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Abstract  13 

The objectives of this study were to estimate the proportion of additive genetic and 14 

phenotypic variances explained by the SNP markers in the Illumina3K chip for 4 15 

postweaning ultrasound carcass and weight traits, to compare rankings of calf predicted 16 

additive genetic values with 3 models, and to evaluate trends of calf predictions as 17 

Brahman fraction increased from 0 to 1.  Traits were postweaning ultrasound measures of 18 

ribeye area (UREA), backfat thickness (UFAT), intramuscular fat (UPIMF), and body 19 

weight at time of ultrasound (UW).  Models were genomic-polygenic, genomic, and 20 

polygenic.  Phenotypes and genotypes were from 623 bulls, heifers, and steers ranging in 21 

breed composition from 100% Angus to 100% Brahman fed for 90 d at a GrowSafe 22 

automated feeding facility from 2006 to 2010.  Variance components were estimated with 23 

Markov Chain Monte Carlo procedures (option VCE, program GS3) using a single-trait 24 

genomic-polygenic model.  Fixed effects were contemporary group (year-pen), age of dam, 25 

sex of calf, age of calf, Brahman fraction of calf, and heterozygosity of calf. Random 26 

effects were additive SNP, animal polygenic, and residual effects. Models without 27 

polygenic effects were used for genomic predictions, and without additive SNP effects for 28 

polygenic predictions.  Fractions of additive genetic variances explained by the SNP in the 29 

Illumina3K chip were 9% for UREA, 38% for UBF, 6% for UPIMF, and 8% for UW.  30 

Phenotypic variance fractions explained by Illumina3K SNP were 3.7% for UREA, 9.7% 31 

for UBF, 3.2% for UPIMF, and 4.6% for UW.  Substantially higher rank correlations 32 

existed between genomic-polygenic and polygenic models (0.89 to 0.99) than between 33 

genomic-polygenic and genomic (0.64 to 0.79), and genomic and polygenic (0.51 to 0.65) 34 

models.  Genomic-polygenic, genomic, and polygenic predicted values tended to decrease 35 

as Brahman fraction of calf increased suggesting that calves with higher percentage 36 
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Brahman grew more slowly and had less desirable ultrasound carcass traits.  However, 37 

there were calves with high, medium, and low predicted genetic values across the Angus-38 

Brahman spectrum, suggesting that selection of animals with desirable postweaning 39 

ultrasound carcass and growth traits using a genomic-polygenic strategy would be effective 40 

in this multibreed population.  Insofar as this multibreed herd represents commercial 41 

operations in Florida and the Southern region of the US, selection of commercial calves for 42 

these postweaning traits would likely increase their rate of improvement in Brahman and 43 

Brahman crossbred populations.   44 

Key words:  cattle, genomic, multibreed, polygenic, ultrasound 45 

 46 

1. Introduction 47 

Acceptable carcass and meat quality characteristics are major economic factors for 48 

beef cattle enterprises.  This aim is particularly challenging for producers in the Southern 49 

US due to the widespread use of Bos taurus-Brahman crossbred cattle needed to withstand 50 

the hot and humid conditions of the region.  Brahman cattle have some carcass and meat 51 

quality characteristics (e.g., ribeye area, marbling, tenderness) that are less desirable than 52 

those of Bos taurus breeds (Elzo et al., 2012a; Johnson et al., 1990; Pringle et al., 1997; 53 

Wheeler et al., 2010).  Consequently, identification of animals with optimal carcass 54 

characteristics in Bos taurus-Brahman populations is of primary interest.  However, carcass 55 

and meat quality traits are expensive and labor intensive to measure.  A cost effective 56 

alternative to increase the amount of phenotypic information on carcass traits is ultrasound.  57 

Carcass traits measured by real-time ultrasound are closely related to actual carcass traits at 58 

slaughter and with total meat yield (Houghton and Turlington, 1992; Perkins et al., 1992).  59 

Another alternative to help identify animals with desirable carcass characteristics is the use 60 
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of genotype data.  The development of marker chips has allowed the utilization of 61 

genotypic and phenotypic information to predict the genetic merit of animals (Meuwissen 62 

et al., 2001; Matukumalli et al., 2009).  However, the elevated cost of high-density marker 63 

chips for cattle (e.g., Illumina50K, IlluminaHD) has prevented their widespread use.  Low-64 

density chips such as the Illumina GoldenGate Bovine3K BeadChip (Illumina3K 65 

heretofore; Illumina, 2011a) provide a reasonable alternative to genotyping.  However, the 66 

low proportion of additive genetic variance explained by markers in these chips has made it 67 

necessary to include a polygenic term in the models (Goddard, 2009; Snelling et al., 2011; 68 

Elzo et al., 2012b).   69 

A multibreed Angus-Brahman herd was developed at the University of Florida (UF) 70 

in 1989 to conduct genetic research on economically important traits applicable to Bos 71 

taurus-Brahman populations under subtropical conditions.  Thus, the objectives of this 72 

study were: 1) to estimate the proportion of additive genetic and phenotypic variances 73 

explained by the SNP markers in the Illumina3K chip for 4 postweaning ultrasound carcass 74 

and body weight traits, 2) to compare rankings of calves evaluated with genomic-polygenic, 75 

genomic, and polygenic models for these 4 traits, and 3) to evaluate trends of additive 76 

polygenic, genomic, and genomic-polygenic predicted values as Brahman fraction 77 

increased from 0 to 1 in the UF multibreed Angus-Brahman herd.  78 

 79 

2. Materials and methods 80 

2.1. Animals, data, and traits 81 

The University of Florida Institutional Animal Care and Use Committee (IACUC 82 

number D477) approved the research protocol utilized in this project.  Animals used in the 83 

study belonged to the multibreed Angus-Brahman (MAB) herd of the University of Florida.   84 
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Cattle were classified into six mating groups according to their expected Angus (A) and 85 

