Calpastatin gene polymorphism is associated with rabbit meat quality traits

Jie Wang, Mauricio A. Elzo, Xianbo Jia, Shiyi Chen & Songjia Lai

To cite this article: Jie Wang, Mauricio A. Elzo, Xianbo Jia, Shiyi Chen & Songjia Lai (2016): Calpastatin gene polymorphism is associated with rabbit meat quality traits, Journal of Applied Animal Research, DOI: 10.1080/09712119.2016.1191498

To link to this article: http://dx.doi.org/10.1080/09712119.2016.1191498

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 09 Jun 2016.

Submit your article to this journal

View related articles

View Crossmark data
Calpastatin gene polymorphism is associated with rabbit meat quality traits

Jie Wang, Mauricio A. Elzo, Xianbo Jia, Shiyi Chen and Songjia Lai

Abstract

The objective of this study was to investigate single nucleotide polymorphisms in the calpastatin (CAST) gene and to test their association with meat quality traits in Hyla, Champagne, and Tianfu Black rabbit breeds. We detected one single nucleotide polymorphism (g.16441502 C > T) located at 67 bp in intron 3 of the CAST gene in Chromosome 11. The three rabbit populations had intermediate levels of genetic diversity in the CAST gene. The statistical analysis indicated that rabbits with the TT genotype had a significantly greater yellowness at 0 and 24 h postmortem than those with the CC genotype (P < .05) in the longissimus dorsi muscle. Rabbits with CC genotype had higher intramuscular fat content than those with CT and CC genotypes in both longissimus dorsi and biceps femoris muscles in the three breeds (P < .05). Our results indicated that the CAST gene may be used as a possible candidate for marker-assisted selection in rabbit meat breeding programmes.

1. Introduction

Calpastatin (CAST) was first identified in 1978 and exists widely in muscle cells (Nishiura et al. 1978; Waxman & Krebs 1978). CAST is an endogenous inhibitor which controls the activities of calpains with addition of Ca^{2+} (Kwak et al. 1993). Calpastatins are rich in proline and glutamate but poor in aromatic amino acids (Murachi 1983). Koohmaraie et al. (2002) showed that the rate of protein degradation postmortem affected the meat quality. Variation in CAST abundance influences postmortem aging rates in different muscles (Ouali & Talmant 1990; Geessen et al. 1992). Recently, some CAST SNPs have been used as commercial genetic markers by livestock industries (Johnston & Graser 2010). Calvo et al. (2014) showed that a new single nucleotide polymorphism in the CAST gene is associated with beef tenderness. Cae et al. (2010) provided further evidence that selection based on CAST gene markers may improve meat tenderness in Brahman cattle. Further, Castro et al. (2016) reported that several SNP in the CAST gene showed significant effects on the b* and hue* parameters of the longissimus thoracis et lumbarum and semitendinosus muscles in Brahman and Brahman crossbred cattle. The CAST gene has also been found to have a large effect on pork quality (Rohrer et al. 2012) and muscle fibre traits in chicken (Liu et al. 2008; Zhang et al. 2012). However, there has been little research on association between SNPs and rabbit meat quality traits.

The hybrid Hyla breed has shown high performance for daily weight gain, feed efficiency, and dressing per cent (Chiericato et al. 1993). The Champagne breed has displayed a high growth rate in young rabbits and was the most productive among medium-sized breeds (Bolet et al. 2004). The Tianfu Black is a Chinese indigenous breed that is popular among Chinese breeders. The aim of this study was to discuss a single nucleotide polymorphism in the CAST gene and to test its association with meat quality traits in the Hyla, Champagne, and Tianfu Black rabbit breeds.

2. Materials and methods

2.1. Animals

A total of 372 rabbits of both sexes (185 males and 180 females) from 3 breeds (including 138 Hyla, 139 Champagne, and 88 Tianfu Black) were used in this study. Rabbits were reared in individual cages after weaning at 6 weeks of age. Rabbits were managed following standard practices and had free access to a commercial diet. Slaughter occurred at 70 days of age. Ear tissue samples were collected for DNA extraction. Carcasses were kept at 4°C for 24 h. All experimental procedures were approved by the Institutional Animal Care and Use Committee of Sichuan Agricultural University.

