiento, D., Solarte Portilla, C. 2004.

- 390 Variance heterogeneity for milk yield in Brazilian and Colombian Holstein herds.
- 391 Livest. Res. Rural Develop. 16, 20,
- 392 http://www.cipav.org.co/lrrd/lrrd16/4/cero16020.htm.

- Chanvijit, K., Duangjinda, M., Pattarajinda, V., Reodecha, C. 2005. Model comparison for
 genetic evaluation of milk yield in crossbred Holsteins in the tropics. J. Appl. Genet.
 46, 387-393.
- 396 Cienfuegos-Rivas, E. G., Oltenacu, P. A., Blake, R. W., Schwager, S. J., Castillo-Juarez, H.,
- Ruiz, F. J. 1999. Interaction between milk yield of Holstein cows in Mexico and the
 United States. J. Dairy Sci. 82, 2218-2223.
- 399 Costa, C. N., Blake, R. W., Pollak, E. J., Oltenacu, P. A., Quaas, R. L., Searle, S. R. 2000.

400 Genetic analysis of Holstein cattle populations in Brazil and the United States. J.

- 401 Dairy Sci. 83, 2963-2974.
- 402 Dairy Farming Promotion Organization, 2006. DPO Sire and Dam Summary 2006. Minist.
 403 Agric. Coop., Bangkok, Thailand, pp. 1-48.
- 404Department of Livestock Development, 2004. DLD Dairy Sire Summary 2004. Bureau of405Biotechnology for Livestock Production. Dept. Livest. Dev., Minist. Agric. Coop.,404Biotechnology for Livestock Production. Dept. Livest. Dev., Minist. Agric. Coop.,
- 406 Bangkok, Thailand, pp. 1-45.
- 407 Department of Livestock Development, 2006. Livestock Statistics 2005. Minist. Agric.
- 408 Coop., Bangkok, Thailand, pp. 1-85.
- 409 Gilmour, A.R., Cullis, B.R., Welham, S.J., Thompson, R., 2000. ASREML Reference
 410 Manual. NSW Agric., Australia.
- Haynes, R.D. 1980. Competitive aspects of grass-legumes associations. Adv. Agron. 33,
 227-261.
- Henderson, C. R., 1976. A simple method for computing the inverse of a large numerator
 relationship matrix used in prediction of breeding values. Biometrics 32, 69-83.
- König, K., Chongkasikit, N., Langholz, H.J., 2005. Estimation of variance components for
 production and fertility traits in Northern Thai dairy cattle to define optimal breeding
- 416 production and fertility traits in Northern Thai dairy cattle to define optimal breeding
 417 strategies. Arch. Tierz., Dummerstorf. 48, 233-246.

418	Koonawootrittriron, S., Elzo, M.A., Tumwasorn, S., Nithichai, K., 2002. Estimation of
419	covariance components and prediction of additive genetic effects for first lactation
420	305-d milk and fat yields in a Thai multibreed dairy population. Thai J. Agric. Sci.
421	35, 245-258.
422	Koonawootrittriron, S., Elzo, M.A., Tumwasorn, S., Sintala, W., 2001. Prediction of 100-d
423	and 305-d milk yields in a multibreed dairy herd in Thailand using monthly test-day
424	records. Thai J. Agric. Sci. 34,163-174.
425	Markvichitr, K., Tumwasorn, S., Thanindratarn, B., 1995. Losses due to health and fertility
426	problems in purebred Holstein Friesian cows under Thai farmer condition. Thai J.
427	Agric. Sci. 28, 201-207.
428	Mclovor, J.G. 1978. The effect of cutting interval and associate grass species on the growth
429	of Stylosanthes species near Ingham, North Queensland. Aust. J. Exp. Agric. Anim.
430	Husb., 18, 546 – 553.
431	Meteorological Department, 2004. Weather in Thailand. Metereorological Department.
432	Minist. Transport., Bangkok, Thailand, pp. 1- 89.
433	Nakamanee, G., Wittayanupapyuenyong, S., Thinnakorn, S., Panyaparu, A. 2004.
434	Augmenting Purple Guinea with Forage Legumes. The 2004 DLD yearly research
435	report. Dept. Livest. Dev., Minist. Agric. Coop., Bangkok, Thailand, pp. 1-14.
436	National Institute of Animal Health, 2006. Livestock disease status from 2003 through 2006.
437	Dept. Livest. Dev., Minist. Agric. Coop., Bangkok, Thailand.
438	Punyapornwithaya, V., Vinitchaikul, P., Teepatimakorn, S., 2005. Season and level of
439	Holstein breed affect on conception rate in crossbred dairy cows. Proc. 43 th Kasetsart
440	Univ. Annu. Conf., pp 82-89.

- 441 Rhone, J. A., Ward, R., Koonawootrittriron, S., Elzo, M. A., 2007. Factors affecting milk
- 442 price and revenues of dairy farms in the central region of Thailand. Trop. Anim.

