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Abstract 24 

In this paper, decision theory was used to derive Bayes and minimax decision rules to estimate 25 

allelic frequencies and to explore their admissibility. Decision rules with uniformly smallest risk 26 

usually do not exist and one approach to solve this problem is to use the Bayes principle and the 27 

minimax principle to find decision rules satisfying some general optimality criterion based on 28 

their risk functions. Two cases were considered, the simpler case of biallelic loci and the more 29 

complex case of multiallelic loci. For each locus, the sampling model was a multinomial 30 

distribution and the prior was a Beta (biallelic case) or a Dirichlet (multiallelic case) distribution. 31 

Three loss functions were considered: squared error loss (SEL), Kulback-Leibler loss (KLL) and 32 

quadratic error loss (QEL). Bayes estimators were derived under these three loss functions and 33 

were subsequently used to find minimax estimators using results from decision theory. The 34 

Bayes estimators obtained from SEL and KLL turned out to be the same. Under certain 35 

conditions, the Bayes estimator derived from QEL led to an admissible minimax estimator 36 

(which was also equal to the maximum likelihood estimator). The SEL also allowed finding 37 

admissible minimax estimators. Some estimators had uniformly smaller variance than the MLE 38 

and under suitable conditions the remaining estimators also satisfied this property. In addition to 39 

their statistical properties, the estimators derived here allow variation in allelic frequencies, 40 

which is closer to the reality of finite populations exposed to evolutionary forces.  41 

 42 

Key words: Admissible estimators, average risk; Bayes estimators; decision theory; minimax 43 

estimators. 44 

 45 

1. Introduction 46 
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Allelic frequencies are used in several areas of quantitative and population genetics, hence the 47 

necessity of deriving point estimators with appealing statistical properties and biological 48 

soundness. They are typically estimated via maximum likelihood, and under this approach they 49 

are treated as unknown fixed parameters. However, Wright (1930; 1937) showed that under 50 

several scenarios allele frequencies had random variation and hence should be given a 51 

probability distribution. Under some of these scenarios, he found that the distribution of allele 52 

frequencies was Beta and that according to the particular situation its parameters had a genetic 53 

interpretation (Wright 1930; 1937; Kimura and Crow, 1970). For instance, under a recurrent 54 

mutation scenario, the parameters of the Beta distribution are functions of the effective 55 

population size and the mutation rates (Wright, 1937). Expressions for these hyperparameters 56 

under several biological scenarios and assumptions can be found in Wright, (1930; 1937) and 57 

Kimura and Crow (1970).  58 

Under the decision theory framework, given a parameter space 𝛩, a decision space 𝐷, observed 59 

data 𝑿, and a loss function 𝐿(𝜃, 𝛿(𝑿)), the average loss (hereinafter the frequentist risk or 60 

simply the risk) for a decision rule 𝛿 when the true state of nature is 𝜃 ∈ 𝛩, is defined as 61 

𝑅(𝜃, 𝛿) = 𝐸𝜃[𝐿(𝜃, 𝛿(𝑿))]. The ideal decision rule, is one having uniformly smallest risk, that is, 62 

it minimizes the risk for all 𝜃 ∈ 𝛩 (Lehmann and Casella, 1998). However, such a decision rule 63 

rarely exists unless restrictions like unbiasedness or invariance are posed over the estimators. 64 

Another approach is to allow all kind of estimators and to use an optimality criterion weaker than 65 

uniformly minimum risk. Such a criterion looks for minimization of 𝑅(𝜃, 𝛿) in some general 66 

sense and there are two principles to achieve that goal: the Bayes principle and the minimax 67 

principle (Lehman and Casella, 1998; Casella and Berger, 2002).  68 



 
 

4 
 

Given a loss function and a prior distribution, the Bayes principle looks for an estimator 69 

minimizing the Bayesian risk 𝑟(𝛬, 𝛿), that is, a decision rule 𝛿∗  is defined to be a Bayes decision 70 

rule with respect to a prior distribution 𝛬 if it satisfies 71 

𝑟(𝛬, 𝛿∗) = ∫ 𝑅(𝜃, 𝛿∗)𝑑𝛬(𝜃) = inf
𝛿∈𝐷

𝑟(𝛬, 𝛿).

𝛩

 

This kind of estimators can be interpreted as those minimizing the posterior risk. On the other 72 

hand, the minimax principle consists of finding decision rules that minimize the supremum (over 73 

the parameter space) of the risk function (the worst scenario). Thus 𝛿∗ is said to be a minimax 74 

decision rule if 75 

sup
𝜃∈𝛩

𝑅(𝜃, 𝛿∗) = inf
𝛿∈𝐷

sup
𝜃∈𝛩

𝑅(𝜃, 𝛿). 

The aim of this study was to derive Bayes and minimax estimators of allele frequencies and to 76 

explore their admissibility under a decision theory framework. 77 

 78 

2. Materials and methods 79 

 80 

2.1 Derivation of Bayes rules 81 

Hereinafter, Hardy-Weinberg equilibrium at every locus and linkage equilibrium among loci are 82 

assumed. Firstly, the case of a single biallelic locus is addressed. Let 𝑋1, 𝑋2 and 𝑋3 be random 83 

variables indicating the number of individuals having genotypes AA, AB and BB following a 84 

trinomial distribution conditional on 𝜃 (the frequency of the “reference” allele B) with 85 

corresponding frequencies: (1 − 𝜃)2, 2𝜃(1 − 𝜃) and 𝜃2, and let 𝑿 = (𝑋1, 𝑋2, 𝑋3). Therefore, the 86 

target is to estimate 𝜃 ∈ [0,1]. Thus, in the following, the sampling model is a trinomial 87 

distribution and the prior is a Beta(𝛼, 𝛽). This family of priors was chosen because of 88 
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mathematical convenience, flexibility, and because as discussed previously, the hyperparameters 89 

𝛼 and 𝛽 have a genetic interpretation (Wright, 1937). Under this setting, three loss functions 90 

were used to derive Bayes decision rules: squared error loss (SEL), Kullback-Leibler loss (KLL) 91 

and quadratic error loss (QEL). 92 

 93 

2.1.1 Squared error loss 94 

Under SEL, the Bayes estimator is the posterior mean (Lehman and Casella, 1998; Casella and 95 

Berger, 2002). Thus we need to derive the posterior distribution of the parameter: 96 

𝜋(𝜃|𝑿) ∝ 𝜋(𝑿|𝜃)𝜋(𝜃) 

∝ (1 − 𝜃)2𝑥1+𝑥2𝜃𝑥2+2𝑥3𝜃𝛼−1(1 − 𝜃)𝛽−1 

= 𝜃𝑥2+2𝑥3+𝛼−1(1 − 𝜃)2𝑥1+𝑥2+𝛽−1. 

 Therefore, the posterior is a Beta(𝑥2 + 2𝑥3 + 𝛼, 2𝑥1 + 𝑥2 + 𝛽) distribution and the Bayes 97 

estimator under the given prior and SEL is: 98 

𝜃𝑆𝐸𝐿 =
𝑥2 + 2𝑥3 + 𝛼

𝑥2 + 2𝑥3 + 𝛼 + 2𝑥1 + 𝑥2 + 𝛽
 

=
𝑥2 + 2𝑥3 + 𝛼

2𝑛 + 𝛼 + 𝛽
 (∵ 𝑥1 + 𝑥2 + 𝑥3 = 𝑛) 

The frequentist risk of this estimator is: 99 

𝑅(𝜃, 𝜃𝑆𝐸𝐿) = 𝐸𝜃 [(
𝑋2 + 2𝑋3 + 𝛼

2𝑛 + 𝛼 + 𝛽
− 𝜃)

2

] 

= 𝑉𝑎𝑟𝜃 [
𝑋2 + 2𝑋3 + 𝛼

2𝑛 + 𝛼 + 𝛽
] + (𝐸𝜃 [

𝑋2 + 2𝑋3 + 𝛼

2𝑛 + 𝛼 + 𝛽
− 𝜃])

2

 

=
𝑉𝑎𝑟[𝑋2] + 4𝑉𝑎𝑟[𝑋3] + 4𝐶𝑜𝑣[𝑋2, 𝑋3]

(2𝑛 + 𝛼 + 𝛽)2
+ (𝐸𝜃 [

𝑋2 + 2𝑋3 + 𝛼 − 𝜃(2𝑛 + 𝛼 + 𝛽)

2𝑛 + 𝛼 + 𝛽
])
2

. 

Using the forms of means, variances, and covariances of the multinomial distribution yields: 100 
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𝑅(𝜃, 𝜃𝑆𝐸𝐿) =
2𝑛𝜃(1 − 𝜃)(1 − 2𝜃(1 − 𝜃)) + 4𝑛𝜃2(1 − 𝜃2) − 4𝑛(2𝜃(1 − 𝜃)𝜃2)

(2𝑛 + 𝛼 + 𝛽)2

+ (
2𝑛𝜃(1 − 𝜃) + 2𝑛𝜃2 + 𝛼 − 𝜃(2𝑛 + 𝛼 + 𝛽)

2𝑛 + 𝛼 + 𝛽
)

2

 

=
2𝑛𝜃(1 − 𝜃) + [𝛼(1 − 𝜃) − 𝛽𝜃]2

(2𝑛 + 𝛼 + 𝛽)2
. 

Note that the problem has been studied in terms of counts of individuals in each genotype, but it 101 

can be equivalently addressed in terms of counts of alleles. To see this, let 𝑌1 and 𝑌2 be random 102 

variables corresponding to the counts of B and A alleles in the population; consequently, 103 

𝑌1 = 2𝑋3 + 𝑋2, 𝑌2 = 2𝑋1 + 𝑋2 and 𝑌1 = 2𝑛 − 𝑌2. Now let 𝒀 ≔ (𝑌1, 𝑌2); therefore, 𝜋(𝒀|𝜃) ∝104 

𝜃𝑦1(1 − 𝜃)2𝑛−𝑦1 a Binomial(2𝑛, 𝜃) distribution. With this sampling model and the same prior 105 

𝜋(𝜃), 𝜋(𝜃|𝒀) is equivalent to 𝜋(𝜃|𝑿) given the relationship between 𝒀 and 𝑿. For the biallelic 106 

loci case, 𝜋(𝜃|𝑿) will continue to be used. Notwithstanding, as will be discussed later, for the 107 

multi-allelic case working in terms of allele counts is simpler.  108 

 109 

2.1.2 Kullback-Leibler loss 110 

Under this loss, the Bayes decision rule is the one minimizing (with respect to 𝛿): 111 

∫𝐿𝐾𝐿(𝜃, 𝛿)𝜋(𝜃|𝑿)𝑑𝜃

1

0

 

where: 112 

𝐿𝐾𝐿(𝜃, 𝛿) = 𝐸𝜃 [𝑙𝑛 (
𝜋(𝑿|𝜃)

𝜋(𝑿|𝛿)
)] = 𝐸𝜃 [𝑙𝑛 (

(1 − 𝜃)2𝑋1+𝑋2𝜃𝑋2+2𝑋3

(1 − 𝛿)2𝑋1+𝑋2𝛿𝑋2+2𝑋3
)]. 

