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Abstract  11 

The objectives were to estimate the fractions of additive genetic variances for 4 12 

postweaning feed efficiency and growth traits explained by 46,909 actual and imputed SNP 13 

genotypes, to compare rankings of calf additive genetic predictions from genomic-14 

polygenic (GP), genomic (G), and polygenic (P) models, and to determine trends of 15 

predicted additive genetic values from calves ranging from 100% Angus to 100% Brahman 16 

in a multibreed population.  Traits were postweaning residual feed intake (RFI), daily feed 17 

intake (DFI), feed conversion ratio (FCR), and weight gain (PWG).  Phenotypes were from 18 

807 bull, heifer, and steer calves housed at the Feed Efficiency Facility of the University of 19 

Florida from 2006 to 2010.  Imputation from 2,899 SNP (Illumina3k) to 46,909 SNP 20 

(Illumina50k) was done with program findhap2 using a reference population of 828 21 

Brangus heifers.  Fixed effects for all models were contemporary group (year-pen), age of 22 

dam, sex of calf, age of calf, Brahman fraction of calf, and heterozygosity of calf.  Random 23 

effects were additive SNP (GP and G models), additive polygenic (GP and P models), and 24 

residual.  Software GS3 was used to compute variance components and heritabilities, and 25 

additive genetic predictions.  Heritabilities were 0.30 for RFI, 0.37 for DFI, 0.25 for FCR, 26 

and 0.33 for PWG.  Fractions of additive variances explained by the 46,909 actual and 27 

imputed SNP were 0.48 for RFI, 0.36 for DFI, 0.50 for FCR, and 0.28 for PWG.  These 28 

fractions were 3.2, 3.2, 2.0, and 1.8 times larger than those previously obtained for these 4 29 

traits using the 2,899 SNP from the Illumina3k chip.  Rank correlations between calf 30 

additive genetic predictions were high between GP and P and between GP and G models 31 

(0.89 to 0.98; P < 0.0001), and somewhat lower between G and P models (0.69 to 0.81; P < 32 

0.0001).  Regressions of additive genetic predictions on Brahman fraction of calf were 33 

negative with the G model for DFI (P < 0.0344) and with all models for PWG (P < 0.0171 34 
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to P < 0.0001).  Imputation from the Illumina3k to 50k substantially increased the 35 

explained fraction of additive SNP and total genetic variances resulting in considerably 36 

higher rank correlations between calf additive genetic predictions from G and GP, and from 37 

G and P models in this Angus-Brahman multibreed population. 38 

 39 

Key words:  Beef; Crossbred; Genomic; Imputation; Polygenic 40 

 41 

1. Introduction 42 

Utilization of chips with SNP markers evenly distributed across the genome to aid 43 

genetic evaluation of beef and dairy cattle has increased substantially in recent years.  44 

However, although prices of high-density chips (e.g., Illumina50k, Illumina90k, 45 

IlluminaHD) have decreased, they are still too high for widespread utilization by the cattle 46 

industry.  Another option would be to use less expensive low density chips (e.g., 47 

Illumina3k, Illumina7k, Illumina9k). However, the amount of additive genetic variation for 48 

postweaning feed efficiency, growth, and ultrasound carcass traits explained by the 49 

Illumina3k chip in an Angus-Brahman multibreed population was found to be lower than 50 

that explained by the Illumina50k chip in other beef cattle populations (Elzo et al., 2012, 51 

2013).  It would be desirable to increase both the fraction of additive genetic variation 52 

accounted for the set of SNP used for genomic and genomic-polygenic predictions as well 53 

as their accuracy without unduly increasing costs.  One alternative would be to predict SNP 54 

for animals genotyped with a low density chip using SNP from a reference group of 55 

animals genotyped with a high density chip using imputation algorithms (Howie et al., 56 

2009; Weigel et al., 2010; Sargolzaei et al., 2011a; VanRaden et al., 2011, 2013).  Thus, the 57 

objectives of this research were: 1) to estimate the fractions of additive genetic variances 58 



4 
 

for 4 postweaning feed efficiency and growth traits explained by 46,909 actual and imputed 59 

SNP genotypes, 2) to compare the rankings of calf additive genetic predictions from 60 

genomic-polygenic (GP), genomic (G), and polygenic (P) models, and 3) to determine GP, 61 

G, and P trends of predicted additive genetic values from calves ranging from 100% Angus 62 

to 100% Brahman in a multibreed population under subtropical conditions.  63 

 64 

2. Materials and methods 65 

2.1. Animals, feeding, and management 66 

The research protocol for this project was approved by the University of Florida 67 

Institutional Animal Care and Use Committee (IACUC protocol number 201003744).  A 68 

total of 807 calves from the multibreed Angus-Brahman (MAB) herd of the University of 69 

Florida (UF), Gainesville, were used in this research.  Calves were the progeny of 61 sires 70 

and 365 dams from 6 breed groups mated according to a diallel design (Elzo and Wakeman, 71 

1998).  Breed groups were defined as follows: Angus = (1.0 to 0.80) A (0.0 to 0.20) B, ¾ A 72 

¼ B = (0.79 to 0.60) A (0.21 to 0.40) B, Brangus = (0.625) A (0.375) B, ½ A ½ B = (0.59 73 

to 0.40) A (0.41 to 0.60) B, ¼ A ¾ B = (0.39 to 0.20) A (0.61 to 0.80) B, and Brahman: 74 

(0.19 to 0.0) A (0.81 to 1.00) B.  Calves were born from 2006 to 2010 (65 bulls, 409 75 

heifers, and 333 steers).  Calf numbers by breed group were: 123 Angus, 164 ¾ A ¼ B, 141 76 

Brangus, 190 ½A ½B, 86 ¼ A ¾ B, and 103 Brahman (Table 1).   77 

Calves kept at the Beef Research Unit (BRU) of the University of Florida from birth 78 

until they were taken to the Feed Efficiency Facility (UFEF, Marianna, Florida) for the feed 79 

efficiency trial.  They received a preconditioning diet at the BRU for 3 to 4 weeks prior 80 

transport to the UFEF.  The preconditioning diet encompassed concentrate (1.6 kg to 3.6 kg 81 

per day; 14.0 % CP; 488 Pellet, Medicated Weaning Ration, Lakeland Animal Nutrition, 82 
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Lakeland, Florida; and soy hull pellets), ad libitum access to a mineral supplement, and 83 

bahiagrass (Paspalum notatum) hay.   84 

The postweaning feed efficiency trial at UFEF had an adjustment period of 21 d and 85 

a trial period of 70 d.  Calves were identified using half-duplex passive transponder ear tags 86 