Brahman (B) breed composition: Angus = (1.0 to 0.80) A (0.0 to 0.20) B, ¾ A ¼ B = (0.79 86 

to 0.60) A (0.21 to 0.40) B, Brangus = (0.625) A (0.375) B, ½ A ½ B = (0.59 to 0.40) A 87 

(0.41 to 0.60) B, ¼ A ¾ B = (0.39 to 0.20) A (0.61 to 0.80) B, and Brahman: (0.19 to 0.0) 88 

A (0.81 to 1.00) B. Mating was diallel (Elzo and Wakeman, 1998).  Sires from each breed 89 

group (3 to 5 sires per year) were mated across dams from all breed groups.  In addition, 90 

one or more sires were repeated in two years to generate connectedness over time. 91 

Three postweaning ultrasound carcass measurements and one body weight record 92 

were obtained from 623 calves born between 2006 and 2010 (90 Angus, 123 ¾ A ¼ B, 114 93 

Brangus, 154 ½A ½B, 69 ¼ A ¾ B, and 73 Brahman).   There were 56 bulls, 310 heifers, 94 

and 257 steers in the dataset.  Calves were produced by 64 sires (12 Angus, 11 ¾ A ¼ B, 14 95 

Brangus, 8 ½ A ½ B, 8 ¼ A ¾ B, and 11 Brahman) and 330 dams (53 Angus, 61 ¾ A ¼ B, 96 

52 Brangus, 74 ½ A ½ B, 42 ¼ A ¾ B, and 47 Brahman).  97 

Postweaning traits were ultrasound ribeye area (UREA, cm2), ultrasound percent of 98 

intramuscular fat (UPIMF, %), ultrasound backfat thickness (UBF, cm), and body weight at 99 

the time ultrasound measurements were taken (UW, kg).  Ultrasound traits were collected 100 

by a trained technician at the end of a 70-day feed efficiency trial using an Aloka 500 101 

ultrasound system (Hitachi Aloka Medical, Ltd., Wallinford, Connecticut, USA).  102 

Ultrasonic images were analyzed with UICS Scanning Software by Walter and Associates, 103 

LLC (Ames, Iowa, USA) to obtain phenotypic records of UREA, UBF, and UPIMF.  Live 104 

weight (UW) was obtained at the same time as ultrasound traits were measured.  105 

 106 

2.2. Feeding and management 107 
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Calves were born at the Beef Research Unit of the University of Florida from 108 

December to March and remained at the unit until weaning in August.  After weaning 109 

calves were fed a preconditioning diet for 3 to 6 weeks.  This diet comprised concentrate 110 

(1.6 kg to 3.6 kg per day; 14.0 % CP; 488 Pellet, Medicated Weaning Ration, Lakeland 111 

Animal Nutrition, Lakeland, Florida; and soy hull pellets), bahiagrass (Paspalum notatum) 112 

hay, and ad libitum access to a mineral supplement (UF University Special Hi-Cu Mineral, 113 

University of Florida, Animal Science Department, Gainesville, Florida).  Subsequently, 114 

calves were moved to the Feed Efficiency Facility of the Institute of Food and Agricultural 115 

Sciences of the University of Florida (UFEF) in Marianna, Florida, for a period of 90 days 116 

to conduct a postweaning feed efficiency trial.  The trial lasted for 70 d after an initial 117 

adjustment period of 21 d.  118 

  Calves were individually identified using half-duplex passive transponder ear tags 119 

(Allflex USA Inc., Dallas-Fort Worth, TX) upon arrival at the UFEF.  Subsequently, calves 120 

within sire group (A, ¾ A ¼ B, Brangus, ½ A ½ B, ¼ A ¾ B, and B) by sex (bull, heifer, 121 

and steer) subclasses were randomly allotted to pens (108 m2/pen; 2 GrowSafe nodes per 122 

pen).  The stocking rate was 15 animals per pen and 7.5 animals per GrowSafe node on 123 

average.  Feed at UFEF was offered ad libitum.  Feed included various percentages of 124 

whole corn or corn gluten, cottonseed hulls, molasses, chopped grass hay, and a vitamin-125 

mineral-protein supplement (FRM, Bainbridge, GA).  The mean dry matter, crude protein, 126 

net energy for maintenance, and net energy for gain from 2006 to 2010 were 12.9%, 89.2%, 127 

1.6 mcal/kg DM, and 1.0 mcal/kg DM.  Phenotypic individual feed intake was collected in 128 

real-time using GrowSafe software, and body weights were recorded every 2 weeks. 129 

 130 

2.3. Tissue sampling and genotyping 131 
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 Vacutainer tubes coated with EDTA (10 mL) were used to collect blood samples 132 

from calves at weaning, and kept at 4°C before sending them to New Mexico State 133 

University (NMSU) for processing and storage at -80 °C.  Processing at NMSU involved 134 

centrifugation for 30 min at 1,875 g at 4°C, recovery of white blood cell supernatant (i.e., 135 

buffy coat), and PBS added to a volume of 1.0 mL (Beauchemin et al., 2006).  136 

Subsequently, 0.05 mL of each was sent to GeneSeek (Gene Seek, Inc., Lincoln, NE, USA) 137 

to obtain genotypes for markers in the Illumina GoldenGate Bovine3K BeadChip (Illumina, 138 

