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Abstract 26 

This study corresponds to the second part of a companion paper devoted to the development of 27 

Bayesian multiple regression models accounting for randomness of genotypes in across population 28 

genome-wide prediction. This family of models considers heterogeneous and correlated marker 29 

effects and allelic frequencies across populations, and has the ability of considering records from 30 

non-genotyped individuals and individuals with missing genotypes in any subset of loci without the 31 

need for previous imputation, taking into account uncertainty about imputed genotypes. This paper 32 

extends this family of models by considering multivariate spike and slab conditional priors for 33 

marker allele substitution effects and contains derivations of approximate Bayes factors and 34 

fractional Bayes factors to compare models from part I and those developed here with their null 35 

versions. These null versions correspond to simpler models ignoring heterogeneity of populations, 36 

but still accounting for randomness of genotypes. For each marker loci, the spike component of 37 

priors corresponded to point mass at 0 in ℝ𝒮, where 𝒮 is the number of populations, and the slab 38 

component was a 𝒮-variate Gaussian distribution, independent conditional priors were assumed. For 39 

the Gaussian components, covariance matrices were assumed to be either the same for all markers or 40 

different for each marker. For null models, the priors were simply univariate versions of these finite 41 

mixture distributions. Approximate algebraic expressions for Bayes factors and fractional Bayes 42 

factors were found using the Laplace approximation. Using the simulated datasets described in part I, 43 

these models were implemented and compared with models derived in part I using measures of 44 

predictive performance based on squared Pearson correlations, Deviance Information Criterion, 45 

Bayes factors, and fractional Bayes factors. The extensions presented here enlarge our family of 46 

genome-wide prediction models making it more flexible in the sense that it now offers more 47 

modeling options. 48 
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1. Introduction 51 

The scenario of across population genome-wide prediction accounting for randomness of genotypes 52 

was addressed in part I of our series of studies. There, we adopted a hierarchical Bayesian modeling 53 

strategy to accommodate heterogeneous and correlated marker effects across subpopulations and 54 

random genotypes. In that companion paper we provided a detailed derivation of the joint pmf of the 55 

genotypes conditional on pedigree information and allelic frequencies and also discussed some of its 56 

properties. Furthermore, the flexibility of hierarchical Bayesian modeling allowed us to account for 57 

heterogeneous and correlated allelic frequencies. The “MG-GBLUP” model proposed by Lehermeir 58 

et al. (2015) is similar to the models developed in part I of this study, except that they did not 59 

consider randomness of genotypes. In addition, they did not consider models with different 60 

(heterogeneous) covariance matrices of marker effects. One of the main properties of our models is 61 

that individuals with phenotypic records and missing genotypes at any subset of loci (including non-62 

genotyped individuals) can be considered in the analysis without previous imputation. Furthermore, 63 

due to the use of a Bayesian approach, uncertainty about imputed genotypes is automatically taken 64 

into account.  65 

The so called “spike and slab” priors, are finite mixtures of a continuous distribution (the slab) and a 66 

mass point at some constant (the spike) (Mitchell and Beauchamp, 1988). A particular case of these 67 

priors are the zero-inflated priors which have point mass at zero. This sort of priors has been used in 68 

high dimensional problems to induce a stronger shrinkage and perform variable selection. In single 69 

population analyses, it has been reported that when there are genes with major effects controlling the 70 

trait under study or the number of genes controlling the trait is low, Bayesian variable selection 71 

models tend to perform better (Daetwyler et al., 2012; Heslot et al., 2012; Gianola and Rosa, 2015). 72 

In the case of multiple population analyses, van den Berg et al. (2015) studied scenarios under which 73 
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Bayesian variable selection models outperformed genomic BLUP (GBLUP). They found that 74 

GBLUP was outperformed when the number of QTL was smaller than the number of independent 75 

chromosome segments. They also found that the difference in accuracy between these models was 76 

larger than in the single population case.  77 

In a Bayesian framework, model comparison can be performed via Bayes factors and some 78 

modifications of them known as non-subjective Bayes factors (Ghosh et al, 2006). Bayes factors 79 

measure the change in the odds favoring a model once data are observed (Lavine and Schervish, 80 