(Allflex USA Inc., Dallas-Fort Worth, TX) at UFEF.  Then, calves from each sire group (A, 87 

¾ A ¼ B, Brangus, ½ A ½ B, ¼ A ¾ B, and B) by sex (bull, heifer, and steer) subclass 88 

were randomly allocated to pens (108 m2/pen; 2 GrowSafe nodes per pen; mean stocking 89 

rate = 15 calves/pen; 7.5 calves/GrowSafe node).  The UFEF ration was offered ad libitum 90 

and contained whole corn or corn gluten, cottonseed hulls, molasses, chopped grass hay, 91 

and a vitamin-mineral-protein supplement.  The UFEF ration supplied from 2006 to 2010 92 

had a mean of 89.2% of dry matter, 12.9% of crude protein, 1.6 mcal/kg DM of net energy 93 

for maintenance, and 1.0 mcal/kg DM of net energy for gain.   Postweaning individual 94 

animal feed intake was measured in real time using a GrowSafe system (GrowSafe 95 

Systems, Ltd., Airdrie, Alberta, Canada) and calf weights were collected every 2 weeks. 96 

 97 

2.2. Traits 98 

Traits were postweaning phenotypic residual feed intake (RFI, kg DM*day-1), mean 99 

daily feed intake (DFI, kg DM*day-1), mean daily feed conversion ratio (FCR, kg DM*day-100 

1/kg weight gain*day-1), and postweaning weight gain during the 70-d feeding trial (PWG, 101 

kg).  The RFI, DFI, FCR, and PWG were computed as explained in Elzo et al. (2009).  The 102 

postweaning phenotypic residual feed intake for each calf was equal to the difference 103 

between its expected and actual mean DFI during the 70-day feeding trial (Koch et al., 104 

1963; Archer et al., 1997; Arthur et al., 2001).  The expected DFI for each calf was 105 

obtained as the linear regression of their DFI measurements on their average daily gain and 106 
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metabolic mid-weight.  The average daily gain for a calf was computed as the regression of 107 

a calf weight on weight day (i.e., every two weeks).  Metabolic mid-weight was equal to 108 

mid-weight (i.e., initial weight regression estimate plus regression estimate for average 109 

daily gain times 35 d) raised to the power of 0.75.  Mean DFI was the average daily feed 110 

intake during the 70-d trial.  Mean daily feed conversion ratio was the ratio of DFI to 111 

average daily gain.  Postweaning weight gain was the difference between individual calf 112 

weights at d 70 and d 1 of the feeding trial. 113 

 114 

2.3. Tissue sampling and genotyping 115 

 Blood samples were collected with EDTA vacutainer tubes at weaning.  Samples 116 

were kept at 4°C before shipping to Dr. M. Thomas laboratory at New Mexico State 117 

University for processing and storage at -80 °C.  Tubes were centrifuged at 1,875 x g at 4 118 

°C for 30 min to get the white blood cell supernatant; then, PBS was added to obtain a 119 

volume of 1.0 mL (Beauchemin et al., 2006).  A volume of 0.05 mL of each sample was 120 

forwarded to GeneSeek (GeneSeek, Lincoln, NE) for DNA extraction and genotyping with 121 

the Illumina Bovine3K BeadChip (Illumina, 2011a). 122 

 123 

2.4. Imputation and datasets 124 

Imputation of from Illumina3k to Illumina50k in animals from the MAB population 125 

genotyped with the Illumina3k chip was accomplished using program findhap2 (VanRaden, 126 

2011) using a reference population (RP) of 828 registered Brangus heifers genotyped with 127 

version 1 of the Illumina50k chip (Illumina, 2011b).  Heifers from RP were raised in Camp 128 

Cooley Ranch (Franklin, TX) and the Chihuahuan Desert Rangeland Research Center and 129 

Campus Farm of New Mexico State University (Luna-Nevarez et al, 2010; Peters et al., 130 
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2012; Peters et al., 2013).  No pedigree information was available to account for 131 

relationships between the MAB and the RP populations.  Thus, animals from the MAB 132 

population were assumed to be unrelated to animals from the reference population.  133 

However, relationships among animals within each population (i.e., MAB and RP) were 134 

accounted for.  This resulted in a combined pedigree file of 7,989 animals (5,864 for MAB 135 

and 3,034 for RP).  Numbers of animals with genotypes were 1,300 (Illumina3k) in MAB 136 

and 828 in RP.  The location of SNP markers in the Illumina3k chip corresponded to the 137 

location of SNP markers in version 2 of the Illumina50k chip.  Thus, SNP markers from 138 

version 2 of the Illumina50k chip (n = 54,609) were matched to SNP markers from version 139 

1 of the Illumina50k chip (n = 54,011) to determine the subset of SNP markers present in 140 

both chips.  Only the subset of SNP markers from autosomal chromosomes and 141 

chromosome X present in both chips and their location in version 2 of the Illumina50k chip 142 

(n = 50,276) were used for imputation.  Subsequently, SNP markers from the Illumina3k 143 

chip (n = 2,900) were matched to this subset of 50,276 SNP markers of the Illumina50k 144 

chip to identify the subset of SNP markers present in it (n = 2,816).  Thus, the input files for 145 

findhap2 were: 1) a genotype file containing gene content information (i.e., number of 146 

“second alleles” = 0, 1, 2, and 5 for unknown) on 2,816 loci from the Illumina3k chip for 147 

1,300 MAB animals and on 50,276 loci from the Illumina50k version 1 chip for 828 RP 148 

heifers; 2) a chromosome data file containing information on 50,276 SNP markers in 149 

common in versions 1 and 2 of the Illumina50k chip (i.e., SNP name, chromosome number, 150 

location in base pairs (bp) within and across chromosomes, and SNP location in both the 151 

Illumina50k and 3k chips); and 3) a pedigree file containing animals, sires and dams from 152 

the MAB and RP populations.  Program findhap2 was run with the following options: iters 153 

= 4, Xchrom = 30, maxlen = 600, minlen = 35, steps = 3, maxhap = 20,000, hapout = 1, and 154 



