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INTRODUCTION 
 
Genomic information has been widely used in livestock 

research and has come to play an important role in the 
characterization and evaluation of dairy cattle. Genomic 
selection utilizes genomic information to increase the rate of 
genetic progress in dairy populations (VanRaden et al., 2009; 
de Roos et al., 2011). Using high density chips to obtain 
genomic information will increase the effectiveness of 
genomic selection (VanRaden et al., 2011; Mulder et al., 
2012), but genotyping costs may be prohibitively high for 

most dairy producers. Thus, genotyping companies have 
produced genotyping chips of lower densities and lower cost 
to increase their affordability and their use by dairy 
producers. Genotypic information from lower density chips 
is subsequently imputed to a higher density chip before using 
it for animal genomic evaluation. This approach has 
drastically reduced genotyping costs compared to using only 
high density chips. In dairy cattle, genotype imputation is 
regularly utilized in many countries, and several software 
packages have been developed for this purpose. These 
software packages have yielded imputation accuracies 
ranging from 81% to 97% from low to moderate densities 
(Druet et al., 2010; Johnston et al., 2011; Ma et al., 2013; 
Weng et al., 2013), and from 84% to 99% from low to high 
densities in dairy cattle populations (Ma et al., 2013; Larmer 
et al., 2014; Pryce et al., 2014; He et al., 2015).  
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ABSTRACT: The objective of this study was to investigate the accuracy of imputation from low density (LDC) to moderate density 
SNP chips (MDC) in a Thai Holstein-Other multibreed dairy cattle population. Dairy cattle with complete pedigree information (n = 1,244) 
from 145 dairy farms were genotyped with GeneSeek GGP20K (n = 570), GGP26K (n = 540) and GGP80K (n = 134) chips. After checking 
for single nucleotide polymorphism (SNP) quality, 17,779 SNP markers in common between the GGP20K, GGP26K, and GGP80K were 
used to represent MDC. Animals were divided into two groups, a reference group (n = 912) and a test group (n = 332). The SNP markers 
chosen for the test group were those located in positions corresponding to GeneSeek GGP9K (n = 7,652). The LDC to MDC genotype 
imputation was carried out using three different software packages, namely Beagle 3.3 (population-based algorithm), FImpute 2.2 
(combined family- and population-based algorithms) and Findhap 4 (combined family- and population-based algorithms). Imputation 
accuracies within and across chromosomes were calculated as ratios of correctly imputed SNP markers to overall imputed SNP markers. 
Imputation accuracy for the three software packages ranged from 76.79% to 93.94%. FImpute had higher imputation accuracy (93.94%) 
than Findhap (84.64%) and Beagle (76.79%). Imputation accuracies were similar and consistent across chromosomes for FImpute, but not 
for Findhap and Beagle. Most chromosomes that showed either high (73%) or low (80%) imputation accuracies were the same 
chromosomes that had above and below average linkage disequilibrium (LD; defined here as the correlation between pairs of adjacent 
SNP within chromosomes less than or equal to 1 Mb apart). Results indicated that FImpute was more suitable than Findhap and Beagle 
for genotype imputation in this Thai multibreed population. Perhaps additional increments in imputation accuracy could be achieved by 
increasing the completeness of pedigree information. (Key Words: Imputation Accuracy, Linkage Disequilibrium, Multibreed Dairy 
Cattle) 
 

Copyright © 2016 by Asian-Australasian Journal of Animal Sciences 
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), 

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Corresponding Author: Skorn Koonawootrittriron. Tel: +66-2-
5791120, Fax: +66-2-5791120, E-mail: agrskk@ku.ac.th 
1 Department of Animal Sciences, University of Florida, 
Gainesville, FL 32611-0910, USA. 