1999). On the other hand, O’Hagan (1994; 1995) proposed a non-subjective Bayes factor known as 81 

fractional Bayes factor which uses a fractional part of the likelihood resulting in a “partial” Bayes 82 

factor. Analytical forms of Bayes factors involve integration of the joint distribution of data and 83 

parameters over the parameter space of a given model to obtain marginal likelihoods, and even for 84 

some simple models these integrals do not have a closed form solution. One option to obtain 85 

algebraic approximations is to use the Laplace approximation after arranging the integrand in an 86 

appropriate form (Ghosh et al, 2006). Another criterion to compare models is the Deviance 87 

Information Criterion (DIC, Spiegelhalter et al., 2002; 2014) which combines measures of model fit 88 

and model complexity and, despite some limitations, it has been used in several research areas 89 

(Spiegelhalter et al., 2014). 90 

Thus, the objectives of this study were to extend the family of models developed in a companion 91 

paper (part I) by considering the so called spike and slab priors for marker effects and to derive 92 

approximate expressions for Bayes factors and fractional Bayes factors to compare the proposed 93 

models with their corresponding null versions that ignore population structure. 94 

2.  Methods 95 

2.1 The models 96 
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The complete population or simply the population is defined as the set of individuals with 97 

phenotypes considered in the analysis, which is comprised by a set of 𝒮 subpopulations defined by 98 

some criterion like environment, race, breed, line, etc. Also the following assumptions are made: 99 

linkage equilibrium, Hardy-Weinberg equilibrium, no mutation, and starting from the oldest 100 

individuals with phenotypes, the pedigree is fully known.  101 

The following is the linear model describing the relationship between records and mappings of 102 

marker genotypes: 𝒚 = 𝑊𝒈 + 𝒆, where 𝒚 ∈ ℝ𝑛 is a vector containing response variables (e.g., 103 

records corrected for non-genetic factors), 𝑊 ∈ ℝ𝑛×𝑚 is an observable random matrix with entries 104 

corresponding to a one to one mapping from the set of individual marker genotypes to a subset of the 105 

integers (defined later), 𝒈 ∈ ℝ𝑚 is an unknown random vector of average marker allele substitution 106 

effects for every population and 𝒆 ∈ ℝ𝑛 is a random vector of residuals. If records are sorted by 107 

subpopulation as well as the columns of 𝑊 and the elements of 𝒈, then for every 𝑙 = 1,2,… , 𝒮, 108 

𝒚𝑙 = 𝑊𝑙𝒈𝑙 + 𝒆𝑙, with dimensions: (𝒚𝑙)𝑛𝑙×1, (𝑊𝑙)𝑛𝑙×𝑚, (𝒈𝑙)𝑚×1 and (𝒆𝑙)𝑛𝑙×1 where 𝑛𝑙 is the sample 109 

size of subpopulation 𝑙, and 𝑚 is the number of marker loci; therefore, 𝑛 = ∑ 𝑛𝑙
𝒮
𝑙=1 . 110 

In our models, the mapping from the set of genotypes at each locus and each individual into a subset 111 

of the integers is defined as follows, biallelic loci are considered. If A and B are the marker alleles at 112 

each locus and B is considered the reference allele then: 113 

𝑊𝑙 = {𝑤𝑖𝑗
𝑙 }

𝑛𝑙×𝑚
= {

1, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐵𝐵 
0, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐴𝐵

−1, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐴𝐴
. 

The following is the hierarchical representation of our models. Let 𝑅 = (𝜎𝑒1
2 , … , 𝜎𝑒𝒮

2 ) and 𝑉 =114 

𝐵𝑙𝑜𝑐𝑘 𝐷𝑖𝑎𝑔. {𝜎𝑒𝑙
2 𝐼𝑛𝑙

}
𝒮     
𝑙 = 1

then 115 

𝒚|𝑊, 𝒈, 𝑅~𝑀𝑉𝑁(𝑊𝒈, 𝑉) 

𝑊|𝒑1
∗ , 𝒑2

∗ , … , 𝒑𝑚
∗ ~𝜋(∙|𝒑1

∗ , 𝒑2
∗ , … , 𝒑𝑚

∗ ) 
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𝒑𝑗
∗
𝑖𝑖𝑑
∼ 𝜋(𝒑∗), 𝑗 = 1,2,… ,𝑚 