2.2. Meat quality traits

Meat quality measurements were: (1) pH at 0 and 24 h postmortem, (2) colour at 0 and 24 h postmortem, and (3) intramuscular fat (IMF) at 24 h postmortem. The samples were taken from the longissimus dorsi and biceps femoris muscles. The pH measurements were taken with a probe using a pH meter (Model PH-STAR CPU, Meister®, Germany). The probe was inserted directly into the muscle to a depth of 3 mm. Colour data were expressed in terms of Lightness (L*), redness (a*), and yellowness (b*) (Van Laack et al. 2000). Lightness (L*) ranged from black (0) to white...
program DNAMAN (version 5.2.2). Sequences were subsequently analysed using a 3700 DNA sequencer. Sequences were made using Bonferroni least squares means and their standard errors were computed by the Primer Premier 5 software based on the rabbit gene content (PIC) were estimated for each of the three breeds effective allele numbers (Ne), and polymorphism information content (PIC) were calculated and summarized in Table 1. The results of the association analysis between the g.16441502 C > T SNP found here and rabbit meat quality traits are shown in Tables 2 and 3. Least squares means in Table 2 showed that rabbits with the TT genotype had a significantly greater b∗0h and b∗24h than rabbits with the CC genotype (P < .05), but similar values for pH (0 h, 24 h), L∗ (0 h, 24 h), and a∗ (0 h, 24 h) in the longissimus dorsi muscle. No significant differences among the three genotypes were found for pH (0 h, 24 h), L∗ (0 h, 24 h), a∗ (0 h, 24 h), and b∗ (0 h, 24 h) in the biceps femoris muscle (Table 3; P > .05). Thus, rabbits with CC genotype had higher IMF than rabbits with CT and TT genotypes in both longissimus dorsi and biceps femoris muscles among these three rabbit breeds (Tables 2 and 3; P < .05).
Table 1. Genotypic and allelic frequencies, χ^2 value test and diversity parameter for the CAST gene in rabbits.

<table>
<thead>
<tr>
<th>Breed (number)</th>
<th>Genotype/number/GF a</th>
<th>Allele/AF b</th>
<th>χ^2 (HWE) c</th>
<th>He d</th>
<th>Ne e</th>
<th>PIC f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyla (138)</td>
<td>CC/8/0.0580</td>
<td>TT/80/0.5797</td>
<td>CT/50/0.3623</td>
<td>0.2391</td>
<td>1/0.7609</td>
<td>0.3639/0.05</td>
</tr>
<tr>
<td>Champagne (139)</td>
<td>18/0.1295</td>
<td>52/0.3741</td>
<td>69/0.4964</td>
<td>0.3777</td>
<td>0.6223</td>
<td>0.4701/0.05</td>
</tr>
<tr>
<td>Tianfu Black (88)</td>
<td>14/0.1591</td>
<td>40/0.4545</td>
<td>34/0.3864</td>
<td>0.3523</td>
<td>0.6477</td>
<td>0.4564/0.05</td>
</tr>
<tr>
<td>Total rabbit (365)</td>
<td>40/0.1096</td>
<td>172/0.4712</td>
<td>153/0.4192</td>
<td>0.3192</td>
<td>0.6808</td>
<td>0.4346/0.05</td>
</tr>
</tbody>
</table>

aGF: genotypic frequency.
bAllelic frequency.
cHWE: Hardy–Weinberg equilibrium.
dHe: gene heterozygosity.
eNe: effective allele number.
fPIC: polymorphism information content.

Table 2. Least square means for CAST genotype effects on meat pH, colour, and IMF traits in rabbit *longissimus dorsi* muscle.