Submitted Apr. 2, 2015; Revised Jul. 31, 2015; Accepted Aug. 24, 2015 



Jattawa et al. (2016) Asian Australas. J. Anim. Sci. 29:464-470 

 

465

Dairy cattle have been routinely evaluated in Thailand 
with mixed model procedures that use phenotypic and 
pedigree information since the late 1990’s (DPO, 1997; 
Koonawootrittriron et al., 2015). In April 2012, the National 
Science and Technology Development Agency of Thailand 
approved a project to develop a national genomic-polygenic 
evaluation system (Koonawootrittriron et al., 2012). The aim 
of this project is to develop and implement genomic-
polygenic evaluation strategies suitable for the Holstein-
Other multibreed dairy cattle population in Thailand. This 
population was created using a grading-up mating strategy 
towards Holstein starting from animals of various breeds 
(Brahman, Jersey, Brown Swiss, Red Dane, Red Sindhi, 
Sahiwal and Thai Native). Currently, 93% of the population 
is at least 75% Holstein. Budgetary restrictions determined 
animals in the Thai Holstein-Other multibreed population to 
be genotyped with high, medium, and low density 
genotyping chips. This created the need to identify a program 
capable of imputing genotypes with high accuracy in the 
Thai multibreed population. However, imputation algorithms 
and software packages have been primarily tested in 
purebred dairy populations, but animals in the Thai 
multibreed population, although mostly Holstein, contained 
fractions of up to 7 other breeds (average 3 breeds per animal; 
Koonawootrittriron et al., 2009; Ritsawai et al., 2014). 
Further, research has shown that the accuracy of imputation 
depends on population structure as well as the algorithms 
used (Johnston et al., 2011; Larmer et al., 2014), and that 
accuracy of imputation will affect the reliability of genomic 
predictions (Khatkar et al., 2012; Mulder et al., 2012). Thus, 
the objective of this research was evaluate the accuracy of 
three population-based and combined family- and 
population-based software programs to impute single 
nucleotide polymorphism (SNP) markers to identify the most 
appropriate for the Thai Holstein-Other multibreed dairy 
cattle population.  

 
MATERIALS AND METHODS 

 
Animals and genotypes 

A total of 1,244 animals from the Thai multibreed dairy 
population (84 sires and 1,160 cows) were used in this study. 
All sires and 50 highly related cows were genotyped with 
GeneSeek Genomic Profiler 80K chip (GGP80K; GeneSeek, 
Lincoln, NE, USA). The remaining cows were genotyped 
with GeneSeek Genomic Profiler 20K (GGP20K; n = 570 
cows) and GeneSeek Genomic Profiler 26K (GGP26K; n = 
540 cows). Sires were born between 1993 and 2009 and they 
were widely used for artificial insemination in the population. 
Cows were from 145 farms, born between 2000 and 2011, 
and had their first lactation between 2003 and 2014. Nearly 
all animals (97%) were crossbred with fractions of Holstein 

(H) and fractions of up to 7 other breeds (Brahman, Jersey, 
Brown Swiss, Red Dane, Red Sindhi, Sahiwal, and Thai 
Native). Ninety three percent of all animals, 96% of all sires, 
and 86% of all dams were between 75% and 100% Holstein. 
These high Holstein percentages in animals, sires, and dams 
were the result of the Holstein upgrading program used to 
create the Thai Holstein-Other multibreed dairy cattle 
population. 

All SNP markers that were not located on autosomes 
were eliminated. The numbers of autosomal SNP markers per 
chip were 74,672 for the GGP80K, 24,572 for the GGP26K, 
and 18,593 for the GGP20K. To assess imputation accuracy, 
only SNP markers in common (name, chromosome, and 
position) among the GGP80K, GGP26K, and GGP20K chips 
were used. Unfortunately, the number of autosomal SNP 
markers in common among these three chips was only 8,671. 
However, there were 1,110 animals genotyped with GGP26K 
and the GGP20K that had 18,129 autosomal SNP markers in 
common. Therefore, 9,458 autosomal SNP markers not 
present in the GGP80K were imputed for the 134 animals 
genotyped with GGP80K based on 18,129 reference SNP 
markers from 1,110 cows genotyped with GGP26K and 
GGP20K using the combined family- and population-based 
option of FImpute 2.2 (Sargolzaei et al., 2014). This was 
done to increase the family ties among the remaining 1,110 
cows in the dataset (animals genotyped with GGP80K were 
highly related to other animals in the population), which 
would help increase imputation accuracy. Subsequently, call 
rates and minor allele frequencies (MAF) were recalculated, 
and SNP markers with a MAF lower than 0.01 or a call rate 
lower than 0.9 were eliminated. After these quality checks, 
17,779 SNP markers were kept to represent the moderate 
density chip (MDC).  