𝜎𝑒1
2 , … , 𝜎𝑒𝒮

2
𝑖𝑖𝑑
∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (

𝜏2

2
,
𝑣

2
) ≔ 𝐼𝐺 (

𝜏2

2
,
𝑣

2
) 

𝒈𝑗|𝐺𝑗 , 𝜋0

𝑖𝑛𝑑
∼ {

𝑃𝑜𝑖𝑛𝑡 𝑚𝑎𝑠𝑠 𝑎𝑡 𝟎 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜋0

𝑀𝑉𝑁(𝟎, 𝐺𝑗) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜋0
   

𝐺𝑗

𝑖𝑖𝑑
∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑎, 𝜮) ≔ 𝐼𝑊(𝑎, 𝜮) 

𝐺𝑗 =

[
 
 
 
 

𝜎𝑗1
2 𝜎𝑗1,2

⋯ 𝜎𝑗1,𝒮

𝜎𝑗2
2 ⋯ 𝜎𝑗2,𝒮

⋱ ⋮
𝑠𝑦𝑚 𝜎𝑗𝒮

2
]
 
 
 
 

 

where 𝜎𝑒𝑙
2  is the residual variance in subpopulation 𝑙, 𝜎𝑗𝑙

2 is the variance of the effect of the 𝑗𝑡ℎ marker 116 

in the 𝑙𝑡ℎ subpopulation, 𝜎𝑗𝑙,𝑙′ 
 is the covariance between effects of marker 𝑗 in subpopulations 𝑙 and 117 

𝑙′, 𝒑𝑗
∗ is a parameter related to allelic frequencies of the 𝑗𝑡ℎ marker in each subpopulation and 𝜋(𝒑∗) 118 

is its probability density function (pdf). This set of parameters and their pdf are described in part I of 119 

this series of papers. Here, parameter 𝜋0 was assumed to be known.  120 

The model presented above assumed a different covariance matrix for the vector of allele substitution 121 

effects for each marker in the slab component of the mixture distribution and consequently this sort 122 

of models will be referred to as heterogeneous marker effects covariance matrix models. On the other 123 

hand, models with 𝐺1 = ⋯ = 𝐺𝑚 = 𝐺0 will be referred to as homogeneous marker effects 124 

covariance matrix models. Moreover, the special case 𝜎𝑒1
2 = ⋯ = 𝜎𝑒𝒮

2 = 𝜎2 corresponds to that of 125 

models with homoscedastic residuals.  126 

In part I, it was discussed that the scenario of completely (i.e., at all loci) or partially missing 127 

genotypes can be handled because of the use of the pmf 𝜋(𝑊|𝑃∗), 𝑃∗ = (𝒑1
∗ , 𝒑2

∗ , … , 𝒑𝑚
∗ )  and the fact 128 

that these missing genotypes are regarded as model parameters. There, it was also shown that the 129 
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likelihood can be written as 𝑓(𝒚,𝑊ℴ|𝑊𝑁 , 𝒈, 𝑅, 𝑃∗) = 𝑓(𝒚|𝑊, 𝒈, 𝑅)𝑓(𝑊ℴ|𝑊𝑁 , 𝑃∗) where 𝑊ℴ is the 130 

fraction of 𝑊 corresponding to observed genotypes, 𝑊𝑁 the fraction corresponding to missing 131 

genotypes, and 𝑓(𝒚|𝑊, 𝒈, 𝑅) and 𝑓(𝑊ℴ|𝑊𝑁 , 𝑃∗) are referred to as the 𝒚 component and the 𝑊 132 

component of the likelihood. 133 

The conditional prior for 𝒈𝑗 can be written as:  134 

𝜋(𝒈𝑗|𝐺𝑗 , 𝜋) = 𝜋0𝐼{𝒈𝑗=𝟎} + (1 − 𝜋0)𝑀𝑉𝑁(𝒈𝑗; 0, 𝐺𝑗)𝐼{𝒈𝑗≠𝟎} 

where 𝐼{∙} is the indicator function. This form is more convenient from the algebraic point of view 135 

because it allows carrying out computations and writing expressions for the joint conditional prior in 136 

an easier way. Under the conditional independence assumption, the joint conditional prior for 𝒈 is: 137 

𝜋(𝒈|𝐺, 𝜋0) = ∏{𝜋0𝐼{𝒈𝑗=𝟎} + (1 − 𝜋0)𝑀𝑉𝑁(𝒈𝑗; 0, 𝐺𝑗)𝐼{𝒈𝑗≠𝟎}} .

