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ABSTRACT

Monthly test-day milk records (n = 50,839) from 2045 cows born from 312 sires and 1169 dams in Bako,
Debre Zeit and Holetta (Ethiopia, 1977 to 2010) were used to estimate the variance components and
genetic parameters for monthly test-day milk yield. Cows were Horro (H), Boran (B), Friesian (F)
crossbreds, Jersey (J) crossbreds, and Simmental (S) crossbreds. Lactations were modeled with a log-
transformed, modified, incomplete, gamma function. The random regression, animal repeatability
model considered herd-year-test-day subclass, parity, H, B, F, ], and S cow fractions, F x B, F x H, ] x B,
J x H, S x Band S x H cow heterozygosities as fixed effects. Random effects were additive genetic,
permanent environmental and residual. Variance components were estimated using restricted
maximum likelihood procedures. Additive genetic, permanent environmental and phenotypic variances,
heritabilities (0.17—0.42) and repeatabilities (0.84—0.94) for test-day milk yields increased as lactation
progressed. Additive genetic, permanent environmental and phenotypic correlations were higher be-
tween adjacent than non-adjacent monthly test-days, and decreased as interval between test-days
increased. The results suggested that a random regression, animal repeatability model using a modi-
fied, incomplete, gamma function would be appropriate for genetic evaluation in this multibreed

population.
Copyright © 2016, Kasetsart University. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

environmental effects from including the influence of a particular
day of recording, account for variation in the numbers of tests

Selection for milk yield in dairy cattle is generally based on the
analysis of 305 d lactation records. Test-day milk yields are used to
estimate 305 d lactation yield. The accuracy of 305 d yields depends
on the number of test-day records, the number of days between
tests and the methods of estimating 305 d yield. However, genetic
evaluation in developing countries is constrained by the lack of an
appropriate data recording system. The use of test-day data would
offer practical solutions where there is a lack of necessary infra-
structure and resources required for milk recording throughout the
lactation period.

Models that use 305 d lactation milk yield do not account for the
changes in environmental factors within 305 d of lactation. Test-
day models, however, allow more accurate estimation of
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recorded per animal, enable optimal use of information from all
test-days (especially for lactations with long intervals from calving
to the first test-day or between test-days) and greater stability of
bull evaluations through accounting for genetic differences among
daughters in the shape of the lactation curve and maturity rate
(Swalve, 1995; Wiggans and Goddard, 1997).

Test-day records are expressions of a trait that change over time.
Genetic correlations between individual test-days and 305 d milk
yield ranged from 0.78 to 1.00 (Machado et al., 1999). Ptak and
Schaeffer (1993) indicated that a genetic evaluation using four or
more test-days yield per lactation is more accurate than from just
one 305 d record. Estimated breeding values for 305 d and test-day
yields and comparison of both sets of breeding values indicated
only minor changes in sire ranking (Swalve, 1995). Similarly, a
strong positive rank correlation was observed between the ranking
of sires and cows on the basis of test-day and 305 d yield (Kaya
et al., 2003; Sawalha et al., 2005).
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Variance components and genetic parameters are needed for a
genetic improvement program to predict selection response, to
choose among breeding plans and to predict the breeding values of
candidates for genetic selection. The methods of estimation
of variance components and genetic parameters depend on the type
of data. Random regression models are widely used for the esti-
mation of variance components and prediction of breeding value for
traits repeatedly recorded over time because they are more flexible
and accurate than multiple trait models (Cobuci et al, 2005).
Random regression models predict breeding values for cumulative
milk yield throughout the lactation and for milk yield at any specific
day of lactation in contrast to multi-trait models that only permit
point predictions (Bignardi et al., 2011). The estimated genetic pa-
rameters depend on the type of regression functions utilized and the
covariance structures assumed for animal additive genetic, perma-
nent environment and residual effects in random regression models
(Bignardi et al., 2011). Many different models (for example, Legendre
polynomials, splines and lactation curve functions) have been pro-
posed for test-day regression. However, it is unlikely that a single
“best model” exists because local circumstances determine which
effects should be included in the model. In principle, the model that
maximizes genetic progress in the population should be chosen for
genetic evaluation (Jensen, 2001). The objective of this study was to
estimate genetic parameters for monthly test-day milk yields in an
Ethiopian multibreed dairy cattle population using a random
regression, animal repeatability model.