<table>
<thead>
<tr>
<th>Trait b</th>
<th>CAST genotype a</th>
<th>CC</th>
<th>TT</th>
<th>CT</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH<sub>0h</sub></td>
<td>6.47 ± 0.08</td>
<td>6.72 ± 0.08</td>
<td>6.32 ± 0.05</td>
<td>0.176</td>
<td></td>
</tr>
<tr>
<td>pH<sub>24h</sub></td>
<td>5.71 ± 0.03</td>
<td>5.71 ± 0.03</td>
<td>5.74 ± 0.02</td>
<td>0.132</td>
<td></td>
</tr>
<tr>
<td>L<sub>0h</sub></td>
<td>47.70 ± 1.04</td>
<td>49.38 ± 1.03</td>
<td>48.63 ± 0.68</td>
<td>0.304</td>
<td></td>
</tr>
<tr>
<td>L<sub>24h</sub></td>
<td>56.87 ± 0.75</td>
<td>60.23 ± 1.10</td>
<td>58.32 ± 0.71</td>
<td>0.264</td>
<td></td>
</tr>
<tr>
<td>a<sub>0h</sub></td>
<td>4.77 ± 0.44</td>
<td>4.27 ± 0.44</td>
<td>4.40 ± 0.47</td>
<td>0.137</td>
<td></td>
</tr>
<tr>
<td>a<sub>24h</sub></td>
<td>3.09 ± 0.11 c</td>
<td>3.09 ± 0.11 c</td>
<td>2.81 ± 0.13 c</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td>b<sub>0h</sub></td>
<td>5.40 ± 0.22 c</td>
<td>5.40 ± 0.22 c</td>
<td>5.20 ± 0.23 c</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>b<sub>24h</sub></td>
<td>1.49 ± 0.09 b</td>
<td>1.49 ± 0.09 b</td>
<td>1.73 ± 0.21 b</td>
<td>0.029</td>
<td></td>
</tr>
</tbody>
</table>

aValues with different superscripts within the same row differ significantly at $P < .05$ (a, b). bL_{0h} = Lightness from 0 (black) to 100 (white); a* = redness from −60 (green) to 60 (red); b* = yellowness from −60 (blue) to 60 (yellow).

Colour, IMF content, and pH value are all typical meat quality parameters (Dalle Zotte 2002; Li et al. 2013). The pH values here were similar to those of Hulot and Ohayoun (1999), who found that pH was almost neutral in live rabbits but it decreased rapidly after slaughter. The higher pH in fresh rabbit meat may imply a higher level of muscle glycogen reserves (Sabuncuoglu et al. 2011). In our study, colour values were similar to values reported in previous research (Trocino et al. 2002; María et al. 2006). The small differences in colour trait values between *longissimus dorsi* and *biceps femoris* muscles here partially agreed with the results reported by Chiericato et al. (1996), who found that yellowness was not consistent across different muscles. The result for IMF indicated that the C>T SNP here was closely associated with QTL, affecting rabbit meat quality. Koomharaie (1992) indicated that the biological activity of the CAST gene played an important role in the tenderization in beef, pork, and lamb because the calpain–CAST system is involved in the degradation of important proteins, and also, the system, a Ca$^{2+}$-activated protease family, may stimulate more rapid glycolysis and pH decline. Chung et al. (2001) found that CAST genotypes in intron 6 of the CAST gene influenced (P < .05) CAST activity in Angus cattle. Thus, it is possible that the g.16441502 C>T SNP found in intron 3 here may be involved in regulation of transcriptional and post-transcriptional gene expression of the CAST gene in rabbits. Further work is necessary with larger rabbit populations to elucidate the mechanisms involved in this gene’s effect on rabbit meat quality.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding information

This research was supported by the Tianfu Black rabbit breeding fund [grant number 2011NZ0099-4] in Sichuan province, China Agricultural Research System [grant number CAS5-44-A-2], the double-support project of Sichuan Agricultural University, and the fund for genetic polymorphism of MRFs in rabbit breeds in Sichuan province [grant number 12ZB0095], China.

References

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding information

This research was supported by the Tianfu Black rabbit breeding fund [grant number 2011NZ0099-4] in Sichuan province, China Agricultural Research System [grant number CAS5-44-A-2], the double-support project of Sichuan Agricultural University, and the fund for genetic polymorphism of MRFs in rabbit breeds in Sichuan province [grant number 12ZB0095], China.

References