𝑚

𝑗=1

 

An explicit form of this prior pdf can be found as follows. Let 𝑖 = 0,1,… ,𝑚 be the number of 138 

markers having a null effect. Consequently, when expanding the product above, for each 𝑖 there are 139 

(𝑚
𝑖
) combinations of 𝑖 markers with null effect chosen from 𝑚 markers. For 𝑙 = 1,2,… , (𝑚

𝑖
), let 𝛿𝑖𝑙 140 

denote the event that the 𝑙𝑡ℎ subset of 𝑖 markers (i.e., the 𝑙𝑡ℎ combination of 𝑖 markers with null 141 

effect chosen from the total set of 𝑚 markers) have null effect and 𝐼𝛿𝑖𝑙
 the indicator function of this 142 

event. Thus, there are (𝑚
𝑖
) terms in the expansion with 𝜋0 appearing exactly 𝑖 times; therefore, each 143 

one of these (𝑚
𝑖
)  terms is of the form: 144 

𝐼𝛿𝑖𝑙
𝜋0

𝑖 (1 − 𝜋0)
𝑚−𝑖 ∏ 𝑀𝑉𝑁(𝒈𝑘; 𝟎, 𝐺𝑘)

𝑘:𝑔𝑘∈𝛿𝑖𝑙0
𝑐

 

where 𝛿𝑖𝑙0 is the set of marker loci with null effects given 𝛿𝑖𝑙, and  𝛿𝑖𝑙0
𝑐  is its complement, i.e., the set 145 

of 𝑚 − 𝑖 markers with non-null effect under 𝛿𝑖𝑙. Therefore when expanding 𝜋(𝒈|𝐺, 𝜋0) for the 146 

heterogeneous marker effect covariance matrix model: 147 
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𝜋(𝒈|𝐺) = ∑𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖 ∑𝐼𝛿𝑖𝑙
∏ 𝑀𝑉𝑁(𝒈𝑘; 𝟎, 𝐺𝑘)

𝑘:𝑔𝑘∈𝛿𝑖𝑙0
𝑐

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

, 

while for the homogeneous marker effect covariance matrix model the expression is the same except 148 

that 𝐺𝑗 = 𝐺0 ∀ 𝑗 = 1,2… ,𝑚.  149 

Regarding the marginal priors, under homogeneous covariance matrix of marker effects: 150 

𝜋(𝒈) ∝ ∑𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖 ∑𝐼𝛿𝑖𝑙
∫|𝐺0|

−𝑎+𝒮+𝑚−𝑖+1
2

𝒫𝒮
+

exp

(

 
 −1

2
𝑡𝑟 ((𝚺 + ∑ 𝒈𝑘𝒈𝑘

′

𝑘:𝒈𝑘∈𝛿𝑙𝑖0
𝑐

)(𝐺0)−1)

)

 
 

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

𝑑𝐺0 

∝ ∑𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖 ∑𝐼𝛿𝑖𝑙
2𝒮(𝑚−𝑖) 2⁄ Γ𝒮 (

𝑎 + 𝑚 − 𝑖

2
)

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

|𝚺 + ∑ 𝒈𝑘𝒈𝑘
′

𝑘:𝑔𝑘∈𝛿𝑙𝑖0
𝑐

|

−(
𝑎+𝑚−𝑖

2
)

. 

Hence, marker effects are not marginally independent a priori and their joint marginal prior 151 

distribution is a mixture of non-standard distributions with mixing probabilities 𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖.  152 

For heterogeneous marker effect covariance matrix model: 153 

𝜋(𝒈) ∝ ∑𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖 ∑𝐼𝛿𝑖𝑙
2−𝒮𝑖 2⁄

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

Γ𝒮 (
𝑎

2
)

𝑖

Γ𝒮 (
𝑎 + 1

2
)

𝑚−𝑖

∏
1

|1 +
𝒈𝑘

′ 𝚺∗
−1𝒈𝑘

𝑎 + 1 − 𝒮|
(
𝑎+1
2 )

𝑘:𝑔𝑘∈𝛿𝑖𝑙0
𝑐

. 