8 
 

genout = 1.  The output file “haplotypes” from findhap2 contained paternal and maternal 155 

actual and imputed SNP data (i.e., 1’s and 2’s) on 50,276 loci for all animals in the MAB 156 

and RP populations.  The subset of file “haplotypes” containing SNP marker information 157 

on all animals from the MAB population was matched with a file with phenotypic 158 

information on RFI, DFI, FCR, and PWG and only calves with information on all 4 traits 159 

were kept (n = 807).  Minor allele frequencies (MAF) in the subset of the MAB population 160 

containing animals with all phenotypes were determined and SNP information from loci 161 

with MAF < 0.04 was discarded (n = 3,367), leaving each animal with parental SNP data 162 

on 46,909 loci.  Phenotypic and parental SNP data were merged to construct a MAB input 163 

data file for program GS3.  The resulting input data file contained phenotypes for RFI, DFI, 164 

FCR, and PWG and actual and imputed parental SNP data on 46,909 loci (2,648 actual 165 

SNP from the Illumina3k and 44,261 imputed SNP from the Illumina50k chip) for 807 166 

calves.  The MAB pedigree input file for GS3 had 5,864 animals (calves, sires, and dams). 167 

 168 

2.5. Genomic-Polygenic Variance Components and Variance Ratios 169 

Estimates of variance components for RFI, DFI, FCR, and PWG were obtained 170 

using single-trait genomic-polygenic models (VanRaden, 2008; Legarra et al., 2008; 171 

Snelling et al., 2011; Elzo et al., 2012).  Fixed effects were contemporary group (year-pen), 172 

age of dam, sex of calf, age of calf, Brahman fraction of calf, and heterozygosity of calf.  173 

Random effects were additive SNP marker locus effect as a function of the number of “2” 174 

alleles in each locus (AS; mean zero; variance = additive SNP variance), calf additive 175 

polygenic effect (AP; mean zero; variance = A*Vg; A = additive relationship matrix with 176 

5,864 animals, Vg = additive polygenic variance), and residual effect (mean zero, common 177 

variance).  Variance components and heritabilities were estimated using Markov Chain 178 
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Monte Carlo (MCMC) procedures with option VCE of program GS3 (Legarra, 2009; 179 

Number of iterations = 120,000; Burn-in = 20,000; Thinning = 100; Correction = 10,000).  180 

The starting values for the additive polygenic variance (VAPO) and the residual variance 181 

(VRES) for each trait were REML estimates obtained using single-trait polygenic models 182 

that included all the effects of the genomic-polygenic model, except for the random 183 

additive SNP marker effects.  The starting value for the additive SNP variance (VSNP) for 184 

each trait was computed using the expression    ̂

∑      
      
   

  (Habier et al., 2007; VanRaden, 185 

2008; Gianola et al., 2009), where   ̂ = REML estimate of the additive polygenic variance 186 

from a single-trait polygenic model computed using ASREML (Gilmour et al., 2006), and 187 

pi = frequency of allele “1” and qi = frequency of allele “2” in SNP marker locus i.  188 

Program GS3 produced values of VSNP, VAPO, and VRES for 1,200 MCMC samples for 189 

each trait.  Additive genomic variances (VAGO), total additive genetic variances 190 

(VGTOT), phenotypic variances (PVAR), and heritabilities were computed for each sample 191 

as follows: 1) VAGO = VSNP × ∑      
      
   ; 2) VGTOT = VAGO + VAPO; 3) PVAR = 192 

VAGO + VAPO + VRES; and 4) heritability = VGTOT/PVAR.  Lastly, posterior means 193 

and standard deviations for VAGO, VAPO, VGTOT, PVAR, and heritabilities of MCMC 194 

samples excluding the burn-in period (n = 1,000) were used to obtain estimates of variances 195 

and heritabilities and their dispersion for RFI, DFI, FCR, and PWG.  196 

For comparison purposes estimates of VAPO, VRES, PVAR, and heritability values 197 

were computed with a polygenic model that contained the same effects as the genomic-198 

polygenic model, except for additive SNP marker locus effects, using the same MCMC 199 

procedure and GS3 computer program. 200 

 201 
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2.6. Genomic-polygenic, genomic, and polygenic additive genetic predictions 202 

Program GS3 (Legarra, 2009) was used to compute calf genomic-polygenic, 203 

genomic and polygenic predicted values (EBV) for RFI, DFI, FCR, and PWG with option 204 

BLUP (Gauss-Seidel iteration; convergence criterion = 10-8) using VAGO, VAPO, and 205 

VRES values estimated with the genomic-polygenic model above.  Calf genomic-polygenic 206 

EBV were computed with the same model used to estimate variance components, the model 207 

used to obtain calf genomic EBV ignored polygenic effects, and the model for calf 208 

polygenic EBV ignored additive SNP marker locus effects.  Thus, 1) Calf genomic-209 

polygenic EBV (    ) were computed using a genomic-polygenic model as       210 

         ∑      ̂ 
      
      ̂, where     = Brahman fraction of calf, and        = 211 

generalized least squares solution of the difference between Brahman and Angus breed 212 

effects,    = number of “2” alleles in locus i,   ̂  = BLUP of the difference between allele 213 

2 and allele 1, and   ̂ = calf polygenic value; 2) Calf genomic EBV (GEBV) were 214 

computed using a genomic model as               ∑      ̂ 
      
   ; and 3) Calf 215 

polygenic EBV (PEBV) were computed using a polygenic model as               216 

  ̂.  Calf rankings across models were compared using Spearman’s rank correlations 217 

computed using the correlation procedure of SAS (SAS Institute Inc., Cary, NC).   Calf 218 

trends from Angus to Brahman were evaluated using linear regressions of GPEBV, GEBV, 219 

and PEBV on calf Brahman fraction computed using the regression procedure of SAS. 220 

 Predictive abilities for the genomic-polygenic, genomic and polygenic models for 221 