After some algebra it can be shown that 𝐿𝐾𝐿(𝜃, 𝛿) = 2𝑛 [(1 − 𝜃)𝑙𝑜𝑔 (
1−𝜃

1−𝛿
) + 𝜃𝑙𝑜𝑔 (

𝜃

𝛿
)], thus 113 
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∫𝐿𝐾𝐿(𝜃, 𝛿)𝜋(𝜃|𝑿)𝑑𝜃

1

0

= 2𝑛𝐸 [(1 − 𝜃)𝑙𝑛 (
1 − 𝜃

1 − 𝛿
) + 𝜃𝑙𝑛 (

𝜃

𝛿
)| 𝑿]. 

The goal is to minimize this expression with respect to 𝛿, which amounts to minimizing −𝑙𝑛(1 −114 

𝛿)𝐸[1 − 𝜃|𝑿] − 𝑙𝑛𝛿𝐸[𝜃|𝑿] because the reaming terms do not depend on 𝛿. Setting the first 115 

derivative with respect to 𝛿 to zero and checking the second order condition yields: 116 

𝐸[1 − 𝜃|𝑿]

1 − 𝛿
−
𝐸[𝜃|𝑿]

𝛿
= 0 ⇒ 𝛿 = 𝐸[𝜃|𝑿]. 

Thus, as in the case of SEL, under KLL the Bayes estimator is also the posterior mean. Hence, 117 

from section 2.1.1 it follows that:    118 

𝜃𝐾𝐿𝐿 = 𝐸[𝜃|𝑿] =
𝑥2 + 2𝑥3 + 𝛼

2𝑛 + 𝛼 + 𝛽
= 𝜃𝑆𝐸𝐿 . 

The risk function of 𝜃𝐾𝐿𝐿 is: 119 

𝑅(𝜃, 𝜃𝐾𝐿𝐿) = 𝐸𝜃[𝐿𝐾𝐿(𝜃, 𝜃
𝐾𝐿𝐿)] = 2𝑛𝐸𝜃 [(1 − 𝜃)𝑙𝑛 (

1 − 𝜃

1 − 𝜃𝐾𝐿𝐿
) + 𝜃𝑙𝑛 (

𝜃

𝜃𝐾𝐿𝐿
)] 

= 2𝑛 [(1 − 𝜃)(𝑙𝑛(1 − 𝜃) − 𝐸𝜃[𝑙𝑛(1 − 𝜃
𝐾𝐿𝐿)]) + 𝜃(𝑙𝑛 𝜃 − 𝐸𝜃[𝑙𝑛 𝜃

𝐾𝐿𝐿]]. 

This involves evaluating 𝐸𝜃[𝑙𝑛(1 − 𝜃
𝐾𝐿𝐿)] and 𝐸𝜃[𝑙𝑛 𝜃

𝐾𝐿𝐿]. Consider 𝐸𝜃[𝑙𝑛 𝜃𝐾𝐿𝐿] =120 

𝐸𝜃[𝑙𝑛(𝑋2 + 2𝑋3 + 𝛼)] − 𝑙𝑛 (2𝑛 + 𝛼 + 𝛽). To simplify the problem recall that this is equivalent 121 

to 𝐸𝜃[𝑙𝑛(𝑌1 + 𝛼)] − 𝑙𝑛 (2𝑛 + 𝛼 + 𝛽) where 𝑌1 is a Binomial(2𝑛, 𝜃) random variable; however, 122 

this expectation does not have a closed form. Similarly, by using the fact that 𝑌1 + 𝑌2 = 2𝑛, it 123 

can be found that the evaluation of 𝐸𝜃[𝑙𝑛(1 − 𝜃𝐾𝐿𝐿)] involves finding 𝐸𝜃[𝑙𝑛(𝑌2 + 𝛽)] which has 124 

no closed form solution either.  125 

 126 

2.1.3 Quadratic error loss 127 
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This loss can be seen as a weighted version of SEL and it has the following form: 𝑤(𝜃)(𝛿 −128 

𝜃)2,  𝑤(𝜃) > 0,  ∀ 𝜃 ∈ Θ. Let 𝑤(𝜃) = [𝜃(1 − 𝜃)]−1. This form of 𝑤(𝜃) was chosen for 129 

mathematical convenience as it will become clear in the derivation of the decision rule. Thus, the 130 

loss function has the form: 𝐿(𝜃, 𝛿) = (𝜃−𝛿)2

𝜃(1−𝜃)
. Under this kind of loss, the Bayes estimator is the 131 

mean of the distribution 𝑤(𝜃)𝜋(𝜃|𝑿) (Lehman and Casella, 1998). 132 

𝑤(𝜃)𝜋(𝜃|𝑿) ∝
1

𝜃(1 − 𝜃)
𝜃𝑥2+2𝑥3+𝛼−1(1 − 𝜃)2𝑥1+𝑥2+𝛽−1 

= 𝜃𝑥2+2𝑥3+𝛼−2(1 − 𝜃)2𝑥1+𝑥2+𝛽−2 

This corresponds to a Beta(𝑥2 + 2𝑥3 + 𝛼 − 1, 2𝑥1 + 𝑥2 + 𝛽 − 1) provided that: 𝑥2 + 2𝑥3 + 𝛼 −133 

1 > 0, 2𝑥1 + 𝑥2 + 𝛽 − 1 > 0. In such case the estimator is simply the mean of that distribution, 134 

that is: 135 

𝜃𝑄𝐸𝐿 =
𝑥2 + 2𝑥3 + 𝛼 − 1

2(𝑥1 + 𝑥2 + 𝑥3) + 𝛼 + 𝛽 − 2
 

=
𝑥2 + 2𝑥3 + 𝛼 − 1

2𝑛 + 𝛼 + 𝛽 − 2
(∵ 𝑥1 + 𝑥2 + 𝑥3 = 𝑛) 

Now, the two cases 𝑥2 + 2𝑥3 + 𝛼 − 1 ≤ 0 and 2𝑥1 + 𝑥2 + 𝛽 − 1 ≤ 0 are analyzed. Notice that 136 

𝑥2 + 2𝑥3 + 𝛼 − 1 and 2𝑥1 + 𝑥2 + 𝛽 − 1 cannot be simultaneously smaller than or equal to zero 137 

because it would imply that there are no observations. From first principles, the expression 138 

∫ 𝑤(𝜃)(𝜃 − 𝜃𝑄𝐸𝐿)
2
𝜋(𝜃|𝒙)𝑑𝜃

1

0
 is required to be finite (Lehman and Casella, 1998). If 𝑥2 +139 

2𝑥3 + 𝛼 − 1 ≤ 0, it implies that (𝑋2, 𝑋3) = (0,0) and 𝛼 ≤ 1. Under these conditions: 140 

∫𝑤(𝜃)(𝜃 − 𝜃𝑄𝐸𝐿)
2
𝜋(𝜃|𝒙)𝑑𝜃

1

0

∝ ∫(𝜃 − 𝜃𝑄𝐸𝐿)
2
𝜃𝛼−2(1 − 𝜃)2𝑥1+𝛽−2𝑑𝜃

1

0
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= ∫𝜃𝛼(1 − 𝜃)2𝑥1+𝛽−2𝑑𝜃

1

0

− 2𝜃𝑄𝐸𝐿∫𝜃𝛼−1(1 − 𝜃)2𝑥1+𝛽−2𝑑𝜃

1

0

+ (𝜃𝑄𝐸𝐿)
2
∫𝜃𝛼−2(1 − 𝜃)2𝑥1+𝛽−2𝑑𝜃

1

0

. 

The first two integrals are finite whereas the third integral is not finite unless 𝜃𝑄𝐸𝐿 = 0.  If 141 

2𝑥1 + 𝑥2 + 𝛽 − 1 ≤ 0 then (𝑋1, 𝑋2) = (0,0) and 𝛽 ≤ 1, then: 142 

∫𝑤(𝜃)(𝜃 − 𝜃𝑄𝐸𝐿)
2
𝜋(𝜃|𝒙)𝑑𝜃

1

0

∝ ∫(1 − 𝜃 − (1 − 𝜃𝑄𝐸𝐿))
2

𝜃2𝑥3+𝛼−2(1 − 𝜃)𝛽−2𝑑𝜃

1

0

 

= ∫𝜃2𝑥3+𝛼−2(1 − 𝜃)𝛽𝑑𝜃

1

0

− 2(1 − 𝜃𝑄𝐸𝐿)∫𝜃2𝑥3+𝛼−2(1 − 𝜃)𝛽−1𝑑𝜃

1

0

+ (1 − 𝜃𝑄𝐸𝐿)
2
∫𝜃2𝑥3+𝛼−2(1 − 𝜃)𝛽−2𝑑𝜃

1

0

. 