The set of 1,244 genotyped animals were the progeny of 
331 sires and 1,067 dams. Of these 1,244 animals, 1,133 had 
both the sire and dam identified, 108 had the sire identified 
only, and 3 had neither the sire nor the dam identified. To 
evaluate the imputation accuracy, the set of 1,244 animals 
were sorted by year of birth and assigned to two groups: a 
reference group (animals born before 2010; n = 912) and a 
test group (animals born in or after 2010; n = 332). All SNP 
markers (n = 17,779) were considered for the reference group, 
whereas animals in the test group were assumed to have been 
genotyped only for the subset of SNP contained in the 
GeneSeek Genomic Profiler 9K chip (LDC; n = 7,652 SNP 
markers). 

 
Imputation algorithm and accuracy 

Genomic imputation was performed using three different 
software packages, namely Beagle 3.3 (Browning and 
Browning, 2009), FImpute 2.2, and Findhap 4 (VanRaden 
and Sun, 2014). These three software packages were chosen 
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because they had been found to have high imputation 
accuracies in cattle populations (Johnston et al., 2011; Sun et 
al., 2012; Ma et al., 2013).  

Beagle relies on a population-based algorithm that 
assumes all animals to be unrelated. It uses a hidden Markov 
model for constructing haplotypes and imputing unknown 
genotypes (Browning and Browning, 2009). FImpute and 
Findhap use a combined family- and population-based 
algorithms for phasing haplotypes and imputing unknown 
genotypes (VanRaden et al., 2011; Sargolzaei et al., 2014). 
FImpute uses pedigree information first to impute unknown 
genotypes using known relationships among animals. Then, 
it uses a population-based algorithm (overlapping sliding 
windows) to find shared haplotype segments, under the 
assumption that all animals are related to each other. This 
process finds from long to short shared haplotypes to capture 
as many as haplotypes from close to far relatives. Shared 
haplotypes are used to impute unknown genotypes 
(Sargolzaei et al., 2014). Findhap divides each chromosome 
into short segments before constructing reference haplotypes. 
Reference haplotypes are assigned to a haplotype library and 
sorted from most to least frequently found. Haplotypes from 
target animals are searched to match haplotypes in the library 
and then matched haplotypes are used to fill unknowns. 
Pedigree information is utilized to trace matching haplotypes 
for animals with known relationships (VanRaden et al., 2011). 

The three imputation programs were run using the 
recommended default parameter settings. After completing 
the imputation process, imputed genotypes were compared 
to the actual genotypes. Imputation accuracies was assessed 
within and across chromosomes using the concordance rate 
(Piccoli et al., 2014) computed as the ratio of correctly 
imputed SNP markers to overall imputed SNP markers across 
the 332 animals in the test group. Missing SNP markers in all 
animals were excluded from accuracy computations. 

 
Relationship between linkage disequilibrium and 
imputation accuracy 

Linkage disequilibria among SNP genotypes in the 
reference group were computed as correlation coefficients (r2) 
between pairs of loci within chromosomes that were less than 
or equal to 1 Mb apart. The r2 values were estimated using 
Haploview 4.2 (Barrett et al., 2005). The average linkage 
disequilibrium (LD) of an SNP was calculated as the average 
of all LD values between this SNP and all SNP within 1 Mb 
from it. Average LD of imputed SNP markers was plotted 

against their imputation accuracies to examine the 
relationship between LD and imputation accuracy. 

 
RESULTS AND DISCUSSION 

 
Imputation accuracy 

Table 1 shows imputation accuracies from LDC to MDC 
for the three software packages. FImpute had the highest 
imputation accuracy (93.94%), Findhap was second 
(84.64%), and the least accurate was Beagle (76.79%). 
FImpute and Findhap utilize pedigree information for 
constructing haplotypes and imputing unknown genotypes, 
whereas Beagle does not require this information (Browning 
and Browning, 2009; VanRaden et al., 2011; Sargolzaei et al., 
2014). Thus, results here showed that pedigree information 
was useful for improving imputation accuracy in this Thai 
multibreed dairy population. This agreed with the finding 
that when imputing from low to MDCs, pedigree information 
is important to achieve high imputation accuracy, especially 
when reference populations are small (Sargolzaei et al., 
2014). Pedigree information may help to more accurately 
trace shared haplotype segments between reference and test 
animals before they are used to impute unknown genotypes 
(Kong et al., 2008; Hayes et al., 2012). However, the 
importance of pedigree information may decrease when 
using a large reference population with high-density 
genotypic information (Ma et al., 2013; Larmer et al., 2014; 
Sargolzaei et al., 2014).  