Materials and methods
Description of the study area, animals and breeding system

The study was based on monthly test-day milk data from the
Bako, Debre Zeit and Holetta Research Centers, Ethiopia. Details of
the research centers have been reported elsewhere
(Gebreyohannes, 2013).

Data and statistical analysis

Lactation milk yields for the period 1977 to 2010 for Bako and
Holetta and from 1989 to 2006 for the Debre Zeit research center
were used for the study. Monthly test-day milk data were extracted
from the daily records of each cow for every 30 day interval starting
from the date of calving. The dataset used for this study consisted of
50,839 monthly test-day records. The data were from 2045 cows
born from 312 sires and 1169 dams. Records from only parities 1 to 5
were included in the analysis. Lactations shorter than 90 d (less than
three monthly test-day records) were excluded from the analysis.

Different functions can be used in regression models. To be
suitable for a random regression model, a function must be linear in
the parameters and should have as few parameters as possible
(Jakobsen et al.,, 2002). The modified, incomplete, gamma function
(MIG) was chosen for this study because it was found to accurately
fit monthly test-day milk data and provide excellent predictions of
lactation milk yields (Gebreyohannes, 2013). The MIG is represented
asy; = ate™, where y, is the monthly test-day milk yield (in kilo-
grams) at time t (in days) after calving, and a and c are parameters of
the function. The MIG function was log-transformed to a linear form
(In(y/t) = In(a) + (—ct)) with the intercept equal to In(a) and the
slope equal to -c. This log-transformed MIG function was used to
model random, animal genetic and permanent environmental ef-
fects in the random regression, animal repeatability model.

The random regression, animal repeatability model included the
fixed effects of year-season and parity subclasses, regression on the
Horro (H), Boran (B), Friesian (F), Jersey (J), and Simmental (S) breed
fraction of the cow, regressiononF x B,F x H,] x B,] x H, S x Band

S x H heterozygosity fractions of the cows and the animal additive
genetic, permanent environmental and residual random effects.
Animal additive genetic and permanent environmental effects
were modeled using a log-transformed MIG function. The residual
variance was assumed to be constant throughout the lactation.

The random regression animal repeatability model used here
can be described using Equation (1):

5 5
Yjeme = HTM; + Py + BDIM; + >~ f(&im)&it + > _f (him )i
i=1 i=1
1 1
+ Z AmnZmm + Zpemnzmtn + €jkmt (1)
n=0 n=0

where:yjme represents In(y/t) of milk recorded from cow m on
monthly test-day t in herd-year- test-day subclass j, and parity
subclass k. The HTM, is the fixed effect of the jth herd-year-monthly
test-day subclass (j = 1 to 1017); Py is the fixed effect of parity
subclass (k = 1 to 5), and B is the regression coefficient for DIM;,
where DIM; represents the days in milk at day t after calving (t = 30,
60, 90, 120, 150, 180, 210, 240, 270 and 300 d). The gi, are additive
breed regression coefficients, and the h;j;, are heterosis regression
coefficients. The f{gim) is the ith breed fraction of cowm (i=1, ..., 5;
B, H, F,J and S), and f(h;n;) is the ith heterozygosity for cow m (i = 1,
...6;FxB FxH,]xB,]xH SxBandS x H). The ith breed
fraction for cow m was computed as f(g;,) = 0.5(p{ + p?) and the
ith heterozygosity for cow m was computed as f(h)im
=p} p]‘.i + p;jp]?, where p$ and p¢ denote the proportion of breed i or j
in the sire and dam of cow m (Dickerson, 1973; Elzo and Famula,
1985; Koch et al.,, 1985). The an, are the random regression
coefficients for animal additive genetic effects for cow m, the pemy,
are the random regression coefficients for permanent environ-
mental effects for cow m, and ey is the residual associated with
each test-day observation. The z,, represent the nth coefficient of
the log-transformed MIG function for monthly test-day records at
time t for animal m (i.e., Zm = 1, and zy; = ).