2011a). 139 

 140 

2.4. Genomic-Polygenic Variance Components 141 

Additive genomic and polygenic variance components were obtained for each trait 142 

using a genomic-polygenic univariate animal model (VanRaden, 2008; Legarra et al., 2008; 143 

Snelling et al., 2011).  The model, in matrix notation, was as follows: 144 

             

Where y was a vector of records (UREA, UPIMF, UBF, or UW), b was a vector of 145 

unknown fixed effects: contemporary group (year-pen), age of dam, sex of calf, age of calf, 146 

Brahman fraction of calf, and heterozygosity of calf, a was an unknown random vector of 147 

additive marker SNP effects (AS), u was an unknown random vector of animal additive 148 

polygenic effects (AP), e was a vector of residuals,  X was a known incidence matrix 149 

relating records in vector y to fixed effects in vector b, Z was a known incidence matrix 150 

relating observations in vector y to marker SNP effects in vector a through the number of  151 

“2” alleles  (0, 1 or 2) in each marker SNP locus represented in the Illumina3K chip, and T 152 

was a known incidence matrix relating records in vector y to animal additive polygenic 153 

effects in vector u.  The AP effects were assumed to have mean zero and covariance matrix 154 
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= A * additive polygenic variance, where A is the additive relationship matrix.  The AS 155 

effects were assumed to have null expected value and covariance matrix = I * additive SNP 156 

variance, where I is the identity matrix.  Residual effects were assumed to have mean zero 157 

and covariance matrix = I * residual variance.   158 

Monte Carlo Markov Chain (MCMC) procedures were used to compute variance 159 

components and heritabilities for all traits.  Computations were performed using the VCE 160 

option of software GS3 (Legarra, 2009; Number of iterations = 120,000; Burn-in = 20,000; 161 

Thinning = 100; Correction = 10,000).   Prior values for additive polygenic and residual 162 

variances for each trait were obtained by computing restricted maximum likelihood 163 

estimates (REML) estimates with program ASREML (Gilmour et al., 2006) using 164 

univariate polygenic animal models.  These univariate polygenic models included all the 165 

effects in the genomic-polygenic model, except for AS effects.  Preliminary values for 166 

additive SNP variances were computed using the expression      
  ̂

∑          
    
   

  167 

(Habier et al., 2007; VanRaden, 2008; Gianola et al., 2009; Legarra et al., 2009; Aguilar et 168 

al., 2010), where   ̂ was the REML estimate of additive polygenic variance obtained with 169 

ASREML,    is the frequency of the “2” allele in the ith marker SNP locus of the 170 

Illumina3K chip, and 2899 was the total number of SNP considered herein.  All SNP 171 

markers in the Illumina3K chip, except for BTB-00291093 were included in the analysis.  172 

This marker was excluded because it provided no genotypic information for any of the 173 

animals in the population.  A total of 1,200 MCMC samples were obtained with GS3, each 174 

one with a value of additive SNP (VSNP), additive polygenic (VAPO) and residual (VRES) 175 

for each trait.  Then, VAGO, total additive genetic variances (VGTot), and phenotypic 176 

variances (Phenvar) were computed for each MCMC sample as follows: 1)      177 
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     ∑          
    
   , 2) VGTot = VAGO + VAPO, and 3) Phenvar  = VAGO + 178 

VAPO + VRES.  These variance components were used to obtain heritabilities and ratios of 179 

VAGO to VGtot and VAGO to Phenvar.  These last two ratios were computed to estimate 180 

the proportion of genetic and phenotypic variances accounted for by the 2,899 markers in 181 

the Illumina3K chip.  Finally, estimates and dispersions of each variance component and 182 

variance ratio in the Angus-Brahman multibreed population for UREA, UPIMF, UBF, and 183 

UW were obtained as means and standard deviations of their values across the 1,200 184 

MCMC samples.   185 

 186 

2.5. Genomic-polygenic, genomic, and polygenic predictions 187 

Best linear unbiased predictions of AP and AS were obtained by solving the mixed 188 

model equations using a Gauss-Seidel iterative algorithm (option BLUP in program GS3; 189 

Legarra, 2009).  Values of VAGO, VAPO and VRES needed for the mixed model 190 

equations were those computed using genomic-polygenic univariate animal models as 191 

described above.  A convergence criterion of 10-4 was used to solve the mixed model 192 

equations for UREA, UPIMF, UBF, and UW with the genomic-polygenic, genomic and 193 

polygenic models.    194 

Calf genomic-polygenic predictions for all traits were computed as     ̂  195 

   
         ̂  ∑       ̂ 

    
   , where     ̂  is the additive genomic-polygenic value 196 

of calf j,    
 is the expected fraction of Brahman in calf j,        is the estimate of the 197 

difference between the Brahman and Angus slopes,   ̂  is the additive polygenic value of 198 

calf j,     is the number of copies (0, 1 or 2) of the second allele in SNP locus i of calf j, 199 

and   ̂  is the BLUP of the substitution effect of allele 2 for allele 1.  200 
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Calf genomic predictions for all traits were computed using a genomic model (i.e., a 201 

genomic-polygenic model without polygenic effects).  Calf predicted additive genomic 202 

values were computed as follows:    ̂     
       ∑       ̂ 

    
   , where (   ̂ ) = 203 

predicted additive genomic value of calf j, and all the other elements were as defined 204 

above, but computed using a genomic model. 205 

Predicted additive polygenic values were obtained using a polygenic animal model, 206 

i.e., a genomic-polygenic model without the AS effects. Thus, the predicted additive 207 

polygenic value for the jth calf (   ̂ ) was obtained as follows:    ̂     
         ̂ , 208 

where terms were as previously defined. 209 

To assess the impact of the inclusion of genomic information on calf rankings based 210 

on predicted values, Spearman rank correlations among calf rankings from genomic-211 

polygenic, genomic and polygenic models were computed using the CORR procedure of 212 