The higher imputation accuracies obtained here for the 
combined family- and population-based algorithms than for 
population-based algorithm were in agreement with previous 
studies in various dairy cattle populations. FImpute and 
Findhap outperformed Beagle in Norwegian Holstein 
(Johnston et al., 2011) and Chinese Holstein (He et al., 2015). 
FImpute outperformed Beagle in Holstein (Sargolzaei et al., 
2014) and Guernsey and Ayrshire populations (Larmer et al., 
2014). Conversely, Beagle outperformed FImpute and 
Findhap in Swedish and Finnish Red cattle (Ma et al., 2013). 
Beagle accounts for genomic family relationships between 
reference and test animals using shared haplotype segments, 
thus the longer the shared haplotype segment the stronger the 
genomic relationship between animals and the higher the 
imputation accuracy (Browning and Browning, 2009; Ma et 
al., 2013). Conversely, pedigree errors decrease the accuracy 
of family-based algorithm (Sargolzaei et al., 2014). Thus, 
perhaps strong genomic relationships or pedigree errors may 

Table 1. Imputation accuracy using Beagle, FImpute, and Findhap 

Software Algorithm Total number of Imputed SNP Number of correctly imputed SNP Accuracy 

Beagle Population – based 3,296,330 2,531,228 76.79 

FImpute Family+population – based 3,296,330 3,096,580 93.94 

Findhap Family+population – based 3,296,330 2,790,041 84.64 

SNP, single nucleotide polymorphism. 
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have contributed to the advantage of Beagle over FImpute in 
the Swedish and Finnish Red cattle populations. 

This study showed that combined family- and 
population-based algorithms (FImpute and Findhap) 
performed acceptably in the Thai dairy cattle population 
(over 80% correctly imputed SNP). However, imputation 
accuracy was 9.3% higher for FImpute than Findhap. This 
superiority of FImpute over Findhap may have been due to a 
more effective utilization of short haplotype segments to 
account for genomic relationships among animals in the 
reference and test subpopulations. The Thai dairy population 
is multibreed, thus shared haplotypes among animals are 
likely to be short (Ventura et al., 2014). FImpute uses an 
overlapping sliding window algorithm to more efficiently 
capture short shared haplotypes (Sargolzaei et al., 2014). 
This algorithm likely helped FImpute compute genomic 
relationships more accurately resulting in higher imputation 
accuracies than Findhap in this population. Lastly, an 
advantage of both FImpute and Findhap over Beagle is that 
these two programs can impute ungenotyped animals if 
strong relationships among genotyped and non-genotyped 
animals existed (VanRaden et al., 2011; Sargolzaei et al., 
2014). Imputing ungenotyped animals would help increase 
the accuracy of genomic evaluation in a population.  

Imputation accuracies obtained here with the three 
programs used in this population were lower than accuracies 
found for other dairy populations. The accuracy reported for 
imputation from low to MDCs ranged from 92.0% to 96.5% 
for Beagle (Johnston et al., 2011; Ma et al., 2013; Weng et 
al., 2013), 95.0% to 96.8% for FImpute (Johnston et al., 2011; 
Ma et al., 2013), and 89.0% to 95.9% for Findhap (Johnston 
et al., 2011; Ma et al., 2013). Shared haplotype segments 
among animals in multibreed populations are likely to be 
shorter than in purebred populations (Ventura et al., 2014; Fu 
et al., 2015). As previously explained, the Thai multibreed 
population is composed of Holstein and seven other Bos 

taurus and Bos indicus breeds. Thus, the lower accuracies 
obtained here may have been due to lower number and 
shorter shared haplotype segments among animals in the 
reference and test populations than populations used to 
assess imputation accuracy elsewhere (mostly animals of a 
single breed). The small reference population size could be 
one other reason for this low accuracy. Several studies have 
shown that increasing the number of animals in the reference 
population can increase imputation accuracy (Druet et al., 
2010; Zhang and Druet, 2010; Khatkar et al., 2012). 
Although somewhat lower than in purebred populations, the 
relatively high imputation accuracy of FImpute here 
suggested that this would be the imputation program of 
choice for the Thai multibreed population. 