This is a mixture distribution with mixing probabilities 𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖. Each component in the 154 

mixture is a sum of (𝑚
𝑖
) elements. Each one of these elements is the product of 𝑚 − 𝑖 multivariate t 155 

distributions with scale matrix 𝚺∗ =
1

𝑎+1−𝒮
𝚺 and degrees of freedom 𝑎 + 1 − 𝒮 for non-null vectors 156 

of markers effects, and point mass at zero for 𝑖 null vectors of marker effects, under event 𝛿𝑖𝑙. In this 157 

case, marker effects are marginally independent a priori.  158 

2.2 Full conditionals  159 

Only full conditionals that change with respect to those considered in part I are presented.  160 

𝜋(𝒈|𝐸𝑙𝑠𝑒) = 
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∑𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖 ∑𝐼𝛿𝑖𝑙
𝑀𝑉𝑁 (𝒈𝛿𝑖𝑙0

𝑐 ; (
𝑊𝛿𝑖𝑙0

𝑐
′ 𝑊𝛿𝑖𝑙0

𝑐

𝜎2
+ 𝐺𝛿𝑖𝑙0

𝑐
−1 )

−1
𝑊𝛿𝑖𝑙0

𝑐
′ 𝒚

𝜎2
, (

𝑊𝛿𝑖𝑙0
𝑐
′ 𝑊𝛿𝑖𝑙0

𝑐

𝜎2
+ 𝐺𝛿𝑖𝑙0

𝑐
−1 )

−1

)

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

 

where 𝒈𝛿𝑖𝑙0
𝑐 = (𝒈𝑘1

′ ⋯ 𝒈𝑘𝑚−𝑖

′ )′, 𝑘: 𝒈𝑘 ∈ 𝛿𝑖𝑙0
𝑐 , corresponds to the vector of dimension 𝒮(𝑚 − 𝑖) 161 

with the non-null marker effects under 𝛿𝑖𝑙, 𝑊𝛿𝑖𝑙0
𝑐  is the submatrix of the design matrix corresponding 162 

to 𝒈𝛿𝑖𝑙0
𝑐  and 𝐺𝛿𝑖𝑙0

𝑐
−1 = 𝐼𝑚−𝑖⨂𝐺0

−1, 𝑖 = 0,1,… ,𝑚.  163 

Remark 1 Notice that each element in the summation above corresponds to a multivariate normal 164 

distribution of dimension 𝒮(𝑚 − 𝑖) for those markers in 𝛿𝑖𝑙0
𝑐  and point mass at zero for those markers 165 

in 𝛿𝑖𝑙0. Thus, in each term, the multivariate normal corresponds to the distribution of the effects of 166 

the subset of markers with non-null effects given 𝛿𝑖𝑙. Therefore, this joint full conditional distribution 167 

of 𝒈 suggests that for each marker, the full conditional distribution of 𝒈𝑗 (given data, and other 168 

parameters in the model including the remaining components of 𝒈) is a spike and slab distribution. 169 

Note that it is easier to deal with 𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) than with 𝜋(𝒈|𝐸𝑙𝑠𝑒). The full conditional 𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) 170 

can be found from 𝜋(𝒈|𝐸𝑙𝑠𝑒) using the Bayes theorem. However, this could be complex because it 171 

requires identifying all the cases in which 𝒈𝑗 = 0 and all the cases in which 𝒈𝑗 ≠ 0. An easier way is 172 

to derive it using the conditional prior for 𝒈𝑗. Details are presented in Appendix A. The final result 173 

is: 174 

𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) = 

𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒)𝐼{𝒈𝑗=𝟎} + (1 − 𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒))𝑀𝑉𝑁 (𝐺𝐹𝑗
−1

𝑊𝑗
′

𝜎2
(𝒚 − 𝑊(−𝑗)𝒈(−𝑗)), 𝐺𝐹𝑗

−1) 𝐼{𝒈𝑗≠𝟎} 

𝐺𝐹𝑗 =
𝑊𝑗

′𝑊𝑗

𝜎2
+ (𝐺0)−1 

𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒) =
𝜋0

𝜋0 + (1 − 𝜋0)(|𝐺𝐹𝑗||𝐺
0|)