The random regression model in matrix notation can be
described using Equation (2):

y=X8+Qg+7Zia+2Zype+e (2)

where y is the vector of In(y/t) of monthly test-day observations on
day t, 8 is a the vector of fixed effects for herd-year-test-day sub-
classes (htm), parity subclasses and fixed regression of milk yield on
days of lactation, g is the vector of fixed cow breed and heterosis
effects, a is the vector of random regression coefficients for animal
additive genetic effects, pe is the vector of random regression co-
efficients for permanent environmental effects, X is the matrix
relating observations to fixed effects, Q is the matrix relating ob-
servations to cow breed effects (through B, H, F, ], and S breed
fractions of the cows) and cow heterosis effects (through F x B,
FxH, ] xB,]xH,SxBandS x H heterozygosity fractions of the
cows). Matrices Z; and Z, are incidence matrices that relate ob-
servations to random regression coefficients for the animal and
permanent environmental effects, respectively; and e is the vector
of residuals. The expected value of y is X8 + Qg. The expected values
of random animal additive genetic, permanent environmental and
residual effects is zero. The variance of the vector of random
regression coefficients for animal additive genetic effects is G®A,
the variance of vector of random regression coefficients for per-
manent environmental effects is P®I and the variance of the vector
of residuals is R = Is2, where G and Pare 2 x 2 matrices of variances
and covariances between random regression coefficients for animal
additive genetic effects and for permanent environmental effects,
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respectively, A is the numerator relationship matrix, I is an identity
matrix, ® is a Kronecker product and ¢2 is the residual variance
common to all monthly test-days. Variance components for addi-
tive genetic and permanent environmental random regression co-
efficients and residual variances were estimated using an Average
Information Restricted Maximum Likelihood (AI-REML) procedure
of the ASREML software (Gilmour et al., 2009).

The additive genetic variance for In(y/t) at test-day i (aﬁ(l.)) was
computed as ”3(1‘) = t;Gt; and the additive genetic covariance
between In(y/t) at test-days i and j oq(ij) as oqij) = t,-Gt]f Similarly,
the permanent environmental variance for In(y/t) at test-day
i(age(i)) was computed as o2, = t;Pt/, and the permanent envi-
ronmental covariance between In(y/t) at test-day i and j (ape(i j)) was
computed as op¢ij) = tiPt]f, where t; is the ith row vector of the
matrix of monthly test-day coefficients of the log-transformed MIG
function (T). The size of matrix T was 10 x 2, where 10 = number of
test-days considered, and 2 = the number of parameters linear log-
transformed MIG function (i.e., intercept and slope). The ith row
vector of T had two values: 1 and t, where t = 30, 60, 90, 120, 150,
180, 210, 240, 270 and 300. Heritabilities (h?) and repeatabilities (r;)
for In(y/t) at test-day i and additive genetic correlations (rg(;))
between In(y/t) at test-days i and j were calculated using Equations

(3)—(5):

“3(:‘)
L 3)
2 2
Taiy T Tpeiy + a2
L %a ety )
T2 12 g2
a(i) pe(i) e
Ta(iyj)
Taij) = — 5 = (5)
%a(i) * a(j)

Permanent environmental and phenotypic correlations were
computed using expressions similar to the one for additive, genetic
correlations but involving permanent environmental and pheno-
typic variances and covariances, respectively. Computations for
estimates of additive genetic, permanent environmental and
phenotypic variances and covariances as well as heritabilities and
repeatabilities were carried out using PROC IML of the Statistical
Analysis System (SAS, 2003).