The first two integrals are finite. For the third integral to be finite 𝜃𝑄𝐸𝐿 must be equal to one. 143 

In summary, under the given prior and QEL, the Bayes estimator is: 144 

𝜃𝑄𝐸𝐿 =

{
 

 
𝑥2 + 2𝑥3 + 𝛼 − 1

2𝑛 + 𝛼 + 𝛽 − 2
,  𝑖𝑓 𝑥2 + 2𝑥3 + 𝛼 − 1 > 0 𝑎𝑛𝑑  2𝑥1 + 𝑥2 + 𝛽 − 1 > 0 

0,                         𝑖𝑓 𝑥2 + 2𝑥3 + 𝛼 − 1 ≤ 0 
1,                         𝑖𝑓 2𝑥1 + 𝑥2 + 𝛽 − 1 ≤ 0 

 

A common situation is  𝑥2 + 2𝑥3 + 𝛼 − 1 > 0,   2𝑥1 + 𝑥2 + 𝛽 − 1 > 0, and in that case:  145 

𝑅(𝜃, 𝜃𝑄𝐸𝐿) = 𝐸𝜃 [𝑤(𝜃)(𝜃
𝑄𝐸𝐿 − 𝜃)

2
] = 𝐸𝜃 [

1

𝜃(1 − 𝜃)
(
𝑋2 + 2𝑋3 + 𝛼 − 1

2𝑛 + 𝛼 + 𝛽 − 2
− 𝜃)

2

] 

=
1

𝜃(1 − 𝜃)
(𝑉𝑎𝑟𝜃 [

𝑋2 + 2𝑋3 + 𝛼 − 1

2𝑛 + 𝛼 + 𝛽 − 2
] + (𝐸𝜃 [

𝑋2 + 2𝑋3 + 𝛼 − 1 − 𝜃(2𝑛 + 𝛼 + 𝛽 − 2)

2𝑛 + 𝛼 + 𝛽 − 2
])

2

). 
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Notice that: 𝑉𝑎𝑟𝜃 [
𝑋2+2𝑋3+𝛼−1

2𝑛+𝛼+𝛽−2
] =

1

(2𝑛+𝛼+𝛽−2)2
𝑉𝑎𝑟𝜃[𝑋2 + 2𝑋3], 𝑉𝑎𝑟𝜃[𝑋2 + 2𝑋3] was previously 146 

derived in section 2.1.1 and it is equal to 2𝑛𝜃(1 − 𝜃). On the other hand, the procedure to 147 

simplify the second summand is very similar to the one used for 𝑅(𝜃, 𝜃𝑆𝐸𝐿), and the final result 148 

is (−𝜃(𝛼+𝛽−2)+𝛼−1)
2

(2𝑛+𝛼+𝛽−2)2
. Therefore the risk has the form: 149 

𝑅(𝜃, 𝜃𝑄𝐸𝐿) =
2𝑛

(2𝑛 + 𝛼 + 𝛽 − 2)2
+
(−𝜃(𝛼 + 𝛽 − 2) + 𝛼 − 1)2

𝜃(1 − 𝜃)(2𝑛 + 𝛼 + 𝛽 − 2)2
. 

When 𝑥2 + 2𝑥3 + 𝛼 − 1 ≤ 0, that is, allele A is not observed and 𝛼 ≤ 1, the risk is: 150 

𝑅(𝜃, 𝜃𝑄𝐸𝐿) =
(𝜃 − 0)2

𝜃(1 − 𝜃)
=

𝜃

1 − 𝜃
, 

while when  2𝑥1 + 𝑥2 + 𝛽 − 1 ≤ 0 (allele B is not observed and 𝛽 ≤ 1 ) the risk is 151 

𝑅(𝜃, 𝜃𝑄𝐸𝐿) =
(𝜃 − 1)2

𝜃(1 − 𝜃)
=
1 − 𝜃

𝜃
. 

 152 

2.2 Derivation of minimax rules  153 

To derive minimax rules the following theorem was used (Lehman and Casella, 1998): 154 

Theorem 1 Let 𝛬 be a prior and 𝛿𝛬 a Bayes rule with respect to 𝛬 with Bayes risk satisfying 155 

𝑟(𝛬, 𝛿𝛬) = sup𝜃∈𝛩 𝑅(𝜃, 𝛿𝛬).   Then: 𝑖) 𝛿𝛬 is minimax and 𝑖𝑖) Λ is least favorable. 156 

A corollary that follows from this theorem is that if 𝛿 is a Bayes decision rule with respect to a 157 

prior 𝛬 and it has constant (not depending on 𝜃)  frequentist risk, then it is also minimax and 𝛬 is 158 

least favorable, that is, it causes the greatest average loss. Thus, the approach was the following. 159 

Once a Bayes estimator was derived, it was determined if there were values of the 160 

hyperparameters such that 𝑅(𝜃, 𝛿) was constant; therefore, using these particular values of the 161 

hyperparameters, the resulting estimator was minimax. Notice that for SEL, by choosing the 162 
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Beta(𝛼 = √
𝑛

2
, 𝛽 = √

𝑛

2
) prior, the risk function 𝑅(𝜃, 𝜃𝑆𝐸𝐿) is constant and takes the form: 163 

𝑅(𝜃, 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1) = (4(1 + √2𝑛)
2
)
−1

. Hence, a minimax estimator is:   164 

𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1  =
𝑥2 + 2𝑥3 +√

𝑛
2

√2𝑛(√2𝑛 + 1)
. 

On the other hand, it is easy to notice that provided 𝑥2 + 2𝑥3 + 𝛼 − 1 > 0,   2𝑥1 + 𝑥2 + 𝛽 −165 

1 > 0, 𝜃𝑄𝐸𝐿 have a constant risk for 𝛼 = 𝛽 = 1,   that is, under a uniform(0,1) prior. Then:  166 

𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥2  =
𝑥2 + 2𝑥3
2𝑛

𝑎𝑛𝑑 𝑅(𝜃, 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥2) =
1

2𝑛
 ∀ 𝜃 ∈ Θ. 

In the case of the Bayes estimator derived under KLL, the risk function involves the evaluation 167 

of a finite sum that does not have a closed form solution. Although an approximation based on 168 

the Taylor series expansion of  ln(𝑌1 + 𝛼) and ln(𝑌2 + 𝛽) could be found, it turns out that this 169 

function cannot be made independent of 𝜃 by manipulating the hyperparameters 𝛼 and 𝛽. 170 

Consequently, theorem 1 could not be used here to find a minimax estimator. Because of this, 171 

hereinafter only SEL and QEL will be used to obtain Bayes and minimax decision rules.   172 

 173 

2.3 Extension to k loci 174 

When the interest is in estimating allelic frequencies at several loci, i.e., the parameter is vector-175 

valued, it could seem natural to compute the real-valued estimators presented in sections 2.1 and 176 

2.2 at each locus and combine them to obtain the desired estimator. The question is: Do these 177 

estimators preserve the properties of Bayesness and minimaxity of their univariate counterparts? 178 

In this section we show that this is the case under certain assumptions, and therefore, Bayes 179 

estimation of vector-valued parameters reduces to estimation of each of its components.  180 
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Let 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑘) be the vector containing the frequencies of the “reference” alleles for k 181 

loci, 𝑿 = (𝑿𝟏, 𝑿𝟐, … , 𝑿𝒌) the vector containing the number of individuals for every genotype at 182 

every locus where 𝑿𝒊 = (𝑋1𝑖, 𝑋2𝑖, 𝑋3𝑖),  𝑖 = 1,2, … , 𝑘, and 𝜹 = (𝛿1, 𝛿2, … , 𝛿𝑘) a vector-valued 183 

estimator of 𝜽. Consider a general additive loss function of the form: 𝐿(𝜽, 𝛿(𝑿)) =184 

∑ 𝐿(𝜃𝑖, 𝛿𝑖(𝑿))
𝑘
𝑖=1 . Assuming linkage equilibrium we have 𝜋(𝑿|𝜃) = ∏ 𝜋(𝑿𝑖|𝜃𝑖)

𝑘
𝑖=1  and using 185 

independent priors it follows that  𝜋(𝜽|𝑿) = ∏ 𝜋(𝜃𝑖|𝑿𝑖)
𝒌
𝒊=𝟏 . To obtain a Bayes estimator, the 186 

following expression has to be minimized with respect to 𝛿𝑖 , ∀ 𝑖 = 1,2, … , 𝑘: 187 

∫ … ∫ 𝐿(𝜽, 𝜹(𝑿))

𝛩𝑘𝛩1

𝜋(𝜽|𝑿)𝑑𝜃1⋯𝑑𝜃𝑘 = ∫ … ∫ (∑𝐿(𝜃𝑖, 𝛿𝑖(𝑿))

𝑘

𝑖=1

)

𝛩𝑘𝛩1

𝜋(𝜽|𝑿)𝑑𝜃1⋯𝑑𝜃𝑘 

=∑ ∫ … ∫ 𝐿(𝜃𝑖 , 𝛿𝑖(𝑿))

𝛩𝑘𝛩1

∏𝜋(𝜃𝑗|𝑿𝒋)

𝒌

𝒋=𝟏

𝑑𝜃1⋯𝑑𝜃𝑘

𝑘

𝑖=1

 

the ℎ𝑡ℎ integral in the summation (ℎ = 1,2, … , 𝑘) can be written as: 188 

∫ 𝐿(𝜃ℎ , 𝛿ℎ(𝑿))𝜋(𝜃ℎ|𝑿𝒉)𝑑𝜃ℎ
𝛩ℎ

∫ … ∫ ∫ … ∫∏𝜋(𝜃𝑗|𝑿𝑗)

𝑗≠ℎ𝛩𝑘𝛩ℎ+1𝛩ℎ−1𝛩1

𝑑𝜃1⋯𝑑𝜃ℎ−1𝑑𝜃ℎ+1⋯𝑑𝜃𝑘 

= ∫ 𝐿(𝜃ℎ, 𝛿ℎ)𝜋(𝜃ℎ|𝑿𝒉)𝑑𝜃ℎ
𝛩ℎ

. 