RFI, DFI, FCR, and PWG were obtained using the correlation between predicted genomic-222 

polygenic, genomic and polygenic values and phenotypes in a validation dataset (Legarra et 223 

al., 2008) composed of animals with records in 2010 (n = 189; 23% of the dataset).  The 224 
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training dataset was composed of animals with records from 2006 to 2009 (n = 618; 77% of 225 

the dataset).  The same models used in the complete dataset to obtain best linear unbiased 226 

predictions were used to compute genomic-polygenic, genomic, and polygenic predictions 227 

in the training population.  Accuracies were computed as predictive abilities divided by the 228 

square root of heritabilities (Legarra et al., 2008). 229 

 230 

3. Results and discussion 231 

Table 1 presents numbers of calves, means and SD for RFI, DFI, FCR, and PWG by 232 

breed group and for the complete dataset.  Number of calves per breed group ranged from 233 

86 for ¼ A ¾ B to 190 for ½ A ½ B.  Means for the complete dataset were 0.00 kg DM*d-1 234 

for RFI, 8.47 kg DM*d-1 for DFI, 8.41 kg DM*d-1/kg gain*d-1 for FCR, and 74.59 kg for 235 

PWG.  Means per breed group ranged from -0.25 kg DM*d-1 for Brahman to 0.15 kg 236 

DM*d-1 for ¼ A ¾ B for RFI, from 7.74 kg DM*d-1 for Brahman to 8.80 kg DM*d-1 for ¼ 237 

A ¾ B for DFI, from 7.78 kg DM*d-1/kg gain*d-1 for Angus to 9.36 kg DM*d-1/kg gain*d-1 238 

for Brahman and from 62.18 kg for Brahman to 78.21 kg for ¾ A ¼ B for PWG. 239 

 240 

3.1. Genomic and polygenic variance components and variance ratios 241 

Table 2 presents posterior means and SD for additive genomic (VAGO), additive 242 

polygenic (VAPO), total additive (VGTOT) and phenotypic variances (PVAR) from 243 

genomic-polygenic models for RFI, DFI, FCR, and PWG computed using MCMC 244 

procedures (program GS3, option VCE; Legarra et al., 2009).  The last two rows of Table 2 245 

show estimates of additive polygenic (VGPO) and phenotypic variances (PVARPO) from 246 

polygenic models for these 4 traits.   Similarly, Table 3 shows posterior means and SD for 247 
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variance ratios from genomic-polygenic models (first 3 rows) and polygenic models (last 248 

row) for RFI, DFI, FCR, and PWG.   249 

Ratios of PVAR from genomic-polygenic to PVAR from polygenic models were 250 

similar for all traits (1.02 to 1.04; Table 4) indicating that both models accounted for 251 

similar amounts of phenotypic variation for RFI, DFI, FCR, and PWG.  Conversely, 252 

estimates of VGTOT were from 32% (PWG) to 76% (RFI) larger for genomic-polygenic 253 

than for polygenic models (Table 4).  These percentages were larger than the ratios of 254 

VGTOT from genomic-polygenic to polygenic models obtained for these 4 traits with the 255 

Illumina3k chip (from 10% for DFI to 37% for FCR; Elzo et al., 2012).  This suggested that 256 

the VAGO accounted for by genomic-polygenic models with 46,909 actual and imputed 257 

SNP from the Illumina50k chip was substantially larger than the VAGO explained by 2,899 258 

SNP from the Illumina3k.  This was supported by the large differences in VAGO/VGTOT 259 

and VAGO/PVAR ratios from genomic-polygenic analyses.  The VAGO/VGTOT ratios 260 

were from 83% (PWG) to 221% (DFI) higher and the VAGO/PVAR ratios were from 64% 261 

(PWG) to 433% (RFI) higher with the actual-imputed Illumina50k SNP set than with the 262 

Illumina3k SNP set (Table 5).  As animals from the reference Brangus population were 263 

assumed to be unrelated to animals in the Angus-Brahman population, these increments in 264 

VAGO could be attributed to additive variation due to QTL affecting these traits that were 265 

in linkage disequilibrium with the imputed SNP markers from the Illumina50k set.  266 

Wiggans et al. (2011) indicated that 95.2% of the genotypes were correctly imputed from a 267 

3k (2,614 SNP) to a 50k (42,503 SNP) set on the average with program findhap2 in US 268 

dairy cattle.  A somewhat lower value of correctly imputed genotypes (93.2%) from 3k 269 

(2,614 SNP) to 50k (42,503 SNP) was reported by Sargolzaei et al. (2011b) for Canadian 270 

dairy cattle.  Imputation errors for animals were likely higher here than in the US and 271 
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Canadian dairy cattle populations because heifers from the Brangus reference population 272 

were assumed to be unrelated to calves from the multibreed population, and lower levels of 273 

linkage disequilibrium in calves from the Angus-Brahman multibreed herd compared to 274 

those of dairy breeds due to the diallel crossbred mating structure of the multibreed 275 

population.  Because genotyping errors due to imputation likely occurred, VAGO 276 

increments here were probably lower than those that could have been estimated if animals 277 

from the Angus-Brahman population had been genotyped with an actual Illumina50k chip. 278 

Imputation from Illumina3k to 50k not only increased the amount of VAGO, but 279 

also tended to increase heritability values relative to values obtained with the Illumina3k 280 

(Elzo et al., 2012).  The additional genetic variance accounted by VAGO from genomic-281 

polygenic models resulted in heritability estimates that were between 30% and 76% higher 282 

than heritabilities from polygenic models (Table 4).  These increments in heritability values 283 

due to higher VAGO estimates were larger for RFI (72%) and FCR (76%) than for DFI 284 

(45%) and PWG (30%; Table 4).  Increments in heritability values with genomic-polygenic 285 

vs. polygenic models using the Illumina3k (Elzo et al., 2012) were substantially smaller for 286 

RFI (18%), DFI (11%), and PWG (13%) and comparable for FCR (40%).  The larger 287 

VGTOT to VGPO ratios and the larger heritabilities from genomic-polygenic than 288 

polygenic models for all 4 traits (Table 4) suggested that the utilization of SNP markers 289 

from Illumina chips may have explained additional genetic variation beyond that accounted 290 

for by polygenic models.  In addition, heritability ratios with the actual-imputed 291 

Illumina50k SNP set were higher for RFI (55%), DFI (19%), and FCR (21%), and lower 292 

for PWG (9%) than heritabilities obtained by Elzo et al. (2012) with the Illumina3k chip 293 

(Table 5).  Thus, the additional SNP imputed from the Illumina50k chip explained a larger 294 

fraction of the genetic variation for RFI, DFI, and FCR, but not for PWG.  This was due to 295 
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a proportionally much lower value of VAPO for PWG with the actual-imputed Illumina50k 296 