Results and discussion
Additive genetic, permanent environment, and phenotypic variances

Alog-transformed MIG function was used to model the lactation
trajectory for both the random animal additive genetic and per-
manent environmental effects. Varona et al. (1998) suggested that a
desirable feature of a prediction equation for lactation curves
would be a biological interpretation of the parameters of the curve.
The log-transformed MIG function has two parameters (intercept
and slope), is linear, simple to fit and the parameters have biological
interpretations related to the initial milk yield and the rate of
decline from peak yield. Although more complicated models are
potentially more accurate, parameters for these models would be
harder to estimate (Strabel and Misztal, 1999).

The covariance between the regression coefficients (intercept
and slope) for animal additive genetic effects (1.38 (In(kg/d))?) was
higher than for permanent environmental effects (1.11 (In(kg/d))?)
while the variances for the intercept (4.314 vs. 6.879 (In(kg/d))?)
and slope (0.571 vs. 0.817 (In(kg/d))?) for animal additive genetic
effects were lower than the corresponding variances for permanent

environmental effects. The residual variance was 0.138 (In(kg/d)).
The genetic correlation between the intercept (related to the initial
milk yield) and slope (related to the rate of drop in milk yield after
peak yield) was positive (0.88). The correlation between the
intercept and the slope for animal additive genetic effects (0.88)
was higher than the correlation for permanent environmental ef-
fects (0.47). Both correlations suggested that cows that started their
lactation at a higher level had a faster rate of decline in milk yield
after the peak of lactation (that is, lower persistency of lactation). A
similar genetic correlation (0.48) was found between parameters a
(parameter related to the initial milk yield) and c¢ (parameter
related to the rate of decline from the peak) of the incomplete
gamma function in Spanish Friesian dairy cattle (Varona et al.,
1998). Conversely, Cobuci et al. (2005) found a negative correla-
tion (—0.40) between the parameters for the initial milk yield and
the rate of decrease in the milk yield after the peak of the Wilmink
function in first-parity Holsteins indicating that cows with lower
peak yields tended to have lower declining rates of production (that
is, higher persistency of lactation).

Animal additive genetic, permanent environmental and
phenotypic variances and covariances were estimated for all log-
transformed monthly test-day milk yields (thatis, In(y/t)). Animal
additive genetic variances (0.14—1.00 (In(kg/d))%; Table 1), per-
manent environmental variances (0.54—1.23 (In(kg/d))?; Table 2)
and phenotypic variances (0.82—2.37 (In(kg/d))*: Table 3)
increased as lactation progressed. Thus, the last monthly test-day
(300 d) had the highest estimates of additive genetic, permanent
environmental and phenotypic variances whereas the first test-
day (30 d) had the lowest estimates. Permanent environmental
variances (Table 2) were larger than additive genetic variances
(Table 1) for all monthly test-days indicating that permanent
environmental effects had a higher influence on the variation of
milk yields among cows in this multibreed population than ad-
ditive genetic effects.

Animal additive genetic covariances (0.16—0.92 (In(kg/d))%;
Table 1), permanent environmental covariances (0.49—1.15 (In(kg/
d))?; Table 2) and phenotypic covariances (0.69—2.07 (In(kg/d))%;
Table 3) between different log-transformed monthly test-day milk
yields increased as the interval between test-days increased, except
for the permanent environmental covariance between the first
test-day and the other test-days. The higher phenotypic variances
and covariances in the later test-days could be partly attributed to
breed variation in lactation length and persistency. This population
was composed of cows from different breeds that varied in their
genetic potential for daily milk yield, lactation milk yield, and
lactation length. The Friesian crossbred, Jersey crossbred and
Simmental crossbred cows had higher values for daily milk yield
and lactation milk yield, and longer lactation lengths than the
Horro and Boran. In addition, Horro and Boran cows had lower
persistency than crossbred cows which resulted in higher vari-
ability of phenotypic and genotypic variances and covariances
during the later test-days. The decrease in the number of cows with
records as lactation progressed due to dry off could also have
contributed to higher variances during the later test-days.