SAS (SAS Institute Inc., Cary, NC).   213 

To determine trends of      ̂    ̂ and    ̂ on Brahman fraction of calf for 214 

UREA, UBF, UPIMF and UW, linear regressions of calf predictions on Brahman fraction 215 

of calf were computed with the REG procedure of SAS.  216 

Lastly, predicted SNP values for UREA, UBF, UPIMF, and UW from the genomic-217 

polygenic model were standardized, i.e., divided by the standard deviations of the predicted 218 

SNP values (SDSNP) and plotted against chromosome number to study their distribution 219 

across chromosomes and their relative importance across traits. 220 

 221 

3. Results and discussion 222 
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Number of calves, means and standard deviations for each breed group and the 223 

complete dataset are presented in Table 1.  Number of calves per breed group ranged from 224 

67 (¼ A ¾ B for UPIMF) to 154 (½ A ½ B for UREA, UBF and UW).  The range of means 225 

per breed group went from 55.7 cm2 (Brahman) to 62.6 cm2 (¼ A ¾ B) for UREA, from 226 

0.61(¾A¼B) to 0.68 cm (¼ A ¾ B) for UBF, from 2.55 (¼ A ¾ B) to 3.3% (A) for 227 

UPIMF, and from 317.9 kg (B) to 356.2 kg (¾ A ¼ B) for UW.   Overall means were 58.9 228 

cm2 for UREA, 0.63 cm for UBF, 2.89% for UPIMF, and 346.3 kg for UW.   229 

 230 

3.1. Genomic and polygenic variance components  231 

Posterior means and standard deviations for additive genomic, polygenic, and total 232 

genetic as well as phenotypic variances estimated using genomic-polygenic models are 233 

shown in Table 2.  The value ∑          
    
    required for the computations of VAGO 234 

estimates was equal to 1,223.38.  The VSNP values were 1.7*10-3 ± 1.4*10-3 cm4 for 235 

UREA, 1.8*10-6 ± 1.1*10-6   cm2 for UBF, 1.5*10-5 ± 1.3*10-5 % for UPIMF and 0.05 ± 236 

0.04 kg2 for UW. Thus, the VAGO estimates were 2.06 ± 1.70 cm4 for UREA, 0.002 ± 237 

0.001 cm2 for UBF, 0.02 ± 0.02% for UPIMF and 56.7 ± 45.55 kg2 for UW.  For 238 

comparison purposes, Table 2 also shows additive genetic (VGPO) and phenotypic 239 

variances (PhenVarPO) from polygenic models.  Estimates of VGPO tended to be similar 240 

or smaller than VGTot values suggesting that genomic-polygenic models tended to account 241 

for a larger fraction of the genetic variation in this multibreed herd than polygenic models. 242 

3.2. Heritability ratios 243 

Heritabilities of UREA, UBF, UPIMF and UW computed using genomic-polygenic 244 

models are presented in Table 3.  The heritability for UREA was moderate (0.39 ± 0.10) 245 

and within the range of values for US Angus yearling bulls and heifers (0.28 ± 0.03 to 0.45 246 
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± 0.09; Hassen et al., 2004; MacNeil and Northcutt, 2008), but higher estimates for US 247 

Angus steers (0.18 ± 0.06 to 0.29; Kemp et al., 2002; MacNeil and Northcutt, 2008).  248 

Similarly, the UREA heritability value was also within the range of estimates for Angus 249 

bulls and heifers in Australia (0.37 to 0.46; Reverter et al., 2000), Brangus cattle in the US 250 

(0.29 ± 0.04 to 0.63 ± 0.11; Fortes et al., 2012; Moser et al., 1998; Peters et al., 2012; 251 

Stelzleni et al., 2002), and Nellore cattle in Brazil (0.34 to 0.46; Yokoo et al., 2008; 252 

Pinheiro et al., 2011).   253 

The UBF heritability estimate (0.25 ± 0.08) was within the range of values reported 254 

for Brangus in the US (0.11 ± 0.03 to 0.40 ± 0.11; Fortes et al., 2012; Moser et al., 1998; 255 

Peters et al., 2012; Stelzleni et al., 2002) and Nellore cattle in Brazil (0.20 ± 0.05 to 0.52; 256 

Yokoo et al., 2008; Pinheiro et al., 2011).  Conversely, UBF heritability values here were 257 

lower than estimates for Angus bulls (0.39 ± 0.03; MacNeil and Northcutt, 2008), heifers 258 

(0.46 ± 0.04; MacNeil and Northcutt, 2008), and steers (0.26 ± 0.08 to 0.39; Kemp et al., 259 

2002; MacNeil and Northcutt, 2008) in the US and Angus heifers in Australia (0.47; 260 

Reverter et al., 2000).  261 

The heritability estimate for UPIMF obtained here (0.53 ± 0.12) was higher than 262 

values obtained for Angus bulls (0.38 ± 0.03), heifers (0.40 ± 0.03), and steers (0.26 ± 0.09) 263 

in the US (MacNeil and Northcutt, 2008), Angus bulls (0.18) and heifers (0.47) in Australia 264 

(Reverter et al., 2000), Brangus cattle in the US (0.16 to 0.42 ± 0.10; Fortes et al., 2012; 265 