SNP set (59.2 ± 20.3) than with the Illumina3k set (73.3 ± 21.9; Elzo et al., 2012) compared 297 

to the other 3 traits.  This resulted in a low VGTOT and a low heritability because PVAR 298 

was similar in both studies.  This likely occurred because of differences in the phenotypic 299 

datasets used in these two studies (n = 807 here vs. n = 623 in Elzo et al., 2012).   300 

The higher heritability ratios for RFI, DFI, FCR, and PWG estimated with genomic-301 

polygenic than with polygenic models using either the actual-imputed Illumina50k SNP set 302 

or the Illumina3k SNP set (Elzo et al., 2012) suggested that higher selection responses for 303 

these traits could be achieved with the utilization of SNP markers, phenotypes, and 304 

pedigree information than with only phenotypic and pedigree data in this multibreed 305 

population.  306 

Estimates of VAGO to PVAR ratios with the 46,909 actual and imputed SNP here 307 

were comparable to the value for RFI (0.12), higher than the value for DFI (0.03), and 308 

lower than the value for postweaning average daily gain (0.90) obtained by Mujibi et al. 309 

(2011) in a Canadian population of 721 crossbred steers (Goonewardene et al., 2003).  310 

Mujibi et al. (2011) used random regression BLUP genomic-polygenic models and 37,959 311 

SNP from the Illumina50k chip.  Similarly, Peters et al. (2012) computed VAGO to PVAR 312 

ratios for 6 preweaning and postweaning weight and average daily gain traits ranging from 313 

0.04 for 205-d weight to 0.19 for 365-d weight and average daily gain from birth to 365 d 314 

of age in a population of approximately 800 Brangus heifers in Texas.  Peters et al. (2012) 315 

utilized a Bayes-C genomic procedure (Kizilkaya et al., 2010; Habier et al., 2011) and a set 316 

of 53,692 SNP from the Illumina50k chip.  The similarity of values of VAGO to PVAR 317 

ratios between Peters et al. (2012) and here may be an indication that imputation from 318 

Illumina3k to 50k had little effect on these ratios in the Angus-Brahman multibreed 319 
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population.  Contrary to results here and these two studies, Snelling et al. (2011) accounted 320 

for VAGO for RFI, DFI, and PWG completely using 44,163 SNP and REML procedures 321 

(WOMBAT; Meyer, 2007) in a population of Bos taurus crossbred cattle from the 322 

USMARC Cycle VII project.  They estimated VAGO to PVAR ratios with genomic-323 

polygenic models that were similar to or higher than heritability ratios with polygenic 324 

models (0.48 ± 0.07 vs. 0.56 ± 0.09 for RFI; 0.48 ± 0.07 vs. 0.40 ± 0.09 for DFI; 0.31 ± 0.1 325 

vs. 0.25 ± 0.08 for PWG).  Different estimation procedures and computer programs, small 326 

population sizes, differences in diet composition, different breeds involved in each 327 

population, dissimilar mating plans across populations likely generated different SNP 328 

marker frequencies and disequilibrium patterns which may have contributed to the diversity 329 

of estimates of VAGO, PVAR, and VAGO to PVAR ratios obtained in these cattle 330 

populations.  331 

Genetic variances from GP models were higher (76% for RFI, 48% for DFI, 83% 332 

for FCR, and 32% for PWG) while phenotypic variances were only slightly higher (2% for 333 

RFI, DFI, and PWG, and 4% for FCR) than values from P models.  This resulted in 334 

substantially higher heritability estimates for GP models than for P models (72% for RFI, 335 

45% for DFI, 76% for FCR, and 30% for PWG).  Because the same procedure (MCMC) 336 

and computer program (GS3) were used for the GP and P models, the higher heritability 337 

values may be an indication that the GP model explained additional genetic variation for 338 

these traits that was not accounted for by the P model. 339 

 340 

3.2. Ranking of animals evaluated with genomic-polygenic, genomic, and polygenic models 341 

 Table 6 contains Spearman’s rank correlations between calf EBV rankings from GP 342 

and G models, GP and P models, and G and P models for RFI, DFI, FCR, and PWG.  Rank 343 
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correlations between calf EBV from the GP and P models had the highest values (0.93 to 344 

0.98; P < 0.0001), those between calf EBV from GP and G models were somewhat lower 345 

(0.89 to 0.93; P < 0.0001), and the lowest ones were between calf EBV from the G and P 346 

models (0.69 to 0.81; P < 0.0001).  Values of rank correlations between calf EBV from GP 347 

and P models here were similar to rank correlations between calf EBV from these two 348 

models using SNP from the Illumina3k chip (Elzo et al., 2012).  In contrast, rank 349 

correlations between calf EBV from GP and G models were 43% (RFI), 47% (DFI), 35% 350 

(FCR), and 20% (PWG) higher and those between calf EBV from G and P models were 351 

48% (RFI), 57% (DFI), 64% (FCR), and 25% (PWG) higher than corresponding rank 352 

correlations between calf EBV using the Illumina3k (Elzo et al., 2012).  The average 353 

increment in rank correlation values was more than twice as large for RFI, DFI, and FCR 354 

(56%) as for PWG (25%).  The substantial increase in rank correlations between calf EBV 355 

from GP and G and from G and P models for all traits suggested that the 44,261 imputed 356 

SNP from the Illumina50k chip provided considerable information from QTL associated 357 

with these markers, making calf EBV from G models more similar to their corresponding 358 

values from GP and P models.   359 

 To evaluate the correspondence of calf EBV values computed with the actual-360 

imputed Illumina50k chip here and the Illumina3k chip in Elzo et al. (2012), rank 361 

correlations between EBV for animals in common from the two studies (n = 620) for the 362 

four traits were computed.  As expected, rank correlations between calf EBV values with 363 

actual-imputed Illumina50k SNP set here and the Illumina3k SNP set in Elzo et al. (2012) 364 

were higher for GP models (from 0.93 for RFI and FCR to 0.95 for DFI) and P models 365 

(from 0.93 for FCR and PWG to 0.97 for DFI) than for G models (from 0.71 for DFI to 366 