Imputation accuracy was also computed within the 29 
autosomal chromosomes (Figure 1). Accuracies were similar 
and consistent across chromosomes for FImpute, but not for 
Findhap and Beagle. Among the 29 chromosomes, 
imputation accuracies ranged from 92.02% to 95.21% for 
FImpute, 78.70% to 87.94% for Findhap, and 71.82% to 
84.09% for Beagle. Thus, FImpute showed higher and more 
consistent levels of imputation accuracy across 
chromosomes than Findhap and Beagle. The higher within-
chromosome and whole-genome imputation accuracies 
obtained with FImpute indicated that this program was the 
most suitable of the three programs evaluated here for the 
Thai multibreed population. Further, the accuracy levels 
obtained with FImpute suggested that it could help improve 
the accuracy of genomic evaluation in Thai dairy cattle. 

 
Relationship between linkage disequilibrium and 
imputation accuracy 

The average LD (r2) across 29 chromosomes estimated 
using MDC genotypic information (17,779 SNP) from 
animals in the reference group was 0.069. The highest 
average LD were obtained in chromosome 5 (r2 = 0.124), and 

 

Figure 1. Imputation accuracy within the 29 autosomal chromosomes using Beagle, FImpute, and Findhap. 
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the lowest average LD occurred in chromosome 28 (r2 = 
0.047; Figure 2). The distribution of average LD for 
individual SNP (Figure 3) shows that most SNP markers 
(84%) had low levels of average LD (smaller than 0.10).  

Imputation accuracy was found to be affected by the level 
of LD (Hickey et al., 2012; Pimentel et al., 2013). The higher 
the LD population has the higher the imputation accuracy. 
Results here agreed with these studies. Most chromosomes 
(73%) that had higher than average imputation accuracy 
(chromosomes 1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 24) also had higher 
than average LD (chromosomes 1, 2, 3, 5, 7, 9, 13, 14). 
Conversely, most chromosomes (80%) that had lower than 
average imputation accuracy (chromosomes 17, 18, 19, 22, 
23, 25, 26, 27, 28, 29) also had lower than average LD 
(chromosomes 17, 18, 22, 25, 26, 27, 28, 29). Thus, low 
average LD appeared to have decreased the ability of the 
imputation programs used here to find shared haplotypes, 

resulting in lower imputation accuracies. However, many 
SNP markers (30% for FImpute and Findhap and 33% for 
Beagle) that had below average LD had above average 
imputation accuracies (Figure 4). Thus, discarding SNP with 
below average LD would likely be ineffective to increase 
imputation accuracy. Alternatively, increasing the number of 
pedigree ties between the reference and test populations as 
well as increasing the number of animals in the reference 
population would likely be more effective to improve 
imputation accuracy (Druet et al., 2010; Zhang and Druet, 
2010; Sargolzaei et al., 2014). 

 
CONCLUSION 

 
Accuracy of imputation from LDC to MDC in the Thai 

multibreed dairy cattle population ranged from 76.79% to 
93.94%. FImpute (combined family- and population-based 

 

Figure 3. Distribution of average SNP linkage disequilibria (LD; correlation coefficient; r2) for SNP within 1 Mb of each other. SNP, single

nucleotide polymorphism. 

 

Figure 2. Average linkage disequilibrium (correlation coefficient; r2) between adjacent single nucleotide polymorphism makers separated by at 

most 1 Mb within each autosome.  
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algorithms; Accuracy = 93.94%) outperformed Findhap 
(combined family- and population-based algorithms; 
Accuracy = 84.64%) and Beagle (population-based 
algorithm; Accuracy = 76.79%). Imputation accuracies were 
similar and consistent across chromosomes for FImpute, but 
not for Findhap and Beagle. Increasing pedigree ties between 
reference and test populations and increasing size of the 
reference population will likely help improve imputation 
accuracy. 
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