Moser et al., 1998; Peters et al., 2012; Stelzleni et al., 2002), and Angus steers in the US 266 

(0.31 ± 0.03; MacNeil et al., 2010).  267 

The high heritability estimate for UW (0.54 ± 0.11) was comparable to estimates in 268 

the upper range of values found in the literature (0.27 ± 0.04 to 0.53; Fortes et al., 2012; 269 

Moser et al., 1998; Peters et al., 2012; Snelling et al., 2010; Stelzleni et al., 2002).  The 270 
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heritabilities for UREA, UPIMF, UBF, and UW obtained here suggested that there may be 271 

substantial additive genetic variation available in the multibreed Angus-Brahman 272 

population to effectively select for these traits.  273 

Heritabilities computed using polygenic models (Table 3) were similar to those 274 

computed with genomic-polygenic models for UREA but lower for UBF, UPIMF, and UW 275 

suggesting that genomic-polygenic models tended to explain a larger fraction of the genetic 276 

variation in this multibreed population. 277 

3.3. Additive genomic to additive genetic and to phenotypic variance ratios   278 

The VAGO to VGTot ratios were low for all traits, except for UBF (Table 3).  279 

Similarly, VAGO to phenotypic variance (Phenvar) ratios (Table 3) were low for all traits.  280 

Values of VAGO to VGTot ranged from 0.06 ± 0.05 for UPIMF to 0.38 ± 0.17 for UBF.  281 

These ratios were all lower than those obtained for feed efficiency and postweaning gain 282 

traits (0.11 ± 0.09 to 0.25 ± 0.17) in this multibreed population (Elzo et al., 2012b).  283 

Estimates of VAGO to Phenvar ratios ranged from 0.032 ± 0.027 for UPIMF to 0.097 ± 284 

0.056 for UBF.  Thus, the proportion of phenotypic variance accounted for by the SNP in 285 

the Illumina Bovine3K chip suggested that only a small fraction of the total variation for 286 

ultrasound traits was accounted for by the 2,899 markers from the Illumina3K chip. 287 

The values of VAGO to Phenvar ratios for UREA (0.037 ± 0.030), UBF (0.097 ± 288 

0.056), UPIMF (0.032 ± 0.027), and UW (0.08 ± 0.06) were substantially lower than the 289 

values obtained for UREA (0.22), UBF (0.17), UPIMF (0.28), and 365-d weight (0.19) in a 290 

population of Brangus heifers (n = 748 to 761) using 53,692 SNP loci from the Illumina 291 

BovineSNP50 chip (Peters et al., 2012).  Similarly, VAGO to Phenvar ratios here were 292 

somewhat lower than values estimated for UREA (0.057; 14 QTL), UBF (0.207), and 293 

UPIMF (0.066; 14 QTL) in a population of 418 Bos taurus crossbred steers in Canada 294 
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using a customized panel of 4,592 SNP markers (Nalaila et al., 2012).  The lower VAGO to 295 

Phenvar fractions obtained with the 2,899 SNP from the Illumina3K chip here compared to 296 

the higher ratios with the 53,692 SNP of the Illumina BovineSNP50 chip (Illumina, 2011b) 297 

seem reasonable.  However, both sets of values were substantially lower than the complete 298 

accountability of the genetic variation for feed efficiency and postweaning growth traits in 299 

a population of 1,159 crossbred steers from the Cycle VII of the USMARC Germplasm 300 

Evaluation Project with the Illumina BovineSNP50 chip (Snelling et al., 2011).  When 301 

Snelling et al. (2011) tested subsets of the BovineSNP50 chip, they found out that 302 

significant SNP (P < 0.0001) accounted for 0.22 (postweaning gain) to 0.51 (metabolic 303 

midtest body weight) of the additive genetic variance.  These results from Snelling et al. 304 

(2011) and those of Nalaila et al. (2012) suggest that a reduced set of SNP from high 305 

density marker chips that are highly associated with QTL may be sufficient to account for 306 

most of the variation for these quantitative traits.  However, disagreement between the 307 

VAGO to Phenvar ratios obtained by Peters et al. (2012) and Snelling et al. (2011) for 308 

postweaning weight traits suggest that the additive genetic variance accounted for by SNP 309 

markers from the Illumina BovineSNP chip will vary depending on the genetic architecture 310 

of the population.  Thus, results from one cattle population may not apply to cattle 311 

populations with different breed composition, linkage disequilibrium patterns (Snelling et 312 

al., 2011), and living under different environmental conditions.   313 

 314 

3.4. Ranking of animals evaluated with genomic-polygenic, genomic, and polygenic models 315 

 Table 4 shows the Spearman rank correlations among rankings based on predictions 316 

of calf genomic-polygenic, genomic, and polygenic values for UREA, UBF, UPIMF and 317 

UW. All rank correlations were highly significant (P < 0.0001). The highest correlations 318 



15 
 

were between rankings of animals from genomic-polygenic and polygenic models (0.99 for 319 

UREA, 0.89 for UBF, 0.99 for UPIMF, and 0.99 for UW).  The lowest correlations among 320 

animal rankings were those between BLUP from polygenic and genomic animal models 321 

(0.58 for UREA, 0.51 for UBF, 0.60 for UPIMF, and 0.65 for UW).  Rank correlations 322 

between BLUP from genomic-polygenic and genomic models were in between (0.65 for 323 