0.83 for PWG; Table 7).  Higher VAGO to PVAR fractions explained by the SNP from the 367 
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actual-imputed SNP set from the Illumina50k chip likely determined the higher rank 368 

correlation values between calf EBV predicted with G and GP as well as between G and P 369 

models here than those previously obtained with the Illumina3k chip.  370 

Predictive abilities and accuracies (Legarra et al., 2008) of genomic-polygenic, 371 

genomic, and polygenic values with the actual-imputed Illumina50k SNP set (Table 8) 372 

were mostly lower than those obtained with the Illumina3k SNP set in Elzo et al. (2012) for 373 

all traits.  However, only 4 out of 12 predictive abilities were significant here with the 374 

actual-imputed Illumina50k SNP set (P < 0.0020 to P < 0.0118).  Contrarily, all predictive 375 

abilities were significant with the Illumina3k SNP set (Elzo et al., 2012).  Genomic models 376 

had the lowest predictive abilities and accuracies for all traits, except for FCR.  The number 377 

of animals with phenotypes used in the training dataset with the actual-imputed 378 

Illumina50k SNP set (n = 618) was somewhat larger than the one used with the Illumina3k 379 

SNP set (n = 455; Elzo et al., 2012).  These additional phenotypes likely contributed to 380 

differences in predictive abilities and accuracies of genomic-polygenic and polygenic 381 

models in these two studies.  In addition, the amount of phenotypic information used to 382 

predict each SNP in the actual-imputed Illumina50k set (0.013 records per SNP) was 383 

substantially lower than for the Illumina3k set (0.08 records per SNP).  This may have been 384 

one of the factors that negatively affected the predictive ability of genomic and genomic-385 

polygenic models.  Thus, the small size of the phenotypic datasets here and in Elzo et al. 386 

(2012) did not allow a comparison of the potential increase in predictive ability and 387 

accuracy of models that included genotypic information.   388 

Rank correlations between calf EBV from the P and GP models for RFI, DFI, FCR, 389 

and PWG suggested that a polygenic model would likely be sufficient to identify the best 390 

animals for these 4 traits in this multibreed population.  This was supported by the 391 
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predictive abilities computed for the P and GP models.  Although the predictive abilities for 392 

the P and GP models were low for all traits, those for the P models tended to be higher than 393 

those for the GP models. 394 

 395 

3.3. Predicted SNP values 396 

Ranges of predicted SNP values with the set of actual-imputed Illumina50k markers 397 

went from -0.780 * 10-3 to 0.795 * 10-3 kg DM*d-1 for RFI, -0.912 * 10-3 to 0.813 * 10-3 kg 398 

DM*d-1 for DFI, -1.255 * 10-3 to 1.142 * 10-3  kg DM*d-1/kg gain*d-1 for FCR and -6.364 * 399 

10-3  to 6.776 * 10-3  kg for PWG.  Ranges for all traits were smaller (24% for RFI, 60% for 400 

DFI, 78% for FCR, and 85% for PWG) than those previously computed with the 401 

Illumina3k in this multibreed herd (Elzo et al., 2012).  Smaller ratios of additive SNP 402 

variances to residual variances used in the mixed model equations with the 46,909 actual-403 

imputed Illumina50k markers (13.8% for RFI, 45.3 % for DFI, 83.8 % for FCR, and 88.7 % 404 

for PWG) than with the 2,899 Illumina3k markers were likely responsible for the lower 405 

range of predicted values for the four traits here.   406 

Standardized predicted SNP values (i.e., predicted SNP values divided by their 407 

additive SNP standard deviations) were used to compare SNP values across traits.  The 408 

SNP standard deviations (SDSNP) were 0.0056 kg DM*d-1 for RFI, 0.0057 kg DM*d-1 for 409 

DFI, 0.0068 kg DM*d-1/kg gain*d-1 for FCR, and 0.0371 kg for PWG.  The distribution of 410 

additive SNP values (Table 9) with the actual-imputed Illumina50k SNP set was slightly 411 

narrower (± 0.1 SDSNP) for RFI, DFI and FCR, and wider (± 0.5 SDSNP) for PWG than 412 

with the Illumina3k SNP set (Elzo et al., 2012).  The SNP markers from the actual-imputed 413 

Illumina50k set within the top 30% based on their predicted additive SNP values were 414 

distributed across most chromosomes (184 SNP in 28 chromosomes for RFI, 95 SNP in 27 415 
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chromosomes for DFI, 150 SNP in 30 chromosomes for FCR, and 63 SNP in 26 416 

chromosomes for PWG).  Conversely, the SNP within the top 5% based on predicted 417 

additive SNP values were located in 4 chromosomes for RFI (6 SNP in chromosomes 1, 7, 418 

10, and 28), 2 chromosomes for DFI (2 SNP in chromosomes 1 and 22), 1 chromosome for 419 

FCR (1 SNP in chromosome 15), and 1 chromosome for PWG (1 SNP in chromosome 3).  420 

However, over 99.7% of the predicted SNP values with the Illumina3k (Elzo et al., 2012) 421 

and the actual-imputed Illumina50k chips were within ± 0.3 SDSNP around the mean for 422 

all traits except for PWG with 83.2%.  This indicated that approximately 17% of the QTL 423 

associated with SNP markers in the actual-imputed Illumina50k chip had predicted values 424 

that were larger than those associated with the SNP markers in the Illumina3k chip.  425 

Although the wider range of predicted SNP marker values for PWG was associated with 426 

higher VAGO with the actual-imputed Illumina50k set (23.2 ± 18.4 kg2) than with the 427 

Illumina3k set (13.9 ± 11.4 kg2), the heritability estimate was lower (0.33 ± 0.09 vs. 0.36 ± 428 

0.10) due to lower values of VAPO (59.2 ± 20.3 kg2 vs. 73.3 ± 21.9 kg2) and VGTOT (80.8 429 

± 24.3 kg2 vs. 87.2 ± 25.2 kg2).  Conversely, while similar ranges of values existed for RFI, 430 

DFI, and FCR, estimates of VAGO and VGTOT and heritabilities were higher with the 431 

actual-imputed Illumina50k than with the Illumina3k.  This indicated that the vast majority 432 

of QTL associated with SNP markers in the actual-imputed Illumina50k set had small 433 

effects and were located throughout the genome as previously suggested by outcomes with 434 

the Illumina3k in this multibreed population (Elzo et al., 2012) and with the Illumina50k in 435 

cattle populations in Australia (Bolormaa et al., 2011), Canada (Mujibi et al., 2011), and the 436 