−1 2⁄
exp (

1
2𝜎2 ‖𝐺∗𝐹𝑗

−1 2⁄
𝑊𝑗

′(𝒚 − 𝑊(−𝑗)𝒈(−𝑗))‖
2

2

)
, 
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where 𝐺∗𝐹𝑗 = 𝜎2𝐺𝐹𝑗 = 𝑊𝑗
′𝑊𝑗 + 𝜎2(𝐺0)−1. Thus, the full conditional distribution of 𝒈𝑗 is a spike 175 

and slab distribution where the slab component is a 𝑀𝑉𝑁(𝐺𝐹𝑗
−1𝑊𝑗

′(𝒚 − 𝑊(−𝑗)𝒈(−𝑗)), 𝐺𝐹𝑗
−1) and the 176 

spike is a point mass at 0 in ℝ𝒮. On the other hand, 177 

𝜋(𝐺0|𝐸𝑙𝑠𝑒) ∝ ∑𝝅𝑖(1 − 𝝅)𝑚−𝑖 ∑𝐼𝛿𝑖𝑙
|𝐺0|−

(𝑚−𝑖+𝑎+𝒮+1)
2

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

 

× exp(
−1

2
𝑡𝑟 ((𝚺 + ∑ 𝒈𝑘𝒈𝑘

′

𝑘:𝑔𝑘∈𝛿𝑖𝑙0
𝑐

)(𝐺0)−1)), 

a mixture of sums of inverse Wishart distributions with mixing probabilities 𝝅𝑖(1 − 𝝅)𝑚−𝑖 , 𝑖 =178 

0,1,… ,𝑚. The 𝑖𝑡ℎ component of the mixture is the sum of (𝑚
𝑖
) inverse Wishart distributions with 179 

parameters (𝑚 − 𝑖 + 𝑎, 𝚺 + ∑ 𝒈𝑘𝒈𝑘
′

𝑘:𝑔𝑘∈𝛿𝑖𝑙0
𝑐 ) 𝐼𝛿𝑖𝑙

, 𝑙 = 1,2,… , (𝑚
𝑖
).    180 

For the heterogeneous marker effect covariance matrix model the full conditional 𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) has the 181 

same form as for the homogeneous marker effect covariance matrix model except that now 𝐺𝐹𝑗 =182 

𝑊𝑗
′𝑊𝑗

𝜎2
+ 𝐺𝑗

−1 and 𝐺∗𝐹𝑗 = 𝑊𝑗
′𝑊𝑗 + 𝜎2𝐺𝑗

−1 and 183 

𝜋(𝐺𝑗|𝐸𝑙𝑠𝑒) = {
𝐼𝑊(𝑎 + 1, 𝚺+𝒈𝑗𝒈𝑗

′ ), 𝑖𝑓 𝒈𝑗 ≠ 0 

𝐼𝑊(𝑎, 𝚺), 𝑖𝑓 𝒈𝑗 = 0
 

The expressions for models with heteroscedastic residuals are very similar and therefore these are 184 

omitted. Such expressions can be found in Appendix A along with joint posterior distributions. 185 

2.3 Model comparison  186 

2.3.1 Theoretical approximation to model comparison via Bayes factors and fractional Bayes factors 187 

Here, the term null model refers to simplified versions of the proposed models in two scenarios. The 188 

first one corresponds to the case in which all data are pooled and the factor splitting the complete 189 

population into subpopulations is ignored. In the second scenario, the complete population is split 190 

into subpopulations and each one of them is analyzed independently. The null model corresponding 191 
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to the first scenario was already presented in part I, and for the second scenario, the model for each 192 

subpopulation is the same, but only considering data from the corresponding subpopulation. This 193 

model is referred to as independent subpopulations model. 194 

In order to find some theoretical approach to compare the full models with their null versions, 195 

approximate Bayes factors and fractional Bayes factors are derived in this section. To this end, 196 

analytical approximations of multivariate integrals that have to be solved to find marginal likelihoods 197 

are derived. The Laplace approximation (Ghosh et al., 2006) is used to solve some of these 198 

multivariate integrals. As will be shown in this section, the use of the Laplace approximation requires 199 

the matrix 𝑊 to be of full column rank. This assumption does not hold in many real life situations 200 

where 𝑚 > 𝑛 and therefore this matrix cannot be of full column rank. However, as more individuals 201 

are genotyped, this situation can be found more frequently, especially for chips of intermediate 202 

density. Notice that for matrix 𝑊 to be of full rank, the number of observations in each 203 

subpopulation cannot be smaller than 𝑚; therefore, the requirement is that 𝑛𝑙 ≥ 𝑚 ∀ 𝑙 = 1,2,… , 𝒮. 204 