UREA, 0.79 for UBF, 0.64 for UPIMF and 0.70 for UW).  Rank correlations among 324 

models for ultrasound carcass and weight traits were similar to those obtained for feed 325 

efficiency and postweaning gain traits with the Illumina3K chip in this multibreed 326 

population (Elzo et al., 2012b), and with the Illumina BovineSNP50 chip in a crossbred 327 

cattle population at USMARC (Snelling et al., 2011).  Rank correlations indicated that the 328 

incorporation of genomic information from the Illumina Bovine3K chip to the polygenic 329 

model had little impact on the ranking of animals in this population.  Except for UBF, 330 

BLUP rankings from genomic-polygenic and polygenic models were nearly identical.  331 

Conversely, the largest amount of re-ranking occurred between calves ranked by their 332 

BLUP from polygenic and genomic models.  Thus, rank correlations among BLUP from 333 

the 3 models suggested that a genomic-polygenic model would need to be used instead of a 334 

genomic model to evaluate and select animals in this population.  It could be argued that 335 

some genetic progress could be made by using the Illumina3K chip to evaluate animals 336 

using genomic models in commercial cattle populations without data or pedigree.  337 

However, the low rank correlations between BLUP from genomic-polygenic and genomic 338 

or between polygenic and genomic models obtained here suggests that a large number of 339 

animals would need to be genotyped to increase the chance of identifying superior ones.  340 

This will likely increase costs beyond the potential benefits to be obtained by genomic 341 

selection in these populations.  Alternatively, in populations with records and pedigree 342 
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information, the Illumina3K or other low density chips could be used in combination with 343 

higher density chips, and perform imputation (Gengler et al., 2007; Howie et al., 2009; 344 

Weigel et al., 2010; Sargolzaei et al., 2011; VanRaden et al., 2011) to the higher density 345 

chip before conducting a genomic-polygenic evaluation.  Considering the amount of 346 

genetic variation accounted for by the Illumina BovineSNP50 chip, the results of Snelling 347 

et al. (2011) would suggest this to be a potentially favorable alternative, but the results of 348 

Peters et al. (2012) would suggest otherwise.  The higher cost of the Illumina BovineSNP50 349 

and other higher density chips would preclude their use in most commercial beef cattle 350 

operations in the US.  Use of low-density chips followed by imputation may, however, be a 351 

reasonable alternative to increase the accuracy of evaluation of valuable young animals in 352 

beef cattle operations that can genotype large numbers of animals.  353 

 354 

3.5. Predicted SNP values 355 

Predicted SNP values ranged from -0.0131 to 0.0135 cm2 for UREA, -0.0006 to 356 

0.0007 cm for UBF, -0.0010 to 0.0011% for UPIMF and from -0.083 to 0.079 kg for UW.  357 

Predicted SNP values for all traits were divided by their corresponding SDSNP to compare 358 

SNP effects across traits.  The SDSNP were equal to 0.0410 cm2 for UREA, 0.0013 cm for 359 

UBF, 0.0039% for UPIMF and 0.0021 kg for UW.  Figure 4 shows standardized predicted 360 

SNP values for UREA ordered by chromosome.  Similar figures were constructed for all 361 

traits.  Once the predicted SNP values were standardized, distribution frequencies were 362 

constructed for each trait.  Table 5 shows the distribution frequencies with the marginal 363 

relative and absolute frequencies according to various SDSNP fractions around the mean.  364 

Most SNP predictions for UREA, UBF, UPIMF and UW were within the range of -0.4 to 365 

0.4 SDSNP.  Only one trait, UBF, had 2 predicted SNP values between 0.4 and 0.5 SDSNP.  366 
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All traits, except UPIMF, had SNP with predicted values below -0.3 and above 0.3 SDSNP.  367 

The trait with the largest number of SNP beyond ± 0.3 SDSNP was UBF (n = 30; 1.04%), 368 

followed by UW (n = 11; 0.38%), and UREA (n = 5; 0.08%).  Lowering the threshold to ± 369 

0.2 SDSNP increased the number and percentage of SNP beyond this range to 191 (6.59%) 370 

for UBF, 146 (5.03%) for UW, 39 (1.25%) for UREA, and 33 (1.14%) for UPIMF.  Thus, a 371 

larger number of SNP markers in the Illumina3K chip were in linkage disequilibrium with 372 

QTL affecting UBF and UW than UREA and UPIMF.  A supplemental file containing the 373 

Illumina3K index number, SNP name, NCBI SNP identification, chromosome number, 374 

SNP location within chromosome, SNP predicted value and SNP predicted value divided 375 

by the SDSNP of the trait is available at http://www.sciencedirect.com/science/journal/xx.  376 

The number and percentage of SNP beyond ± 0.2 SDSNP for UBF here was larger than 377 

corresponding values for all feed efficiency and postweaning gain traits in this same 378 

population (Elzo et al., 2012b).  However, values for UW were similar to those for 379 

postweaning gain (n = 144; 4.96%) and feed conversion ratio (n = 116; 4.01%), and values 380 

for UREA and UPIMF were similar to those for RFI (n = 17, 0.59%) and DFI (n = 12; 381 

0.41%; Elzo et al., 2012b).   382 

Standardized predicted SNP values were plotted against chromosome number for all 383 

traits to visualize the location of influential SNP markers across the genome.  Figure 4 384 

shows this plot for UREA.  As with feed efficiency and postweaning gain traits (Elzo et al., 385 

2012b), there were SNP with values beyond ± 0.1 SDSNP across all chromosomes for all 386 

traits.  Conversely, SNP with predicted values above and below 0.2 SDSNP existed in all 387 

chromosomes except 4, 6, 11, 17, 18, 23, 26, 27, and 28 for UREA, all chromosomes 388 

except 4, 11, 12, 14, 17, 18, 20, 21, 23, and 29 for UPIMF, all chromosomes for UBF, and 389 

all chromosomes except 21 and 29 for UW.  This distribution pattern of SNP associated 390 

http://www.sciencedirect.com/science/journal/xx
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beef carcass traits located throughout the genome was also found for ultrasound traits by 391 