443 Health Prod. doi: 10.1007/s11250-007-9074-5.

- 444 Sangjan, A., and Koonawootrittriron, S., 2007. Factors effecting on and association among
- 445 purchasing price, fat content bacterial contamination, and somatic cell count of raw
- 446 milk producing by members of a dairy cooperative in central of Thailand. Proc. 45th
- 447 Kasetsart Univ. Annu. Conf., pp 146-154.
- Sargent, F. D., Lytton, V.H., Wall Jr., O.G., 1968. Test interval method of calculating Dairy
 Herd Improvement Association records. J. Dairy Sci. 51: 170-179.
- 450 SAS, 2003. SAS OnlineDoc 9.1.3. SAS Institute Inc., Cary, NC, USA.
- 451 Searle, S. R., 1982. Matrix Algebra Useful for Statistics. John Wiley & Sons Inc., NY,
 452 USA.
- 453 Stanton, T. L., Blake, R. W., Quaas, R. L., Van Vleck, L. D., Carabaño, M. J. 1991.
- 454 Genotype by environment interaction for Holstein milk yield in Colombia, Mexico,
 455 and Puerto Rico. J. Dairy Sci. 74, 1700-1714.
- 456 Tumwasorn, S., Markvichitr, K., Thanindratarn, B., Vijchullata, P., Chairatanayuth, P., 1995.
- 457 Production performance of imported Holstein Friesian under Thai farmer
- 458 environment. Proc. 32nd Kasetsart Univ. Annu. Conf., pp. 177-184.

Number of cows by breed group of sire × breed group of dam combination									
	Breed group of sire								
Prood group of dam		$0.9687 \le H$	$0.9375 \le H$	$0.875 \le H$	$0.75 \le H$	$0.50 \le H$	Other		
breed group of dam	Holstein	< 1.0	< 0.9687	< 0.9375	< 0.875	< 0.75	Breeds	Total	
	$(338)^1$	(0)	(3)	(12)	(17)	(3)	(5)	(378)	
Holstein (H)	122	0	2	0	7	0	1	132	
$(108)^1$									
$0.9687 \le H < 1.0$	26	0	0	2	1	0	2	31	
(28)									
$0.9375 \le H < 0.9687$	91	0	1	2	8	1	0	103	
(88)									
$0.875 \le H < 0.9375$	221	0	6	19	13	4	3	266	
(228)									
$0.75 \le H < 0.875$	384	0	11	21	23	11	4	454	
(383)									
$0.50 \le H < 0.75$	271	0	4	28	8	3	3	317	
(275)									
H < 0.50	68	0	2	1	3	0	0	74	
(66)									
Total	1,183	0	26	73	63	19	13	1,377	
(1.178)									

Table 1 Number of cows by breed group of sire \times breed group of dam combination

¹Numbers of animals in parenthesis

Table 2

Cow least squares means \pm SE for 305-d milk yield, fat yield, and fat percentage by breed group of cow

Breed group of cow	No.	Milk yield	Fat yield	Fat percentage	
	Cows	(kg)	(kg)	(%)	
Holstein	122	$3,810.6 \pm 120.0$	121.0 ± 6.2	2.95 ± 0.11	
0.9687 <u><</u> H < 1.0	119	$4,185.2 \pm 118.8$	142.5 ± 6.1	3.23 ± 0.11	
0.9375 <u><</u> H < 0.9687	222	$4,011.7 \pm 85.3$	141.9 ± 4.4	3.14 ± 0.08	
0.875 <u><</u> H < 0.9375	422	$3,890.3 \pm 60.6$	140.6 ± 3.1	3.29 ± 0.06	
$0.75 \le H < 0.875$	362	$3,911.3 \pm 64.4$	144.4 ± 3.3	3.42 ± 0.06	
$0.50 \le H < 0.75$	117	$3,643.5 \pm 119.1$	137.0 ± 6.1	3.44 ± 0.11	
H < 0.50	13	$3,508.7 \pm 340.7$	117.3 ± 17.5	3.15 ± 0.32	
Total	1,377	$3,781.1 \pm 1040.5$	131.2 ± 53.5	3.19 ± 0.97	

Table 3

Mean EBV \pm SE of cows and their sires and dams for 305-d milk yield by breed group of cow

Breed group of cow	No.	Cow EBV	No.	Sire EBV	No.	Dam EBV
	Cows		Sires		Dams	
Holstein	122	933.4 ± 25.7	66	957.6 ± 25.3	100	969.1 ± 20.8
0.9687 <u><</u> H < 1.0	119	$1,035.9 \pm 26.0$	71	$1,012.0 \pm 25.6$	99	$1,031.7 \pm 21.0$
$0.9375 \le H < 0.9687$	222	965.1 ± 19.1	113	$1,018.8 \pm 18.7$	177	896.6 ± 15.3
$0.875 \le H < 0.9375$	422	894.9 ± 13.8	190	982.1 ± 13.6	345	807.7 ± 11.1
$0.75 \le H < 0.875$	362	772.5 ± 14.9	168	909.9 ± 14.7	309	628.9 ± 12.1
$0.50 \le H < 0.75$	117	551.7 ± 26.3	73	788.5 ± 25.8	104	344.1 ± 21.3
H < 0.50	13	451.9 ± 78.7	5	130.4 ± 77.4	12	747.3 ± 63.3
Total	1,377	856.3 ± 283.8	378	944.9 ± 285.4	1,176	769.6 ± 231.3

Fig. 1. Weighted (W) and unweighted (UW) yearly means of sire and dam EBV for 305-day milk yield

Fig. 2. Genetic yearly means of cow, sire (weighted), and dam (weighted) EBV for 305-day milk yield, fat yield, and fat percentage