From the result above, it follows that Bayes estimation of 𝜽 reduces to that of its components. 189 

Therefore, under linkage equilibrium, independent priors and an additive loss it follows that  190 

𝜽̂𝐵𝑎𝑦𝑒𝑠 = (𝜃1
𝐵𝑎𝑦𝑒𝑠

, 𝜃2
𝐵𝑎𝑦𝑒𝑠

, . . . , 𝜃𝑘
𝐵𝑎𝑦𝑒𝑠

). Applying the results derived previously, a minimax 191 

estimator is the vector 𝜽̂𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 ∈ ℝ𝑘, whose 𝑖𝑡ℎ entry is 
𝑥2𝑖+2𝑥3𝑖+√

𝑛

2

√2𝑛(√2𝑛+1)
. Another minimax 192 

estimator of 𝜽 is obtained by posing k independent uniform(0,1) priors and the 𝑖𝑡ℎ element of  193 
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𝜽̂𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 ∈ ℝ𝑘 has the form  
𝑥2𝑖+2𝑥3𝑖

2𝑛
, provided 𝑥2𝑖 + 2𝑥3𝑖 + 𝛼 − 1 > 0 and  2𝑥1𝑖 + 𝑥2𝑖 + 𝛽 −194 

1 > 0 ∀ 𝑖 = 1,2, … , 𝑘. 195 

 196 

2.4 Multiallelic loci 197 

In this section, the general case of two or more alleles per locus is discussed. The approach is the 198 

same used in the biallelic loci case. In first place, an arbitrary locus 𝑖 having 𝑛𝑖 alleles is 199 

considered, and then the results are expanded to the multiple loci scenario. Let 𝜃1𝑖 , 𝜃2𝑖 , … , 𝜃𝑛𝑖 be 200 

the frequencies of the 𝑛𝑖 alleles of locus 𝑖 and 𝑋1𝑖 , 𝑋2𝑖 , … , 𝑋𝑁𝑖 random variables indicating the 201 

number of individuals having each one of the 𝑁𝑖 possible genotypes formed from the 𝑛𝑖 different 202 

alleles, 𝑖 = 1,2, … , 𝑘. Notice that for diploid organisms 𝑁𝑖 = (
𝑛𝑖
2
) + 𝑛𝑖. The sampling model can 203 

be written as a multinomial distribution of dimension 𝑁𝑖; however, as discussed previously, an 204 

equivalent sampling model in terms of the counts for every allelic variant can be used. This 205 

approach is simpler because 𝑁𝑖 could be large. Hence, let 𝑌1𝑖 , 𝑌2𝑖 , … , 𝑌𝑛𝑖  be random variables 206 

indicating the counts of each one of the 𝑛𝑖 allelic variants at locus 𝑖: 𝐴1𝑖 , 𝐴2𝑖 , … , 𝐴𝑛𝑖; 𝑖 =207 

1,2, … , 𝑘. A multinomial distribution with parameters 𝜽𝑖 = (𝜃1𝑖 , 𝜃2𝑖 , … , 𝜃𝑛𝑖) and 2𝑛 is assigned 208 

to 𝒀𝑖 = (𝑌1𝑖 , 𝑌2𝑖 , … , 𝑌𝑛𝑖). The parametric space is denoted by Θ and corresponds to [0,1] ×209 

[0,1] × ⋯× [0,1], an 𝑛𝑖-dimensional unit hypercube. The prior assigned to 𝜽𝑖 is a Dirichlet 210 

distribution with hyperparameters 𝜶𝑖 = (𝛼1𝑖 , 𝛼2𝑖 , … , 𝛼𝑛𝑖). With this setting, conjugacy holds and 211 

therefore the posterior is a Dirichlet (𝛼1𝑖 + 𝑦1𝑖 , 𝛼2𝑖 + 𝑦2𝑖 , … , 𝛼𝑛𝑖 + 𝑦𝑛𝑖). Under an additive SEL 212 

of the form ∑ (𝜃𝑗𝑖 − 𝜃𝑗𝑖)
2𝑛𝑖

𝑗𝑖=1
 the Bayes estimator of 𝜽𝑖 is given by the vector of posterior means, 213 

that is: 214 
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𝜽̂𝑖
𝑀−𝑆𝐸𝐿 = (𝜃𝑗𝑖)𝑛𝑖×1

=
𝛼𝑗𝑖 + 𝑌𝑗𝑖

2𝑛 + ∑ 𝛼𝑗𝑖
𝑛𝑖
𝑗𝑖=1

, 

where the “M” in the super-index stands for multiple loci. The risk of this estimator is:  215 

𝑅(𝜽𝑖, 𝜽̂𝑖
𝑀−𝑆𝐸𝐿) = 𝐸𝜽𝑖 [∑(𝜽̂𝑗𝑖

𝑀−𝑆𝐸𝐿 − 𝜃𝑗𝑖)
2

𝑛𝑖

𝑗𝑖=1

], 

that can be shown to have the form:   216 

∑
𝜃𝑗𝑖
2 ((∑ 𝛼𝑙𝑖

𝑛𝑖
𝑙𝑖=1

)
2

− 2𝑛) + 𝜃𝑗𝑖 (2𝑛 − 2𝛼𝑗𝑖 ∑ 𝛼𝑙𝑖
𝑛𝑖
𝑙𝑖=1

) + 𝛼𝑗𝑖
2

(2𝑛 + ∑ 𝛼𝑙𝑖
𝑛𝑖
𝑙𝑖=1

)
2

𝑛𝑖

𝑗𝑖=1

. 

To find a minimax estimator, theorem 1 is invoked again. Based on the results from the biallelic 217 

case, intuition suggests trying the following values for the hyperparameters: 218 

𝛼𝑗𝑖 = √2𝑛 𝑛𝑖⁄ , ∀ 𝑗𝑖 = 1,2, … , 𝑛𝑖. Then, after simplification: 219 

𝑅(𝜽𝑖 , 𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1) =

(
𝑛𝑖 − 2
𝑛𝑖

)∑ 𝜃𝑗𝑖
𝑛𝑖
𝑗𝑖=1

+
1
𝑛𝑖

(√2𝑛 + 1)
2 =

𝑛𝑖 − 1
𝑛𝑖

(√2𝑛 + 1)
2 , 

where the last equality follows from the fact that ∑ 𝜃𝑗𝑖
𝑛𝑖
𝑗𝑖=1

= 1. Hence, under these particular 220 

values of the hyperparameters, the risk is constant and therefore, a minimax estimator is: 221 

𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 = (𝜃𝑗𝑖)𝑛𝑖×1

=
𝑦𝑗𝑖 +

√2𝑛
𝑛𝑖

√2𝑛(√2𝑛 + 1)
. 

Now consider an additive loss of the form ∑ 𝑤(𝜃𝑗𝑖)(𝜃𝑗𝑖 − 𝜃𝑗𝑖)
2𝑛𝑖

𝑗𝑖=1
, 𝑤(𝜃𝑗𝑖) > 0 ∀ 𝜃𝑗𝑖 ∈ Θ. 222 

Again, 𝑤(𝜃𝑗𝑖) is chosen for convenience and it is defined as 𝑤(𝜃𝑗𝑖) = 𝜃𝑗𝑖
−1 ∀ 𝑗𝑖 = 1,2, . . . , 𝑛𝑖. In 223 

this case the function to be minimized is: 224 

∫ ∑𝑤(𝜃𝑗𝑖)(𝜃𝑗𝑖 − 𝜃𝑗𝑖)
2

𝑛𝑖

𝑗𝑖=1

𝜋(𝜽𝑖|𝒀𝑖)

Θ

𝑑𝜃𝑖 = ∑ ∫ 𝑤(𝜃𝑗𝑖)(𝜃𝑗𝑖 − 𝜃𝑗𝑖)
2
𝜋(𝜽𝑖|𝒀𝑖)𝑑𝜃𝑖

Θ

𝑛𝑖

𝑗𝑖=1
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which is equivalent to minimizing every term in the summation. Therefore, for every term this is 225 

the same problem discussed in the biallelic case, and it follows that for 𝑗𝑖 = 1,2, … , 𝑛𝑖,  𝜃𝑗𝑖is the 226 

expectation of 𝜃𝑗𝑖 taken with respect to the density 𝑣(𝜃) =
𝑤(𝜃𝑗𝑖

)𝜋(𝜽𝑖|𝒀𝑖)

∫ 𝑤(𝜃𝑗𝑖
)𝜋(𝜽𝑖|𝒀𝑖)𝑑𝜃𝑖Θ

 provided 227 

∫ 𝑤(𝜃𝑗𝑖)𝜋(𝜽𝑖|𝒀𝑖)𝑑𝜃𝑖Θ
< ∞ (Lehmann and Casella, 1998). Thus, 228 

𝑤(𝜃𝑗𝑖)𝜋(𝜽𝑖|𝒀𝑖) ∝ 𝜃1𝑖
𝛼1𝑖+𝑦1𝑖−1⋯𝜃(𝑗−1)𝑖

𝛼(𝑗−1)𝑖
+𝑦(𝑗−1)𝑖

−1
𝜃
𝑗𝑖

𝛼𝑗𝑖
+𝑦𝑗𝑖

−2
𝜃(𝑗+1)𝑖

𝛼(𝑗+1)𝑖
+𝑦(𝑗+1)𝑖

−1
⋯𝜃𝑛𝑖

𝛼𝑛𝑖+𝑦𝑛𝑖−1. 

This is the kernel of a Dirichlet(𝛼1𝑖 + 𝑦1𝑖 , … , 𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1,… , 𝛼𝑛𝑖 + 𝑦𝑛𝑖) density provided 229 

𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1 > 0. In this case, 𝜃𝑗𝑖 =
𝛼𝑗𝑖

+𝑦𝑗𝑖
−1

∑ 𝛼𝑗𝑖
+

𝑛𝑖
𝑗𝑖=1

2𝑛−1
 ∀ 𝑗𝑖 = 1,2… , 𝑛𝑖. If 𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1 ≤ 0, it must 230 

be that 𝑦𝑗𝑖 = 0, 𝛼𝑗𝑖 ≤ 1 and following the same reasoning used for biallelic loci, it turns out that 231 

the estimator is 𝜃𝑗𝑖 = 0. In summary, under this additive quadratic loss function, for 𝑗𝑖 =232 

1,2, … , 𝑛𝑖,  the Bayes estimator under the Dirichlet prior and the given loss function is: 233 

𝜽̂𝑖
𝑀−𝑄𝐸𝐿 = (𝜃𝑗𝑖

𝑀−𝑄𝐸𝐿)
𝑛𝑖×1

= {

𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1

∑ 𝛼𝑗𝑖 +
𝑛𝑖
𝑗𝑖=1

2𝑛 − 1
, 𝑖𝑓 𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1 > 0

0, 𝑖𝑓 𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1 ≤ 0 

 

 The risk of this estimator when 𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1 > 0 ∀ 𝑗𝑖 = 1,2, … , 𝑛𝑖 is: 234 

𝑅(𝜽𝑖 , 𝜽̂𝑖
𝑀−𝑄𝐸𝐿) = ∑ 𝐸𝜃 [𝑤(𝜃𝑗𝑖)(𝜃𝑗𝑖

𝑀−𝑄𝐸𝐿 − 𝜃𝑗𝑖)
2

]

𝑛𝑖

𝑗𝑖=1

 

The derivation is similar to the one in the biallelic case and 𝑅(𝜽𝑖 , 𝜽̂𝑖
𝑀−𝑄𝐸𝐿) has the form:  235 

2𝑛(𝑛𝑖 − 1) + ∑
(𝛼𝑗𝑖 − 1)

2

𝜃𝑗𝑖
+ (∑ 𝛼𝑗𝑖

𝑛𝑖
𝑗𝑖=1

− 1) ((∑ 𝛼𝑗𝑖
𝑛𝑖
𝑗𝑖=1

− 1) − 2∑ (𝛼𝑗𝑖 − 1)
𝑛𝑖
𝑗𝑖=1

)
𝑛𝑖
𝑗𝑖=1

(∑ 𝛼𝑗𝑖
𝑛𝑖
𝑗𝑖=1

+ 2𝑛 − 1)
2 . 