Different results have been reported (Strabel et al, 2005;
Zavadilova et al., 2005; El Faro et al.,, 2008) in relation to the
trend in the animal additive genetic, permanent environmental and
phenotypic variances. Higher genetic and permanent environ-
mental variances for particular days in milk at the beginning and at
the end of lactation were reported for Czech Holstein cattle
(Zavadilova et al., 2005) and Polish Black and White cattle (Strabel
et al, 2005). Conversely, higher phenotypic, animal additive
genetic, permanent environmental and residual variances at the
beginning of the lactation that decreased thereafter were reported
by El Faro et al. (2008).
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Table 1
Additive genetic variances (bold diagonal; (In(kg/d))?) and covariances (below diagonal; (In(kg/d))?) for log-transformed, monthly test-day, milk yields (In(y/t)).

Monthly test-day Monthly test-day

30 60 90 120 150 180 210 240 270 300

30 0.14

60 0.16 0.18

90 0.17 0.20 0.23

120 0.19 0.23 0.27 0.30

150 0.21 0.25 0.30 0.34 0.38

180 0.22 0.28 0.33 0.38 043 048

210 0.24 0.30 0.36 0.42 0.47 0.53 0.59

240 0.26 0.32 0.39 0.45 0.52 0.58 0.65 0.71

270 0.27 0.35 0.42 0.49 0.56 0.63 0.71 0.78 0.85

300 0.29 0.37 045 0.53 0.61 0.69 0.76 0.84 0.92 1.00
Table 2

Permanent environmental variances (bold diagonal; (In(kg/d))?) and covariances (below diagonal; (In(kg/d))?) for log-transformed, monthly test-day, milk yields (In(y/t)).

Monthly test-day

Monthly test-day

30 60 90 120 150 180 210 240 270 300
30 0.54
60 0.54 0.54
90 0.53 0.54 0.56
120 0.52 0.55 0.57 0.59
150 0.52 0.55 0.58 0.62 0.65
180 0.51 0.55 0.60 0.64 0.68 0.73
210 0.50 0.56 0.61 0.66 0.72 0.77 0.82
240 0.50 0.56 0.63 0.69 0.75 0.81 0.88 0.94
270 0.49 0.57 0.64 0.71 0.78 0.86 0.93 1.00 1.08
300 0.49 0.57 0.65 0.74 0.82 0.90 0.98 1.07 1.15 1.23
Table 3

Phenotypic variances (bold diagonal; (In(kg/d))?) and covariances (below diagonal; (In(kg/d))?) for log-transformed, monthly test-day, milk yields (In(y/t)).

Monthly test-day

Monthly test-day

30 60 90 120 150 180 210 240 270 300
30 0.82
60 0.69 0.86
90 0.70 0.75 0.93
120 0.71 0.77 0.84 1.03
150 0.72 0.80 0.88 0.96 117
180 0.74 0.83 0.92 1.02 1.11 135
210 0.75 0.86 0.97 1.08 1.19 1.30 1.55
240 0.76 0.88 1.01 1.14 1.27 1.40 1.53 1.79
270 0.77 0.91 1.06 1.20 1.35 1.49 1.64 1.78 2.06
300 0.78 0.94 1.10 1.26 1.42 1.59 1.75 1.91 2.07 237