US (Snelling et al., 2011; Peters et al., 2012).   437 

 438 
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3.4. Trends of genomic-polygenic, genomic, and polygenic predictions from Angus to 439 

Brahman 440 

Regressions of EVB computed with the actual-imputed Illumina50k set of SNP 441 

markers on Brahman fraction were negative with the G model for DFI (P < 0.0344) and 442 

with all models for PWG (P < 0.0171 to P < 0.0001) and non-significant for all other model 443 

by trait combinations (Table 10).  This suggested that calves of similar EBV for RFI, DFI 444 

and FCR existed in all breed compositions, but EBV for PWG tended to decrease as 445 

Brahman fraction increased.  In contrast, EBV computed with the set of SNP from the 446 

Illumina3k chip (Elzo et al., 2012) showed negative trends for RFI (GP model, P < 0.0311; 447 

G model, P < 0.0001), for DFI (GP model, P < 0.0070; G model, P < 0.0001), and for PWG 448 

(GP model, P < 0.0274; P model, P < 0.0122).  The imputed SNP marker effects from the 449 

Illumina50k chip as well as the EBV of animals present here but not in the analysis with the 450 

Illumina3k (Elzo et al., 2012) likely contributed to the changes in significance of the 451 

negative trends from Angus to Brahman for the GP and G models.    452 

 453 

4. Conclusions 454 

 Imputation from the Illumina3k to 50k with SNP genotypes from Brangus cattle 455 

increased the explained fraction of additive SNP genomic variation for RFI, DFI, FCR, and 456 

PWG relative to those obtained in a previous study with SNP genotypes from the 457 

Illumina3k in this Angus-Brahman multibreed population.  However, the explained fraction 458 

of the total genetic variation increased only for postweaning RFI, DFI, and FCR.  Rank 459 

correlations between EBV predicted using genomic and genomic-polygenic as well as 460 

between genomic and polygenic models also increased indicating increased correspondence 461 

in the ranking of predicted values from the 3 models with the utilization of the actual-462 
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imputed Illumina50k SNP set.  The small size of the multibreed dataset prevented an 463 

assessment of increases in predictive ability of genomic-polygenic and genomic models 464 

with the actual-imputed Illumina50k SNP set over the Illumina3k SNP set. 465 
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Table 1.  Numbers of calves, means and standard deviations per breed group and total  582 

  Trait1 

  RFI, kg DM*d-1 DFI, kg DM*d-1 
FCR, kg DM*d-1/ 

kg gain*d-1 PWG, kg 

Breed 
group 

N Mean SD Mean SD Mean SD Mean SD 

Angus 123 -0.24 1.25 8.26 2.08 7.78 2.18 78.19 22.64 

¾ A ¼ B 164 0.04 1.45 8.68 2.19 8.29 2.70 78.21 22.46 

Brangus 141 0.10 1.48 8.57 2.08 8.23 2.60 77.57 20.67 

½ A ½ B 190 0.10 1.50 8.60 2.21 8.41 2.89 73.41 22.10 

¼ A ¾ B 86 0.15 1.13 8.80 1.81 8.65 2.41 75.14 18.22 

Brahman 103 -0.25 1.17 7.74 2.04 9.36 3.04 62.18 17.85 

All 807 0.00 1.38 8.47 2.12 8.41 2.70 74.59 21.68 
1RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed conversion ratio; 583 
PWG = postweaning gain. 584 
  585 
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Table 2.  Posterior means and standard deviations for additive genomic, polygenic, total 586 

genetic and phenotypic variances 587 

 Trait1 

Variance2 
RFI,  

(kg DM*d-1)2 

DFI,  

(kg DM*d-1)2 
FCR, (kg DM*d-1 

/kg gain*d-1)2 PWG, (kg)2 

VAGO 0.28 ± 0.19 0.32 ± 0.22 0.86 ± 0.51 23.2 ± 18.4 

VAPO 0.27 ± 0.13 0.52 ± 0.18 0.83 ± 0.41 59.2 ± 20.3 

VGTOT 0.55 ± 0.20 0.85 ± 0.25 1.68 ± 0.61 80.8 ± 24.3 

PVAR 1.79 ± 0.10 2.28 ± 0.13 6.62 ± 0.49 245.6 ± 13.8 

VGPO 0.31 ± 0.14 0.57 ± 0.19 0.92 ± 0.46 61.2 ± 20.4 

PVARPO 1.75 ± 0.09 2.25 ± 0.12 6.36 ± 0.34 241.5 ± 13.1 
1RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 588 

conversion ratio; PWG = postweaning gain. 589 
2VAGO = additive genomic variance; VAPO = additive polygenic variance; VGTOT = 590 

total genetic variance = VAGO + VAPO; PVAR = phenotypic variance; VGPO = additive 591 

genetic variance from a polygenic model; PVARPO = phenotypic variance from a 592 

polygenic model. 593 

  594 
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Table 3.  Posterior means and standard deviations for additive genetic and genomic 595 

variance ratios 596 

 Trait1 

Variance Ratios2 RFI DFI FCR PWG 

VAGO/VGTOT 0.48 ± 0.21 0.36 ± 0.19 0.50 ± 0.18 0.28 ± 0.18 

VAGO/PVAR 0.15 ± 0.10 0.14 ± 0.09 0.13 ± 0.07 0.09 ± 0.07 

Heritability 0.30 ± 0.10 0.37 ± 0.10 0.25 ± 0.08 0.33 ± 0.09 

HeritabilityPO 0.18 ± 0.07 0.25 ± 0.08 0.14 ± 0.07 0.25 ± 0.08 
1RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 597 

conversion ratio; PWG = postweaning gain. 598 
2VAGO = additive genomic variance; VGTOT = VAGO + VAPO; PVAR = phenotypic 599 

variance; HeritabilityPO = heritability from a polygenic model. 600 

  601 
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Table 4.  Ratios of posterior means of variances and variance ratios from genomic-602 

polygenic and polygenic models  603 

 Trait1 

Ratio2 RFI DFI FCR PWG 

VAPO/VGPO 0.86 0.91 0.90 0.94 

VGTOT/VGPO 1.76 1.48 1.83 1.32 

PVAR/PVARPO 1.02 1.02 1.04 1.02 

Heritability/HeritabilityPO 1.72 1.45 1.76 1.30 
1RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 604 

conversion ratio; PWG = postweaning gain. 605 
2 VAPO = additive polygenic variance; VGTOT = total genetic variance; PVAR = 606 

phenotypic variance; VGPO = additive genetic variance from a polygenic model; PVARPO 607 