In the light of theorem 1, it is easy to see that provided 𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1 > 0 ∀ 𝑗𝑖 = 1,2, … , 𝑛𝑖, by 236 

assigning a Dirichlet prior with all hyperparameters equal to one, the risk is constant and equal to  237 
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(𝑛𝑖−1)

2𝑛+𝑛𝑖−1
. Consequently, the minimax estimator obtained here is 𝜽̂𝑖

𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 ∈ ℝ𝑛𝑖 whose 𝑗𝑡ℎ 238 

entry is 
𝑦𝑗𝑖

2𝑛+𝑛𝑖−1
. Details of the derivations of 𝜽̂𝑖

𝑀−𝑄𝐸𝐿 and the risk functions are presented in the 239 

appendix. 240 

Under the assumption of linkage equilibrium, posing independent priors and considering an 241 

additive loss function, the extension to k loci is straightforward and it is basically the same for 242 

the biallelic loci scenario. The parameter is 𝜽 = (𝜽1, 𝜽2, … , 𝜽𝑘) where 𝜽𝑖 ∈ ℝ𝑛𝑖 contains the 243 

frequencies of each allele in locus 𝑖, 𝑖 = 1,2, . . , 𝑘. Hence, independent Dirichlet(𝜶𝑖) priors are 244 

assigned to the elements of 𝜽. Let 𝒀 = (𝒀1, 𝒀2, … , 𝒀𝑘) be a vector containing the counts of each 245 

allele at each loci, that is, 𝒀𝑖 ∈ ℝ𝑛𝑖 contains the counts of the 𝑛𝑖 alleles in locus 𝑖. The loss 246 

function has the form 𝐿(𝜽, 𝛿(𝒀)) = ∑ 𝐿(𝜽𝑖, 𝛿𝑖(𝒀))
𝑘
𝑖=1 . Then, as in the biallelic case, the key 247 

property 𝜋(𝜽|𝒀) = ∏ 𝜋(𝜽𝑖|𝒀𝑖)
𝒌
𝒊=𝟏  holds and therefore, finding decision rules to estimate 𝜽 248 

amounts to finding decision rules to estimate its components: 𝜽1, 𝜽2, … , 𝜽𝑘. In this case, the 249 

estimators are denoted as 𝜽̂𝑀−𝑆𝐸𝐿 , 𝜽̂𝑀−𝑄𝐸𝐿 , 𝜽̂𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1  and  𝜽̂𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2. 250 

Admissibility of one-dimensional and vector-valued estimators was established using a theorem 251 

found in Lehmann and Casella (1998) which is restated for the reader’s convenience. 252 

Theorem 2 For a possibly vector-valued parameter 𝜽, suppose that 𝛿𝜋 is a Bayes estimator 253 

having finite Bayes risk with respect to a prior density  𝜋 which is positive for all 𝜽 ∈ Θ, and that 254 

the risk function of every estimator 𝛿 is a continuous function of 𝜽. Then 𝛿𝜋 is admissible. 255 

A key condition of this theorem is the continuity of the risk for all decision rules. For exponential 256 

families, this condition holds (Lehmann and Casella, 1998) and given that all distributions 257 

considered here are exponential families, the condition is met.  258 

 259 
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3. Results  260 

For biallelic loci, the Bayesian decision rules derived under SEL and KLL were found to be the 261 

same. Notice that this estimator can be rewritten as 𝑥2+2𝑥3
2𝑛

(
2𝑛

2𝑛+𝛼+𝛽
) +

𝛼

𝛼+𝛽
(

𝛼+𝛽

2𝑛+𝛼+𝛽
), which is a 262 

convex combination of the maximum likelihood estimator (MLE) and the prior mean. On the 263 

other hand, the Bayesian decision rule found under the QEL depends on the values taken by 264 

 𝑥2 + 2𝑥3 + 𝛼 − 1 and  2𝑥1 + 𝑥2 + 𝛽 − 1. As discussed previously, when at least one 265 

observation is done (at least one genotyped individual) these quantities cannot be simultaneously 266 

smaller or equal than zero, since it  𝛼 > 0, 𝛽 > 0 and in case of observing one or more 267 

genotypes, at least one of the random variables 𝑋1, 𝑋2 and 𝑋3 would take a value greater or equal 268 

than one.  Notice that when  𝑥2 + 2𝑥3 > 0 and  2𝑥1 + 𝑥2 > 0, 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 does exist and it is 269 

equivalent to the MLE. Thus, it has been shown that the MLE is also minimax and that the 270 

uniform(0,1) prior is least favorable for estimating 𝜃 under QEL. Moreover, a Beta(√𝑛
2
, √

𝑛

2
) 271 

prior was also found to be least favorable under SEL. When  𝑥2 + 2𝑥3 + 𝛼 − 1 > 0,  2𝑥1 + 𝑥2 +272 

𝛽 − 1 > 0, the estimator 𝜃𝑄𝐸𝐿 can be rewritten as 𝑥2+2𝑥3
2𝑛

(
2𝑛

2𝑛+𝛼+𝛽−2
) +

𝛼

𝛼+𝛽
(

𝛼+𝛽

2𝑛+𝛼+𝛽−2
) +273 

1

2
(

−2

2𝑛+𝛼+𝛽−2
) a linear combination of the MLE, the prior mean and the scalar 1 2⁄ . Regarding 274 

admissibility of the one-dimensional estimators, 𝜃𝑆𝐸𝐿 , 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 and 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 have finite 275 

Bayesian risks and therefore, by theorem 2, they are admissible. For 𝜃𝑄𝐸𝐿 the property holds 276 

provided 𝛼 > 1, 𝛽 > 1. For the case of k loci, under additive loss functions, the risks are additive 277 

and therefore the Bayes risks too. Hence, the estimators 𝜽̂𝑆𝐸𝐿 , 𝜽̂𝑀𝑖𝑛𝑖𝑚𝑎𝑥1  and 𝜽̂𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 are 278 

admissible, and if 𝛼𝑖 > 1, 𝛽𝑖 > 1 ∀ 𝑖 = 1,2, … , 𝑘,  𝜽̂𝑄𝐸𝐿 is also admissible. 279 
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In the multiallelic case, notice that  𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 reduces to its biallelic version (𝑛𝑖 = 2) because 280 

𝑦𝑗𝑖 = 𝑥2𝑖 + 2𝑥3𝑖. This happens because 𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 was derived from a Bayes estimator under 281 

SEL; however, when 𝑛𝑖 = 2, 𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2  does not reduce to 𝜃𝑖

𝑀𝑖𝑛𝑖𝑚𝑎𝑥2, but the estimators only 282 

differ in the denominator which is 2𝑛 + 1 for 𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 and 2𝑛 for 𝜃𝑖

𝑀𝑖𝑛𝑖𝑚𝑎𝑥2; hence, for 283 

large 𝑛 the estimators are very close. These results for the one locus case also hold for the case of 284 

several loci given the way in which the multiple-loci estimators were derived. Regarding 285 

admissibility in the multiallelic setting, for the single-locus case, in the light of theorem 2 286 

𝜽̂𝑖
𝑀−𝑆𝐸𝐿 , 𝜽̂𝑖

𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 and 𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 are admissible and provided 𝛼𝑗𝑖 > 1, ∀ 𝑗𝑖 = 1,2, … , 𝑛𝑖, 287 

𝜽̂𝑖
𝑀−𝑄𝐸𝐿 is also admissible. The same reasoning used in the biallelic case shows that for k loci 288 

and 𝑛𝑖 alleles per locus, 𝜽̂𝑀−𝑆𝐸𝐿 , 𝜽̂𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 and 𝜽̂𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 are admissible, as well as 289 

𝜽̂𝑀−𝑄𝐸𝐿 when 𝛼𝑗𝑖 > 1, ∀ 𝑗𝑖 = 1,2, … , 𝑛𝑖 , ∀ 𝑖 = 1,2, … , 𝑘. 290 

 291 

3.1 Comparison of estimators 292 

Because of the interest in addressing situations in which the proposed estimators may differ 293 

substantially from each other, in this section they are compared by finding general algebraic 294 

expressions that help in analyzing how they differ. These comparisons are basically related to 295 

values of the hyperparameters, to the allelic counts and to sample size.  296 

The risks of the estimators here cannot be compared directly because their corresponding loss 297 

functions measure the distance between estimators and estimands in different ways. 298 

Consequently, the precision of the estimators was compared using their frequentist (conditional 299 

on 𝜃) variances. It is enough to carry out comparisons for an arbitrary locus for the biallelic and 300 

multiallelic cases.  301 
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The magnitudes of all point estimators were compared with the MLE and against each other by 302 

finding their ratios. In each case, a short interpretation of the resulting expression is done in order 303 

to provide some settings under which the estimators show considerable differences. For the 304 

biallelic case, the ratio of estimator Z and the MLE is defined as 𝛿𝑧. Thus, after simplification: 305 

𝛿𝑆𝐸𝐿 =
2𝑛

2𝑛 + 𝛼 + 𝛽
(1 +

𝛼

𝑥2 + 2𝑥3
), 

𝛿𝑆𝐸𝐿 > (<)1 ⟺ 𝑥2 + 2𝑥3 < (>)
2𝑛𝛼

𝛼 + 𝛽
. 