The lower variance at the beginning of lactation (Fig. 1) could be
partly attributed to the variety of lactation curve functions used for
random regression models. The log-transformed MIG function
here, the incomplete gamma function in Varona et al. (1998), and
the Wilmink function in Cobuci et al. (2005) resulted in different
variances and covariances. Similarly, a comparison made between a
random regression model with both random and fixed regressions
fitted by Legendre polynomials and linear splines for production
traits in Canadian Holstein cows resulted in lower estimates of
variances at the extremes of the lactation for models with splines
than with Legendre polynomials (Bohmanova et al., 2008). The
stage that is most difficult to fit in a lactation curve is the period
from calving to peak. After the peak yield, the curve is almost linear
requiring only a rate of drop from peak yield to the end of lactation.
The higher genetic, permanent environmental and phenotypic
variances at the beginning of lactation reported in various studies
(Cobuci et al., 2005; Strabel et al., 2005; Zavadilova et al., 2005; El
Faro et al., 2008) could be attributed to problems in goodness of fit
of functions during the early stages of a lactation. Here, the

Fig. 1. Additive genetic, permanent environmental and phenotypic variances for log-
transformed monthly test-day, milk yields (In(y/t)).
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population had shorter days to peak and the MIG function provided
the best fit to the data which resulted in lower variances at the
beginning of the lactation.

The residual variance was assumed to be constant (0.137 kg?)
during lactation. In agreement with the present study, Cobuci et al.
(2005) also considered a constant residual variance. Use of a con-
stant variance simplified the model. Olori et al. (1999) indicated that
when the residual variance was assumed to be constant, its estimate
was approximately the mean of the estimates obtained by allowing
the residual variance to vary. However, Bignardi et al. (2011) re-
ported that models containing a homogeneous residual variance
provided the worst fit irrespective of the parametric functions used
to model random effects. Both studies (Olori et al., 1999; Bignardi
et al., 2011) suggested the need for a heterogeneous variance
structure for the residual effect because the residual variance tended
to differ during lactation. Thus, although the heritabilities and re-
peatabilities obtained here were in agreement with other studies in
the literature, future research in Ethiopia should consider random
regression models with heterogeneous residual variances.

Heritabilities, repeatabilities and genetic, permanent environmental
and phenotypic correlations

Heritability estimates for In(y/t) ranged from 0.17 for the first
test-day recorded 30-d after calving to 0.42 for the last test-day
recorded 300 d after calving (Table 4, Fig. 2). Similar ranges of
heritability estimates for test-day milk yields using random
regression models were obtained in Czech Holstein model
(0.13—0.52; Zavadilova et al., 2005) and England (0.31—0.51; Olori
et al, 1999). However, the heritabilities estimated here were
higher than those reported for first lactation (0.14—0.19) and sec-
ond lactation (0.10—0.16) Polish Black and White cattle (Strabel and
Misztal, 1999).

Considerable variation in heritability estimates have been re-
ported in the literature due to differences in populations, methods of
analysis and especially how the trait was defined (Machado et al.,
1999). The values of genetic parameters estimated with random
regression models are influenced by the regression functions and
the covariance structure of animal additive genetic, permanent
environmental and residual effects (Bignardi et al., 2011). The higher
heritability estimates for In(y/t) (0.17—0.42) obtained here could be
partly attributed to a high degree of genetic variation in this mul-
tibreed population. Genetic variances were expected to be higher in
a mixed population of Boran, Horro, Friesian crossbreds, Jersey
crossbreds and Simmental crossbreds than in a single-breed popu-
lation. The longer lactation lengths of Friesian crossbred, Jersey
crossbreed and Simmental crossbred cows (Gebreyohannes et al.,
2012) relative to Boran and Horro cows may have increased the
genetic variation for monthly test-day milk yields in this population
resulting in higher heritability estimates throughout lactation.

Table 4

Fig. 2. Heritability and repeatability estimates of for log-transformed monthly test-
day, milk yields (In(y/t)).