Nalaila et al. (2012) and Peters et al., (2012).  The same pattern has also been found for 392 

meat and carcass traits (Bolormaa et al., 2011b), and growth and feed efficiency traits 393 

(Bolormaa et al., 2011a; Mujibi et al., 2011a, b; Snelling et al., 2010, 2011; Elzo et al., 394 

2012b; Peters et al., 2012) lending support to the assumption that quantitative traits are 395 

affected by large numbers of alleles of small effect spread across the genome.  396 

 397 

3.6. Trends for genomic-polygenic, genomic, and polygenic predictions from Angus to 398 

Brahman 399 

The multibreed population contained calves from 100% Angus to 100% Brahman 400 

that had high, medium and low predicted genomic-polygenic, genomic, and polygenic 401 

values for UREA, UBF, UPIMF and UW.  Calf genomic-polygenic, genomic, and 402 

polygenic predictions tended to decrease as Brahman fraction of calf increased.  Linear 403 

regression coefficients (Table 6) were negative for all models for UBF (P < 0.0001) and 404 

UW (P = 0.0252 to P < 0.0001), but only for genomic models for UREA (P < 0.0001) and 405 

UPIMF (P = 0.0107).  All other regression coefficients were non-significant.  To 406 

graphically illustrate these trends in calf predicted values from Angus to Brahman, Figures 407 

1, 2, and 3 show predicted additive genomic-polygenic values, predicted genomic values, 408 

and predicted polygenic values for all evaluated calves ordered by their expected Angus 409 

and Brahman breed composition.  Trends in calf predicted values indicate that UREA, 410 

UBF, and UW tended to decrease as Brahman fraction of the calf increased.  This negative 411 

trend also existed for UPIMF for the genomic model.  Smaller ribeye areas and lower 412 

marbling are undesirable under the current standards of carcass quality in the US.  Small 413 

ribeye areas are associated with lower meat yield (i.e., higher yield grades) and lower 414 
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marbling scores are associated with lower quality grades both of which carry discounts 415 

under current US grid pricing system (DiCostanzo and Dahlen, 2000; Greer and Trapp, 416 

2000).  However, there was a sizeable amount of variation for all ultrasound traits among 417 

calves of all breed compositions including Brahman, suggesting that selection for desirable 418 

UREA, UBF, UPIMF, and UW could be pursued in this Angus-Brahman multibreed 419 

population.  Feeding and management in this herd was similar to commercial beef cattle 420 

populations in Florida, and Angus, Brangus, and Brahman sires were brought from the 421 

Angus, Brangus, and Brahman national populations.  Thus, to the extent that this 422 

multibreed herd represents commercial cattle herds of similar breed composition in Florida 423 

and the Southern region of the US, a genomic-polygenic evaluation and preliminary 424 

selection of bull and heifer calves postweaning for UREA, UBF, and UPIMF would be an 425 

important step to accelerate the rate of improvement of Brahman and Brahman crossbred 426 

cattle for carcass traits. 427 

 428 

4. Conclusions 429 

 The low fractions of additive genetic and phenotypic variances accounted for by the 430 

SNP in the Illumina3k chip and the high rank correlations between predictions from 431 

genomic-polygenic and polygenic models for postweaning ultrasound carcass and weight 432 

traits suggested that it would be economically difficult to justify using this chip in 433 

commercial Angus-Brahman multibreed cattle operations.  The substantial amount of 434 

genetic variation for postweaning ultrasound carcass and weight traits suggested that 435 

selection for these postweaning traits would be advantageous to speed up the improvement 436 

of Brahman and Brahman crossbred cattle populations under subtropical conditions.  437 

 438 
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Table 1 592 

Numbers of calves, means and standard deviations per breed group and total 593 

  Traita 

  UREA, cm2  UBF, cm  UPIMF, %  UW, kg 

Breed 
group 

N Mean SD N Mean SD N Mean SD N Mean SD 

Angus 89 59.7 13.2 89 0.66 0.40 90 3.30 1.55 90 349.6 57.2 

¾ A ¼ B 123 59.5 12.6 123 0.61 0.36 122 3.15 1.55 123 356.2 63.4 

Brangus 114 58.1 11.0 114 0.62 0.37 114 2.87 1.43 114 344.6 50.5 

½ A ½ B 154 58.4 11.8 154 0.63 0.38 153 2.74 1.53 154 351.1 57.2 

¼ A ¾ B 69 62.6 12.1 69 0.68 0.41 67 2.56 1.49 69 346.9 48.9 

Brahman 73 55.7 9.6 73 0.62 0.40 73 2.64 1.61 73 317.9 46.2 

Total 622 58.9 11.9 622 0.63 0.38 619 2.89 1.54 623 346.3 56.2 
aUREA = ultrasound rib eye area; UBF = ultrasound backfat; UPIMF = ultrasound percent 594 
intramuscular fat; UW = ultrasound weight. 595 
 596 
  597 
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Table 2 598 