Thus, given 𝑛, (𝑥2, 𝑥3) and 𝛼, the ratio is larger as 𝛽 ↓ 0 and decreases monotonically as 𝛽 → ∞. 306 

On the other hand, if 𝛼 ↓ 0 and 𝛽 → ∞ the ratio is smaller than one for fixed 𝑛. For very low 307 

counts of AA and AB genotypes, i.e., small 𝑥2 and 𝑥3, and 𝛼 not close to zero, the ratio tends to 308 

be greater than one.  309 

Recall that 𝜃𝑄𝐸𝐿 depends on  𝑥2 + 2𝑥3 + 𝛼 − 1 and  2𝑥1 + 𝑥2 + 𝛽 − 1. When  𝑥2 + 2𝑥3 + 𝛼 −310 

1 > 0,   2𝑥1 + 𝑥2 + 𝛽 − 1 > 0, it follows that: 311 

𝛿𝑄𝐸𝐿 =
2𝑛

2𝑛 + 𝛼 + 𝛽 − 2
(1 +

𝛼 − 1

𝑥2 + 2𝑥3
), 

𝛿𝑄𝐸𝐿 > (<)1 ⟺ 𝑥2 + 2𝑥3 < (>)
2𝑛(𝛼 − 1)

𝛼 + 𝛽 − 2
. 

Notice that if  𝛼 < 1, (which requires  𝑥2 + 2𝑥3 ≥ 1) and 𝛽 > 2 − 𝛼 or 𝛼 > 1, and 𝛽 < 2 − 𝛼, 312 

then the ratio is always smaller than one and the difference between estimators increases as 313 

genotypes AB and BB are more frequent, i.e., large 𝑥2 and 𝑥3. Moreover, when 𝛼 > 1, and 314 

𝛽 > 2 − 𝛼, if 𝛼 ↓ 1 and 𝛽 → ∞ the ratio will also be smaller than one. Similar interpretations 315 

can be done for the case of the ratio being greater than one. Recall that when  𝑥2 + 2𝑥3 + 𝛼 −316 

1 ≤ 0 or  2𝑥1 + 𝑥2 + 𝛽 − 1 ≤ 0, 𝜃𝑄𝐸𝐿 matches the MLE, and when both alleles are observed, 317 

𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 matches the MLE. Figure 1 shows the behavior of 𝛿𝑆𝐸𝐿 and  𝛿𝑄𝐸𝐿 as a function of the 318 
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hyperparameter 𝛽 in two scenarios. Under scenario 1 the genotype counts are (𝑥2, 𝑥3) =319 

(10, 25), while in scenario 2 (𝑥2, 𝑥3) = (250, 313). In each case, two sample sizes are 320 

considered: 1382 and 691.  321 

For 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1: 322 

𝛿𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 =

√2𝑛 ( 𝑥2 + 2𝑥3 +√
𝑛
2
)

(√2𝑛 + 1)( 𝑥2 + 2𝑥3)
, 

𝛿𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 > 1 ⟺ 𝑥2 + 2𝑥3 < 𝑛, 

since 𝑥2+2𝑥3
𝑛

≔ 𝑝̂ ∈ [0, 1] is the observed frequency (also the MLE) of the reference allele B, it 323 

follows that: 𝑥2 + 2𝑥3 = 𝑛𝑝̂ < 𝑛 if and only if 𝑝̂ < 1. The same rationale shows that 𝛿𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 324 

is never smaller than one, i.e., 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 is never smaller than the MLE. For given 𝑛, when allele 325 

B is very rare, i.e. (𝑥2, 𝑥3) → (0,0) the ratio tends to infinite. Figure 2 shows the behavior of 326 

𝛿𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 as a function of the observed frequency of the reference allele B for four different 327 

sample sizes (200, 800, 2000, and 10000).  328 

For the case  𝑥2 + 2𝑥3 + 𝛼 − 1 > 0,  2𝑥1 + 𝑥2 + 𝛽 − 1 > 0, the Bayes estimator 𝜃𝑄𝐸𝐿 differs 329 

from 𝜃𝑆𝐸𝐿 in that the numerator of 𝜃𝑄𝐸𝐿 is equal to the numerator of 𝜃𝑆𝐸𝐿 minus one and its 330 

denominator is equal to the denominator of 𝜃𝑆𝐸𝐿 minus two. Consequently, for moderate and 331 

large 𝑛, the estimators are very similar. Thus, only 𝜃𝑆𝐸𝐿 is compared with  𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 here. 332 

𝜃𝑆𝐸𝐿

𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1
=

( 𝑥2 + 2𝑥3 + 𝛼)(2𝑛 + √2𝑛)

( 𝑥2 + 2𝑥3 +√
𝑛
2)
(2𝑛 + 𝛼 + 𝛽)

 

𝜃𝑆𝐸𝐿

𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1
> (<)1 ⟺

𝑥2 + 2𝑥3 + 𝛼

 𝑥2 + 2𝑥3 +√
𝑛
2

> (<)
2𝑛 + 𝛼 + 𝛽

2𝑛 + √2𝑛
. 
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For instance, if 𝛼 > √
𝑛

2
 and √2𝑛 > 𝛼 + 𝛽 which implies √𝑛 (√2 −

1

√2
) > 𝛽, the ratio is greater 333 

than one. The behavior of this ratio as a function of 𝛽 is also shown in Figure 1.  334 

The procedure is analogous for the case of multiple alleles. Define the ratio of estimator Z to the 335 

MLE as 𝛾𝑍. An arbitrary locus 𝑖 and an allele 𝑗 are considered.  336 

𝛾𝑀−𝑆𝐸𝐿𝑗𝑖 =
2𝑛(𝛼𝑗𝑖 + 𝑦𝑗𝑖)

𝑦𝑗𝑖(2𝑛 + 𝛼)
, 𝛼∗ = ∑ 𝛼𝑘𝑖

𝑛𝑖

𝑘𝑖=1

 

𝛾𝑀−𝑆𝐸𝐿𝑗𝑖 > (<)1 ⟺ 𝛼𝑗𝑖 > (<)
𝑦𝑗𝑖𝛼

∗

2𝑛
. 

For example, when allele 𝑗 is not observed, the ratio is always greater than one. For a given 𝛼𝑗𝑖, 337 

the ratio increases as 𝑛 increases but the count of the allele remains constant or has a very small 338 

increase as in the case of a rare allelic variant.  339 

On the other hand: 340 

𝛾𝑀−𝑄𝐸𝐿𝑗𝑖 =
2𝑛(𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1)

𝑦𝑗𝑖(2𝑛 + 𝛼 − 1)
 

𝛾𝑀−𝑄𝐸𝐿𝑗𝑖 > (<)1 ⟺ 𝛼𝑗𝑖 − 1 > (<)
𝑦𝑗𝑖(𝛼 − 1)

2𝑛
. 

For 𝛼𝑗𝑖 ≫ 1, large 𝑛 and low frequency of allele 𝑗 the ratio will be greater than one. On the other 341 

hand, if 𝛼𝑗𝑖 < 1 and 𝛼∗ > 1, then the ratio will be smaller than one disregarding of 𝑦𝑗𝑖 and the 342 

sample size.  343 

For (𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)

𝑗
: 344 

𝛾𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1𝑗𝑖 =

√2𝑛 (𝑦𝑗𝑖 +
√2𝑛
𝑛𝑖
)

𝑦𝑗𝑖(√2𝑛 + 1)
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𝛾𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1𝑗𝑖 > (<)1 ⟺ 𝑦𝑗𝑖 < (>)
2𝑛

𝑛𝑖
, 

where 𝑛𝑖 is the number of alleles at locus 𝑖. If allele 𝑗 is not observed (𝑦𝑗𝑖 = 0) then the ratio is 345 

always greater than one. If allele 𝑗 is fixed then 𝑦𝑗𝑖 = 2𝑛 and the ratio is always smaller than one 346 

and the larger the number of alelles at locus 𝑖, the larger the difference between the MLE and 347 

(𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)

𝑗
.  348 

 In the multiallelic case, the estimator 𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 is not equal to the MLE; therefore, the ratio 349 

of 𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 and the MLE has to be computed.  350 

𝛾𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2𝑗𝑖 =
2𝑛

2𝑛 − 𝑛𝑖 − 1
> 1 ∀ 𝑛 ≥ 1, ∀ 𝑛𝑖 ≥ 2, 

consequently, (𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2)

𝑗
 is always larger than the MLE and the difference increases as the 351 

number of allelic variants at locus 𝑖 increases.  352 

Again, as in the biallelic case, the differences between (𝜽̂𝑖𝑀−𝑆𝐸𝐿)𝑗  and (𝜽̂𝑖
𝑀−𝑄𝐸𝐿

)
𝑗
are negligible 353 

and therefore this ratio is not computed and only (𝜽̂𝑖𝑀−𝑆𝐸𝐿)𝑗  is compared with (𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)

𝑗
 354 

and (𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2)

𝑗
.  355 

(𝜽̂𝑖
𝑀−𝑆𝐸𝐿)

𝑗

(𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)

𝑗

=
(𝑦𝑗𝑖 + 𝛼𝑗𝑖)(2𝑛 + √2𝑛)

(𝑦𝑗𝑖 +
√2𝑛
𝑛𝑖
) (2𝑛 + 𝛼∗)

 

(𝜽̂𝑖
𝑀−𝑆𝐸𝐿)

𝑗

(𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)

𝑗

> (<)1 ⟺
𝑦𝑗𝑖 + 𝛼𝑗𝑖

𝑦𝑗𝑖 +
√2𝑛
𝑛𝑖

> (<)
2𝑛 + 𝛼∗

2𝑛 + √2𝑛
 

This case is similar to the biallelic case. When 𝛼𝑗𝑖 >
√2𝑛

𝑛𝑖
 and √2𝑛 > 𝛼∗ which implies 𝛼𝑗𝑖 >

𝛼∗

𝑛𝑖
, 356 

the ratio is bigger than one, and for fixed 𝑛 it increases as 𝛼𝑗𝑖  increases and/or the number of 357 
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alleles at locus 𝑖 increases. On the other hand, for fixed number of allelic variants, fixed 𝑛 and 358 

fixed 𝛼𝑗𝑖, the ratio decreases as 𝛼∗ increases.  359 

(𝜽̂𝑖
𝑀−𝑆𝐸𝐿)

𝑗

(𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2)

𝑗

=
(2𝑛 − 𝑛𝑖 − 1)(𝑦𝑗𝑖 + 𝛼𝑗𝑖)

(2𝑛 + 𝛼∗)𝑦𝑗𝑖
 

(𝜽̂𝑖
𝑀−𝑆𝐸𝐿)

𝑗

(𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2)

𝑗

> (<)1 ⟺
2𝑛 − 𝑛𝑖 − 1

2𝑛 + 𝛼∗
> (<)

𝑦𝑗𝑖
𝑦𝑗𝑖 + 𝛼𝑗𝑖

. 