The monthly test-day milk yield is defined as the milk yield
recorded at monthly intervals starting soon after calving. However,
research studies have used different test-day intervals. For
example, El Faro et al. (2008) used weekly test-days whereas
Gengler et al. (1999) defined four lactation stages of 75 d each,
starting on day 6 and the test-day that was nearest to the center of
the lactation stage (d 43, 118, 193, or 268) was retained. These
variations in the definition of test-day resulted in heritability esti-
mates ranging from 0.09 (12th week) to 0.32 (42nd week) with
higher estimates at the end of lactation for native Brazilian Caracu
heifers (EI Faro et al. 2008) and mean heritability estimates of 0.19
for Holstein Friesian cows (Gengler et al., 1999).

The 30 d uniform test-day interval in the present study resulted
in heritability estimates for In(y/t) ranging from 0.17 to 0.42. These
heritabilities suggested that this multibreed population would be
able to be genetically improved by selection. Swalve (1995) noted
that yields defined as the average yield in a standardized 30 d in-
terval resulted in higher estimates of heritability than for a non-
standardized interval due to lower residual variance estimates.
The use of standardized intervals can remove some of the problems
that arise when different intervals between test-days are used,
especially between calving and the first test-day (Swalve, 1995).

Although the trend in heritability estimates for In(y/t) showed a
steady increase from the first to the last test-day (Table 4; Fig. 1),
three different trends over test-days have been reported in the
literature, with an increase in heritability with an increase in test-
day (Gengler et al., 1999; Cubuci et al., 2005; Zavadilova et al., 2005;
Guzzo et al., 2009), lower heritability at the beginning and end of
lactation and higher in the middle of the lactation (Takma and
Akbas, 2007; Nazari et al.,, 2010) and lower heritability at the
peak of lactation, increasing toward the middle of the second part

Heritabilities (bold diagonal), genetic correlations (above diagonal) and phenotypic correlations (below diagonal) for monthly test-day, milk yields.

Monthly test-day Monthly test-day

30 60 90 120 150 180 210 240 270 300
30 0.17 0.99 0.96 0.92 0.89 0.86 0.84 0.81 0.79 0.78
60 0.83 0.21 0.99 0.97 0.95 0.93 0.92 0.90 0.88 0.87
90 0.81 0.84 0.25 1.00 0.98 0.97 0.96 0.95 0.94 0.93
120 0.78 0.82 0.85 0.29 1.00 0.99 0.98 0.97 0.97 0.96
150 0.74 0.80 0.84 0.87 0.33 1.00 0.99 0.99 0.98 0.98
180 0.70 0.77 0.83 0.86 0.89 0.36 1.00 1.00 0.99 0.99
210 0.66 0.74 0.81 0.85 0.88 0.90 038 1.00 1.00 0.99
240 0.62 0.71 0.78 0.84 0.88 0.90 0.91 0.40 1.00 1.00
270 0.59 0.69 0.76 0.82 0.87 0.89 0.91 0.93 041 1.00
300 0.56 0.66 0.74 0.81 0.85 0.89 0.91 093 0.94 042
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Table 5

Repeatabilities (bold diagonal) and permanent environmental correlations (below diagonal) for monthly test-day, milk yields.

Monthly test-day Monthly test-day

30 60 90 120 150 180 210 240 270 300
30 0.84
60 0.99 0.85
90 0.96 0.99 0.85
120 0.92 0.97 0.99 0.87
150 0.87 0.93 0.97 0.99 0.88
180 0.81 0.89 0.94 0.98 0.99 0.90
210 0.76 0.84 0.90 0.95 0.98 1.00 0.91
240 0.70 0.79 0.86 0.92 0.96 0.98 1.00 0.92
270 0.65 0.74 0.83 0.89 0.94 0.97 0.99 1.00 0.93
300 0.60 0.70 0.79 0.86 091 0.95 0.98 0.99 1.00 0.94