= phenotypic variance from a polygenic model; HeritabilityPO = heritability from a 608 

polygenic model.  609 
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Table 5.  Ratios of posterior means of variances and variance ratios from actual-imputed 610 

Illumina50k and Illumina3k1 genomic-polygenic analyses 611 

 Trait2 

Ratio 50k/3k RFI DFI FCR PWG 

VAGO3 5.47 3.96 2.35 1.68 

VAPO 0.90 0.81 0.82 0.78 

VGTOT 1.58 1.16 1.23 0.93 

PVAR 1.02 0.98 1.02 1.02 

VAGO/VGTOT 3.18 3.21 1.97 1.83 

VAGO/PVAR 5.33 4.02 2.30 1.64 

Heritability 1.55 1.19 1.21 0.91 
1Elzo et al. (2012). 612 
2RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 613 

conversion ratio; PWG = postweaning gain. 614 
3VAGO = additive genomic variance; VAPO = additive polygenic variance; VGTOT = 615 

VAGO + VAPO; PVAR = phenotypic variance. 616 

 617 
  618 
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Table 6.  Spearman rank correlations for animals evaluated using genomic-polygenic, 619 

genomic, and polygenic models 620 

 Trait1 

Correlation2 RFI DFI FCR PWG 

GP Model, G Model 0.93 0.91 0.89 0.89 

GP Model, P Model 0.94 0.97 0.93 0.98 

G Model, P Model 0.77 0.80 0.69 0.81 

1RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 621 

conversion ratio; PWG = postweaning gain.   622 

2GP Model = genomic-polygenic model; G Model = genomic model; P Model = polygenic 623 

model.  All correlations were significant (P < 0.0001). 624 

  625 
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Table 7.  Spearman rank correlations for animals evaluated using genomic-polygenic, 626 

genomic, and polygenic models with actual-imputed Illumina50k and Illumina3k SNP 627 

datasets1 628 

 Trait2 

Correlation3 RFI DFI FCR PWG 

GPEBV50k, GPEBV3k 0.93 0.96 0.93 0.94 

GEBV50k, GEBV3k 0.76 0.74 0.77 0.83 

PEBV50k, PEBV3k 0.94 0.97 0.93 0.93 

1Spearman rank correlations were computed using a subset of 620 animals in common 629 

between this study and Elzo et al. (2012). 630 

2RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 631 

conversion ratio; PWG = postweaning gain.   632 

3GPEBV= genomic-polygenic EBV; GEBV = genomic EBV; PEBV= polygenic EBV.  All 633 

correlations were significant (P < 0.0001). 634 

  635 
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Table 8.  Predictive abilities and accuracies of genomic-polygenic, genomic, and polygenic 636 

models in the validation dataset  637 

 Trait1 

Model RFI DFI FCR PWG 

Heritabilities 0.30 0.37 0.25 0.33 

Predictive abilities     

    Genomic-Polygenic 0.05 0.14 0.05 0.22 
 P < 0.5123 P < 0.0532 P < 0.4793 P < 0.0029 

    Genomic -0.12 -0.18 0.08 -0.03 
 P < 0.0914 P < 0.0118 P < 0.2763 P < 0.7311 

    Polygenic 0.12 0.21 0.04 0.22 
 P < 0.0995 P < 0.0032 P < 0.5662 P < 0.0020 

Accuracies     

    Genomic-Polygenic 0.09 0.23 0.10 0.38 

    Genomic -0.22 -0.29 0.16 -0.05 

    Polygenic 0.22 0.34 0.08 0.38 
1RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 638 

conversion ratio; PWG = postweaning gain.   639 

  640 

  641 
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Table 9.  Number and percentage of standardized predicted SNP values from the genomic-642 

polygenic model  643 

 Trait1 

 RFI DFI FCR PWG 

SDSNP Range2 N % N % N % N % 

-0.8 to -1.0 0 0 0 0 0 0 10 0.02 

-0.7 to -0.8 0 0 0 0 0 0 36 0.08 

-0.6 to -0.7 0 0 0 0 0 0 118 0.25 

-0.5 to -0.6 0 0 0 0 0 0 310 0.66 

-0.4 to -0.5 0 0 0 0 0 0 906 1.93 

-0.3 to -0.4 0 0 0 0 0 0 2054 4.38 

-0.2 to -0.3 0 0 0 0 0 0 4263 9.09 

-0.1 to -0.2 66 0.14 129 0.28 387 0.83 7309 15.58 

0 to -0.1 22148 47.21 22861 48.74 22339 47.62 9496 20.24 

0 to 0.1 24587 52.41 23782 50.70 23715 50.56 9230 19.68 

0.1 to 0.2 108 0.23 137 0.29 468 1.00 6678 14.24 

0.2 to 0.3 0 0 0 0 0 0 3725 7.94 

0.3 to 0.4 0 0 0 0 0 0 1780 3.80 

0.4 to 0.5 0 0 0 0 0 0 702 1.50 

0.5 to 0.6 0 0 0 0 0 0 221 0.47 

0.6 to 0.7 0 0 0 0 0 0 60 0.13 

0.7 to 1.0 0 0 0 0 0 0 10 0.02 

1RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 644 

conversion ratio; PWG = postweaning gain.   645 
2SDSNP = additive SNP standard deviation.   646 
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Table 10.  Linear regression coefficients for genomic-polygenic, genomic, and polygenic 647 

predictions on Brahman fraction of calf  648 

 Trait1 

Prediction RFI DFI FCR PWG 

Genomic-Polygenic  -0.0011 -0.0035 0.0010 -0.0748 

 P < 0.5453 P < 0.1513 P < 0.7199 P < 0.0012 

Genomic  -0.0013 -0.0025 -0.0004 -0.0203 

 P < 0.1967 P < 0. 0344 P < 0.7761 P < 0.0171 

Polygenic 0.0005 -0.0016 0.0025 -0.0769 

 P < 0.6814 P < 0.4259 P < 0.1985 P < 0.0001 

1RFI = residual feed intake; DFI = mean daily feed intake; FCR = mean daily feed 649 

conversion ratio; PWG = postweaning gain.   650 

 651 