Now consider the frequentist variances for an arbitrary locus in the biallelic case: 360 

𝑉𝑎𝑟𝜃[𝜃̂
𝑆𝐸𝐿] =

2𝑛𝜃(1 − 𝜃)

(2𝑛 + 𝛼 + 𝛽)2
 

 𝑉𝑎𝑟𝜃[𝜃
𝑀𝑖𝑛𝑖𝑚𝑎𝑥1] =

𝜃(1−𝜃)

(√2𝑛+1)
2 361 

𝑉𝑎𝑟𝜃[𝜃
𝑀𝑖𝑛𝑖𝑚𝑎𝑥2] = 𝑉𝑎𝑟𝜃[𝜃

𝑀𝐿] =
𝜃(1 − 𝜃)

2𝑛
 

If  𝑥2 + 2𝑥3 + 𝛼 − 1 > 0,  2𝑥1 + 𝑥2 + 𝛽 − 1 > 0, then: 362 

𝑉𝑎𝑟𝜃[𝜃
𝑄𝐸𝐿] =

2𝑛𝜃(1 − 𝜃)

(2𝑛 + 𝛼 + 𝛽 − 2)2
 

Because the hyperparameters 𝛼 and 𝛽 are positive and 𝑛 ≥ 1, the variances of 𝜃𝑆𝐸𝐿 and 363 

𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 are uniformly smaller than the variance of the conventional estimator, the MLE, 364 

except at the boundaries of the parameter space where all of them are zero. If 𝛼 + 𝛽 > 2 then the 365 

variance of 𝜃𝑄𝐸𝐿 is also uniformly smaller than the variance of the MLE, provided both alleles 366 

are observed. For 𝜃𝑆𝐸𝐿 and 𝜃𝑄𝐸𝐿 the differences increase as the hyperparameters increase while 367 

for 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 the difference depends entirely on 𝑛. Given 𝛼 and 𝛽, as the sample size tends to 368 

infinite, all variance ratios tend to one. In addition, notice that if 2𝑛 + 𝛼 + 𝛽 > √2𝑛 + 1 which 369 

is equivalent to 𝛼 + 𝛽 > √2𝑛(1 − √2𝑛) + 1, the estimator with the smallest variance is 𝜃𝑆𝐸𝐿, 370 
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but √2𝑛 > 1 for 𝑛 ≥ 1, and the hyperparameters are positive, hence, 𝜃𝑆𝐸𝐿 always has the 371 

smallest variance and for moderate or large sample sizes, the differences between 𝑉𝑎𝑟𝜃[𝜃𝑆𝐸𝐿] 372 

and 𝑉𝑎𝑟𝜃[𝜃𝑄𝐸𝐿] are negligible. Therefore, from the frequentist point of view, the proposed 373 

estimators are more precise than the conventional MLE and the differences tend to be more 374 

relevant for small sample sizes. Figure 3 shows the behavior of frequentist variances across the 375 

sample space for all the estimators in the bialleic case. In that example 𝑛 = 691, 𝛼 = 240, 𝛽 =376 

240.   377 

The results are very similar for the multiallelic case.  Estimator variances are: 378 

𝑉𝑎𝑟 [(𝜽̂𝑖
𝑀𝐿)

𝑗
] =

𝜃𝑗𝑖(1 − 𝜃𝑗𝑖)

2𝑛
 

𝑉𝑎𝑟 [(𝜽̂𝑖
𝑀−𝑆𝐸𝐿)

𝑗
] =

2𝑛𝜃𝑗𝑖(1 − 𝜃𝑗𝑖)

(2𝑛 + 𝛼∗)2
 

𝑉𝑎𝑟 [(𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)

𝑗
] =

𝜃𝑗𝑖(1 − 𝜃𝑗𝑖)

(√2𝑛 + 1)
2 

𝑉𝑎𝑟 [(𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2)

𝑗
] =

2𝑛𝜃𝑗𝑖(1 − 𝜃𝑗𝑖)

(2𝑛 + 𝑛𝑖 − 1)2
 

If 𝛼𝑗𝑖 + 𝑦𝑗𝑖 − 1 > 0, then:  379 

𝑉𝑎𝑟 [(𝜽̂𝑖
𝑀−𝑄𝐸𝐿)

𝑗
] =

2𝑛𝜃𝑗𝑖(1 − 𝜃𝑗𝑖)

(2𝑛 + 𝛼∗ − 1)2
 

 380 

Since 𝑛𝑖 ≥ 3 and 𝛼∗ > 0, (𝜽̂𝑖𝑀−𝑆𝐸𝐿)𝑗 , (𝜽̂𝑖
𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)

𝑗
 and (𝜽̂𝑖

𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2)
𝑗
 have uniformly 381 

smaller variance than the MLE and if 𝛼∗ > 1, (𝜽̂𝑖
𝑀−𝑄𝐸𝐿)

𝑗
 also has smaller variance than the 382 

MLE. 383 

 384 
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3.2 Numerical example 385 

To illustrate the methodology, a numerical example is presented. Suppose that in a given sample 386 

of size 𝑛 =1382, three biallelic loci are studied. The three possible genotypes at each locus are 387 

denoted as 𝐴𝐴𝑖 , 𝐴𝐵𝑖 and 𝐵𝐵𝑖, 𝑖 = 1,2,3. The target is to obtain point estimators of the frequencies 388 

of the 𝐵𝑖 alleles 𝜽 = (𝜃1, 𝜃2, 𝜃3)′. The following counts are observed for genotypes 𝐴𝐴𝑖 , 𝐴𝐵𝑖 and 389 

𝐵𝐵𝑖 respectively: 0, 0, 1382 for locus 1; 1245, 132, 5 for locus 2; and 189, 644, 549 for locus 3.  390 

As in any Bayesian analysis, prior knowledge can help to set the values of hyperparameters. On 391 

the other hand, in the absence of such knowledge, objective priors can be used or an empirical 392 

Bayes approach can be implemented to estimate these unknown quantities. To illustrate how 393 

hyperparameters could be defined, suppose that the population under study is composed of 394 

subgroups. Each subgroup exchanges individuals with the population at a constant rate 𝑚 and 395 

linear pressure is assumed (Kimura and Crow, 1970). The interest is to estimate 𝜽 in a given 396 

subgroup. Under this scenario, allelic frequencies at a given locus follow a beta distribution with 397 

parameters: 𝛼 = 4𝑁𝑒𝑚𝑝𝐼 , 𝛽 = 4𝑁𝑒𝑚(1 − 𝑝𝐼), where 𝑁𝑒 is the effective size of the subgroup and  398 

𝑝𝐼 is frequency of the reference allele among the immigrants. Assume that based on knowledge 399 

of the population (e.g., preliminary data), it is believed that 𝑁𝑒 = 150, 𝑚 = 0.8 and that 400 

following Kimura and Crow (1970, page 438) it is assumed that the immigrants are a random 401 

sample of the complete population, which implies that 𝑝𝐼 can be assumed to be constant and 402 

equal to the prior population mean. Suppose that information about  𝑝𝐼 is available only for two 403 

of the loci and it is equal to 0.8 and 0.5 respectively. For locus 3 there is no previous information 404 

and therefore a uniform (0,1) prior is used. Using this information, the following estimators are 405 

obtained:  406 

𝜽̂𝑆𝐸𝐿 = (𝜃1
𝑆𝐸𝐿 , 𝜃2

𝑆𝐸𝐿 , 𝜃3
𝑆𝐸𝐿)′ = (0.9260, 0.0825, 0.6302)′ 
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𝜽̂𝑄𝐸𝐿 = (𝜃1
𝑄𝐸𝐿

, 𝜃2
𝑄𝐸𝐿

, 𝜃3
𝑄𝐸𝐿

)′ = (0.9263, 0.0822, 0.6302)′ 

𝜽̂𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 = (𝜃1
𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 , 𝜃2

𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 , 𝜃3
𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)′ = (0.9907, 0.0597, 0.6278)′ 

𝜽̂𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 = (𝜃1
𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 , 𝜃2

𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 , 𝜃3
𝑀𝑖𝑛𝑖𝑚𝑎𝑥2)′ = ("𝐷𝑁𝐸", 0.0514, 0.6302)′ 

where “DNE” stands for “does not exist”. For the first locus, genotypes 𝐴𝐴1 and 𝐴𝐵1 are not 407 

observed, this is why 𝜃1
𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 does not exist. Moreover, allele 𝐴1 was not observed, but the 408 

estimators 𝜃1𝑆𝐸𝐿 , 𝜃1
𝑄𝐸𝐿 and 𝜃1

𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 are not equal to one (the MLE) because they contain prior 409 

information. This is relevant because of the fact that if an allele is not observed in a sample, this 410 

does not imply that it does not exist in the population. In addition, when working with SNP chips 411 

or other sort of molecular markers, genotyping errors could cause rare allelic variants not to be 412 

identified. It has to be taken into account that this situation happens only when some allele is not 413 

observed and the appropriate hyperparameter (𝛼 for allele A and 𝛽 for allele B) is greater than 414 

one. Under different biological scenarios, such as those discussed in Wright (1930; 1937) and 415 