of the lactation, and then dropping to rise again at the end (Strabel
and Misztal, 1999). Nazari et al. (2010) in their study of first lacta-
tion Najdi cattle using test-day milk data obtained a lower herita-
bility estimate for milk yield at the beginning (0.15) of the lactation
and increased towards the middle of the lactation, reached a
maximum (0.34) in the fifth month of lactation and then decreased
toward the end of the lactation. Strabel and Misztal (1999) reported
heritabilities ranging from 0.13 to 0.17 for most of the lactation, but
they approached 0.20 at the end of lactation from a single-parity
model. Cobuci et al. (2005) reported an increase in heritability es-
timates for test-day milk yields (0.14—0.31) as the first lactation
progressed in Holsteins. However, Guzzo et al. (2009) reported
heritability values ranging from 0.15 to 0.34 with lower values at
the beginning and end of the lactation in the Rendena breed. The
lower heritability estimated during the first test-day in the current
study agreed with the reports of Gengler et al. (1999) and Guzzo
et al. (2009), but the higher heritability at the last test-day con-
tradicted the report of Machado et al. (1999) who found higher
heritabilities during mid-lactation (0.24—0.32). Similarly, Takma
and Akbas (2007) reported higher heritability estimates for test-
day milk yields in the middle of the lactation (0.07—0.32).

Repeatabilities for In(y/t) showed a trend similar to heritabilities
for In(y/t) with a slight increase with the advance of lactation,
primarily due to increases in both the animal additive genetic and
permanent environmental variances (Table 5; Fig. 2). El Faro et al.
(2008) attributed the higher estimates of heritability at the
beginning and toward the end of the lactation to difficulties in
modeling the variances at the extremes of the lactation partly due
to the biological processes that occur at the beginning of lactation
and the smaller number of records at the end. For Zebu and tropical
native breeds, both reasons can be even more important. In general,
these animals have not been as intensively selected for milk pro-
duction as Holsteins and population sizes are smaller. In addition, it
is usually necessary to keep the calf with the dam during milking
and short lactations are frequent.

Additive genetic correlations between In(y/t) in consecutive
test-days ranged from 0.78 to 1.00 and decreased as intervals be-
tween test-days increased. The lowest genetic correlation (0.78)
was observed between the first and last test-day (Table 5). Higher
additive genetic correlations for milk yields between consecutive
test-days and lower as test-day intervals increased were also found
in cattle populations in Turkey (Takma and Akbas, 2007), New
Zealand (Vanderick et al., 2009), and Brazil (Bignardi et al., 2011).

Permanent environmental correlations (0.60—1.00; Table 5) and
phenotypic correlations (0.56—94; Table 4, below diagonal) were
consistently equal or lower than genetic correlations (0.78—1.00;
Table 4, above diagonal) for In(y/t) across all test-days. However,
genetic, permanent environmental and phenotypic correlations for
In(y/t) showed similar trends throughout the lactation. Correlations
between In(y/t) from adjacent test-days were higher than from

non-adjacent test-days (Tables 4 and 5), in agreement with several
studies (Olori et al., 1999; Cobuci et al., 2005; Zavadilova et al.,
2005; Takma and Akbas, 2007). Also in agreement with these
studies, the high, positive genetic correlations observed in this
population, even at the extremes of the lactation trajectory, sug-
gested that selection for increased milk yield in early lactation
would have a positive effect on yield in late lactation. However,
other researchers (El Faro et al., 2008; Bignardi et al., 2011) reported
negative genetic correlations between the initial and final test-days
for some of the models they compared and attributed this to the
difficulty of modeling the initial test-days milk yields of lactation.

This research showed that a random regression, animal repeat-
ability model using a log-transformed, modified, incomplete gamma
function to account for random additive genetic and permanent
environment effects yielded reasonable estimates of heritabilities,
repeatabilities, genetic, permanent environmental and phenotypic
correlations. This random regression, animal repeatability model
could be used as an initial model for the implementation of a genetic
improvement program in this multibreed Ethiopian dairy cattle
population. Future research in Ethiopia should consider records
from different parities as multiple traits and account for the het-
erogeneity of residual variances and covariances.
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