Posterior means and standard deviations for additive genomic, polygenic, total genetic and 599 

phenotypic variances 600 

 Traita 

Varianceb UREA, cm4 UBF, cm2 UPIMF, %2 UW, kg2 

VAGO 2.06 ± 1.70 0.002 ± 0.001 0.02 ± 0.02 56.7 ± 45.6 

VAPO 20.14 ± 6.00 0.004 ± 0.002 0.29 ± 0.08 612.2 ± 148.6 

VGTot 22.20 ± 6.35 0.006 ± 0.002 0.31 ± 0.08 668.9 ± 158.1 

Phenvar 56.30 ± 3.58 0.022 ± 0.001 0.59 ± 0.04 1227.3 ± 81.7 

VGPO 23.34 ± 6.96 0.004 ± 0.002 0.22 ± 0.07 614.8 ± 155.1 

PhenVarPO 60.34 ± 4.02 0.026 ± 0.002 0.71 ± 0.05 1218.9 ± 86.3 

aUREA = ultrasound rib eye area; UBF = ultrasound backfat; UPIMF = ultrasound percent 601 

intramuscular fat; UW = ultrasound weight. 602 
bVAGO = additive genomic variance; VAPO = additive polygenic variance; VGTot = total 603 

genetic variance = VAGO + VAPO; Phenvar = phenotypic variance; VGPO = additive 604 

genetic variance from a polygenic model; PhenVarPO = phenotypic variance from a 605 

polygenic model. 606 

  607 
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Table 3 608 

Posterior means and standard deviations for additive genetic and genomic variance ratios 609 

 Traita 

Variance Ratiosb UREA UBF UPIMF UW 

VAGO/VGTot 0.09 ± 0.07 0.38 ± 0.17 0.06 ± 0.05 0.08 ± 0.06 

VAGO/Phenvar 0.037 ± 0.030  0.097 ± 0.056 0.032 ± 0.027  0.046 ± 0.036 

Heritability 0.39 ± 0.10 0.25 ± 0.08 0.53 ± 0.12 0.54 ± 0.11 

HeritabilityPO 0.38 ± 0.10 0.17 ± 0.07 0.30 ± 0.09 0.50 ± 0.10 

aUREA = ultrasound rib eye area; UBF = ultrasound back fat; UPIMF = ultrasound percent 610 

intramuscular fat; UW = ultrasound weight. 611 
bVAGO = additive genomic variance; VGTot = VAGO + VAPO; Phenvar = phenotypic 612 

variance; HeritabilityPO = heritability from a polygenic model. 613 

  614 
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Table 4 615 

Spearman rank correlations for animals evaluated using genomic-polygenic, genomic, and 616 

polygenic models 617 

 Traita 

Correlationb UREA UBF UPIMF UW 

GP Model, G Model 0.65 0.79 0.64 0.70 

GP Model, P Model 0.99 0.89 0.99 0.99 

G Model, P Model 0.58 0.51 0.60 0.65 

aUREA = ultrasound rib eye area; UBF = ultrasound back fat; UPIMF = ultrasound percent 618 

intramuscular fat; UW = ultrasound weight. 619 

bGP Model = genomic-polygenic model; G Model = genomic model; P Model = polygenic 620 

model.  All correlations were significant (P < 0.0001). 621 

  622 
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Table 5 623 

Number and percentage of standardized predicted SNP values from the genomic-polygenic 624 

model 625 

 Traita 

 UREA UBF UPIMF UW 

SDSNP Rangeb N % N % N % N % 

-0.3 to -0.4 2 0.07 11 0.38 0 0 6 0.21 

-0.2 to -0.3 14 0.48 78 2.69 15 0.52 65 2.24 

-0.1 to -0.2 276 9.52 419 14.45 245 8.45 359 12.38 

0 to -0.1 1098 37.88 954 32.91 1217 41.98 1018 35.12 

0 to 0.1 1190 41.05 920 31.74 1170 40.36 1006 34.7 

0.1 to 0.2 296 10.21 415 14.32 234 8.07 370 12.76 

0.2 to 0.3 20 0.69 83 2.86 18 0.62 70 2.41 

0.3 to 0.4 3 0.1 17 0.59 0 0 5 0.17 

0.4 to 0.5 0 0 2 0.07 0 0 0 0 

aUREA = ultrasound rib eye area; UBF = ultrasound back fat; UPIMF = ultrasound percent 626 

intramuscular fat; UW = ultrasound weight.   627 
bSDSNP = additive SNP standard deviation. 628 
  629 
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Table 6 630 

Linear regression coefficients for genomic-polygenic, genomic, and polygenic predictions 631 

on Brahman fraction of calf 632 

 Traita 

Effect UREA UBF UPIMF UW 

Genomic-Polygenic  -0.0198 -0.0011 0.0024 -0.0023 

 P = 0.1778 P < 0.0001 P = 0.2222 P = 0.0133 

Genomic  -0.0127 -0.0015 -0.0008 -0.0017 

 P < 0.0001 P < 0.0001 P = 0.0107 P < 0.0001 

Polygenic -0.0136 -0.0007 0.0019 -0.0020 

 P = 0.3321 P < 0.0001 P = 0.3256 P = 0.0252 

aUREA = ultrasound rib eye area; UBF = ultrasound back fat; UPIMF = ultrasound percent 633 

intramuscular fat; UW = ultrasound weight. 634 

  635 
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 636 
Fig. 1.  Predicted additive genomic-polygenic values (EBV) for UREA as a function of 637 

Brahman fraction of calf  638 
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 640 
Fig. 2.  Predicted additive genomic values (EBV) for UREA as a function of Brahman 641 

fraction of calf  642 
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 644 
 Fig. 3.  Predicted additive polygenic values (EBV) for UREA as a function of Brahman 645 

fraction of calf  646 
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 648 
Fig. 4.  Standardized predicted SNP values associated with UREA by chromosome number 649 

(0 = unassigned; 30 = X chromosome) 650 
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