Kimura and Crow (1970), the hyperparameters 𝛼 and 𝛽 will be greater than one for populations 416 

with moderate or large effective size. Notice that the largest differences among estimators where 417 

for locus 2, where there were low counts of the reference allele. In addition, given the migration 418 

rate and allelic frequencies in the immigrants, the hyperparameters are linear functions of the 419 

effective population size. Thus, because of the results discussed in section 3.1, under the model 420 

assumed in this example, the larger the effective population size, the larger the differences 421 

between 𝜽̂𝑆𝐸𝐿 , 𝜽̂𝑄𝐸𝐿 and the MLE. Also, the larger the 𝑁𝑒, the larger the reduction in variance of 422 

these two estimators relative to the variance of the MLE.  423 

 424 

4. Discussion 425 
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The most widely used point estimator of allele frequencies is the MLE, which can be derived 426 

using a multinomial distribution for counts of individuals in each genotype or equivalently the 427 

counts of alleles and it corresponds to the sample mean. For biallelic loci, the minimaxity 428 

property of the MLE was, at least to our knowledge, an unknown fact in the area of quantitative 429 

genetics. In addition, it was also shown that this is a Bayes estimator under SEL and a 430 

uniform(0,1) prior. It is important to notice that the minimaxity of the estimator holds only when 431 

both alleles are observed, that is,  𝑥2𝑖 + 2𝑥3𝑖 > 0,  2𝑥1𝑖 + 𝑥2𝑖 > 0 ∀ 𝑖 = 1,2, … , 𝑘. This situation 432 

is not rare when working with actual genotypic data sets; for example, data from single 433 

nucleotide polymorphism chips. Under this condition, the estimator is also an unbiased Bayes 434 

estimator. For single-parameter estimation problems, Bayesness and unbiasedness are properties 435 

combined in a theorem due to Blackwell and Girshick (1954) which establishes that for 436 

parametric spaces corresponding to some open interval of the reals, under QEL, and finite 437 

expectation of 𝑤(𝜃), the Bayesian risk of an unbiased Bayes estimator is zero, which is an 438 

appealing property. Here, the theorem does not hold because by basic properties of the Beta 439 

distribution (Casella and Berger, 2002) for 𝛼 = 1, 𝛽 = 1, and the particular choice of 𝑤(𝜃) that 440 

was used here, 𝐸[𝑤(𝜃)] is not finite. Among all the derived estimators, 𝜃𝑀𝑖𝑛𝑖𝑚𝑎𝑥2  and its 441 

multivariate version 𝜽̂𝑀𝑖𝑛𝑖𝑚𝑎𝑥2 were the only unbiased estimators. Let 𝐵𝜃(∙) denote the bias of a 442 

given estimator. The following are the biases of the estimators derived here: 443 

𝐵𝜃(𝜃
𝑆𝐸𝐿) =

−𝜃(𝛼 + 𝛽) + 𝛼

2𝑛 + 𝛼 + 𝛽
 

𝐵𝜃(𝜃̂
𝑄𝐸𝐿) =

−𝜃(𝛼 + 𝛽 − 2) + 𝛼 − 1

2𝑛 + 𝛼 + 𝛽 − 2
 

𝐵𝜃(𝜃
𝑀𝑖𝑛𝑖𝑚𝑎𝑥1) =

1 − 2𝜃

2(√2𝑛 + 1)
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𝐵𝜃(𝜃
𝑀𝑖𝑛𝑖𝑚𝑎𝑥2) = 0 

𝐵𝜃𝑗𝑖
((𝜽̂𝑖

𝑀−𝑆𝐸𝐿)
𝑗
) =

𝛼𝑗𝑖 − 𝛼
∗𝜃𝑗𝑖

2𝑛 + 𝛼∗
 

𝐵𝜃𝑗𝑖
((𝜽̂𝑖

𝑀−𝑄𝐸𝐿)
𝑗
) =

𝛼𝑗𝑖 − 1 − 𝜃𝑗𝑖(𝛼
∗ − 1)

2𝑛 + 𝛼∗ − 1
 

𝐵𝜃𝑗𝑖
((𝜽̂𝑖

𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥1)
𝑗
) =

1
𝑛𝑖
− 𝜃𝑗𝑖

√2𝑛 + 1
 

𝐵𝜃𝑗𝑖
((𝜽̂𝑖

𝑀−𝑀𝑖𝑛𝑖𝑚𝑎𝑥2)
𝑗
) =

−𝜃𝑗𝑖(𝑛𝑖 − 1)

2𝑛 + 𝑛𝑖 − 1
 

 The Bayes decision rules derived under QEL depend on   𝑥2𝑖 + 2𝑥3𝑖 + 𝛼 − 1 and  2𝑥1𝑖 + 𝑥2𝑖 +444 

𝛽 − 1. At locus 𝑖, when the “reference” allele is fixed and 𝛽𝑖 ≤ 1, that is,  2𝑥1𝑖 + 𝑥2𝑖 + 𝛽𝑖 − 1 ≤445 

0, 𝑅 (𝜃, 𝜃𝑄𝐸𝐿) =
1−𝜃𝑖

𝜃𝑖
 which is zero when 𝜃𝑖 is one and tends to infinite as 𝜃𝑖 approaches zero. 446 

Similarly, when the “reference” allele is not observed and 𝛼𝑖 ≤ 1, 𝑅(𝜃, 𝜃𝑄𝐸𝐿) = 𝜃𝑖

1−𝜃𝑖
, which is 447 

zero when 𝜃𝑖 is zero and tends to infinite and  𝜃𝑖 approaches one. Using these results, the k loci 448 

situation can be easily analyzed since the loss is additive and hence the risk too. If a set of loci 449 

have fixed alleles, the contributions to the risk function in the remaining alleles is finite, and if 450 

some of the loci with fixed alleles meet the conditions under which their contributions to the risk 451 

tend to infinite, then the risk will tend to infinite. Notice that this can be easily avoided by 452 

choosing hyperparameters with values greater than one.  453 

It was found that the risk function under KLL does not have a closed form since it involves finite 454 

summations without closed forms. However, this does not prevent the computation of that risk 455 

function. Markov chain Monte Carlo methods could be used to compute 𝐸𝜃[ln(𝑌1 + 𝛼)] and 456 

𝐸𝜃[ln(𝑌2 + 𝛽)] and hence, the risk function could be computed.  457 
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 In the multiallelic scenario, similar to the biallelic case, when the loss is QEL, the existence of a 458 

minimax estimator depends on the condition 𝑦𝑗𝑖 > 0, ∀ 𝑗𝑖 = 1,2, … , 𝑛𝑖 , ∀ 𝑖 = 1,2, … , 𝑘. This 459 

means that all allelic variants have to be observed in order to have a minimax estimator under the 460 

particular QEL used here. When this condition does not hold for all loci, that is, at least one of 461 

them (e.g., 𝑖) is such that the 𝑗𝑖𝑡ℎ allele is not observed, and the corresponding hyperparameter is 462 

smaller or equal than one, then the estimator is zero and the risk contribution of this allele is 𝜃𝑗𝑖. 463 

Therefore, in this case the risk does not tend to infinite as was the case for the biallelic scenario; 464 

this is due to the fact that the loss function was not the same.  465 

It has to be considered that QEL is a flexible loss function in the sense that the only requirement 466 

for 𝑤(𝜃) is to be positive. Thus, several Bayes estimators can be found by varying this function 467 

and possibly, applying theorem 1, other Minimax estimators could be found. The forms of 𝑤(𝜃) 468 

used here for the biallelic and multiallelic case were chosen to cancel with similar expressions 469 

depending on 𝜃 during the derivation of the risk functions. 470 

For all decision rules derived from SEL, the form of the risk functions shows that they converge 471 

to zero as 𝑛 → ∞.  For QEL, it depends on the possible fixation or absence of a given allele at 472 

some loci and the value of the hyperparameters. When all hyperparameters are greater than one, 473 

all the derived risk functions converge to zero as 𝑛 → ∞.  When some alleles are fixed (biallelic 474 

case) or some are not observed (general case) and the hyperparameters corresponding to their 475 

frequencies are smaller or equal to one, the result does not hold. 476 

Admissibility holds for all the estimators derived from SEL while for QEL, if the 477 

hyperparameters are greater than one or all allelic variants at each locus are observed (which 478 

implies no fixed alleles) the Bayes estimators derived from this loss are also admissible. 479 
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Moreover, if all alleles are observed it is possible to obtain admissible minimax estimators from 480 

QEL.   481 

Regarding the behavior of the proposed decision rules, the general expressions for the ratios of 482 

estimators derived here may be used to have an insight of settings under which the estimators 483 

could show large differences and when they do not. For example, estimators derived under SEL 484 

differ from the MLE for low counts of the reference alleles and large values of the 485 

hyperparameters. From the frequentist point of view, the estimators proposed here always have a 486 

uniformly smaller variance than the MLE, except for those derived from QEL which require 487 

conditions over the sum of the hyperparameters to meet this property: 𝛼 + 𝛽 > 2 in the biallelic 488 

case and 𝛼∗ > 1 in the multiallelic case.  However, in many practical applications (as the one 489 

provided in the example) these conditions would be satisfied. Although there exists an algebraic 490 

reduction of variance, in some situations it could be negligible. For estimators derived under SEL 491 

and QEL, the reduction in variance increases as the hyperparameters increase. Also, the 492 

reduction in frequentist variances are more marked for small sample sizes. For large sample sizes 493 

differences between estimators can still be considerable (see Figure 1).  494 

The impact of using these estimators on each of their applications can be assessed either 495 

empirically or theoretically and this is an area for further research. An application in genome-496 

wide prediction or genomic selection (Meuwissen et al., 2001), a currently highly studied area, 497 

could be of interest because when both genotypes and their effects are treated as independent 498 

random variables, the variance of the distribution of a breeding value is affected by differences in 499 

allelic frequencies, by the variance of the distribution of marker effects, and by the level of 500 

heterozygosity which is computed using allelic frequencies (Gianola et al., 2009). Other relevant 501 

fields where the performance of alternative point estimators of allelic frequencies could be 502 
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evaluated are the computation of marker-based additive relationship matrices (VanRaden, 2008) 503 

and the detection of selection signature using genetic markers (Gianola et al., 2010).  504 

 505 

5. Conclusion 506 

From the statistical point of view, estimators combining desired statistical properties as 507 

Bayesness, minimaxity and admissibility were found and it was shown that for biallelic loci, in 508 

addition to the unbiasedness property of the usual estimator, it is also minimax and admissible 509 

(provided that all alleles are observed).  510 

Beyond their statistical properties, the estimators derived here have the appealing property of 511 

taking into account random variation in allelic frequencies, which is more congruent with the 512 

reality of finite populations exposed to evolutionary forces.  513 
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 543 

Figure 1 Behavior of ratios: 𝛿𝑆𝐸𝐿(SEL)  and  𝛿𝑄𝐸𝐿 (QEL) and 𝜃̂𝑆𝐸𝐿

𝜃̂𝑀𝑖𝑛𝑖𝑚𝑎𝑥1
 (S:M1) as functions of 𝛽 544 

for sample sizes 1382 (case A) and 691 (case B) and scenarios 1 and 2 (In scenario 2 SEL and 545 

QEL are almost overlapped) 546 

  547 
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 548 
Figure 2 Behavior of the ratio 𝛿𝑀𝑖𝑛𝑖𝑚𝑎𝑥1 as a function of the observed frequency of the 549 

reference allele B for four different sample sizes (n).  550 

 551 

  552 
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 553 
Figure 3 Frequentist variances of the proposed estimators and the MLE for the biallelic case 554 

(Variances of SEL and QEL are almost overlapped) 555 

 556 

 557 