As a matter of fact, in countries like the US there exist data sets where the number of genotyped 205 

animals exceeds the number of molecular markers in chips like the Illumina 50k (CDCB, 2016). 206 

Moreover, in certain cases, some filtering or preselection criteria reduces the set of markers to be 207 

included in the analyses and for populations with a large amount of genotyped individuals this could 208 

also lead to the full rank scenario. More comments on this will be made in the discussion. Therefore, 209 

in real life situations like across country or across breed analysis, the situation 𝑛𝑙 ≥ 𝑚 ∀ 𝑙 =210 

1,2,… , 𝒮 could be observed, thus the assumption of matrix 𝑊 being of full column rank could be 211 

satisfied. Of course, 𝑛𝑙 ≥ 𝑚 ∀ 𝑙 = 1,2,… , 𝒮  is not a sufficient condition for matrix 𝑊 to be of full 212 

column rank, but given the structure of this matrix, this would generally be the case except in certain 213 

situations, for example, having clones in the same subpopulation.  214 

Bayes factors  215 
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Bayes factors have generally been interpreted as measures of support in favor of a model provided by 216 

data. Lavine and Schervish (1999) showed that what Bayes factors are actually measuring the change 217 

in the odds favoring a model once data are observed. The Bayes factor comparing two models 218 

denoted as 𝑀1 and 𝑀0 is defined as: 219 

𝐵𝐹10 =
𝑓(𝒚|𝑀1)

𝑓(𝒚|𝑀0)
 

=
∫ 𝜋1(𝜽1)𝑓1(𝒚|𝜽1)𝑑𝜽1Θ1

∫ 𝜋0(𝜽0)𝑓0(𝒚|𝜽0)𝑑𝜽0Θ0

 

where 𝜽𝑖, 𝜋𝑖(𝜽𝑖), 𝑓𝑖(𝒚|𝜽𝑖) and Θ𝑖 are the parameters, prior, likelihood and parametric space under 220 

model 𝑖, respectively, 𝑖 = 1, 2. 221 

Approximate Bayes factors comparing homogenous marker effect covariance matrix models 222 

(Gaussian and spike and slab priors, homoscedastic residuals) and heterogeneous marker effect 223 

covariance matrix models (Gaussian and spike and slab priors, homoscedastic residuals) to their null 224 

versions were derived. Also, an approximate Bayes factor comparing the heterogeneous marker 225 

effect covariance matrix model with heteroscedastic residuals with the independent subpopulations 226 

model was found. These approximate Bayes factors were conditioned on the genotypes (i.e., 227 

conditioned on 𝑊 and 𝑊0). Therefore, the 𝒚 component of the likelihood is used. The case when a 228 

part of 𝑊 is not observed is treated at the end of this section. 229 

A brief outline of the derivation of these approximate Bayes factors is presented. In each case, model 230 

sub-index 1 corresponds to the full model while sub-index 0 denotes the null model. The Bayes 231 

factor comparing homogeneous marker effect covariance matrix models with its null version is 232 

denoted 𝐵𝐹10𝑊 when a Gaussian prior is posed over 𝒈 and residuals are homoscedastic. Whenever 233 

residuals are heteroscedastic the letter 𝐻 appears in the subindex and when the prior posed over 𝒈 is 234 

spike and slab the letter 𝐺 is replaced by 𝑆𝑆. Moreover, the superindex ∗ is used to identify models 235 
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with heterogeneous marker effect covariance matrices. The same subindex notation is used for 236 

fractional Bayes factors. 237 

In general, let: 238 

𝐵𝐹10𝑊 =
𝑓(𝒚|𝑊,𝑀1)

𝑓(𝒚|𝑊0, 𝑀0)
. 

For the homogeneous marker effect covariance matrix model 𝜽1 ≔ (𝜽,𝝓)=({𝒈, 𝜎2,𝑊}, {𝐺0, 𝑃∗}) 239 

and 𝜽0 ≔ (𝜽0
∗ , 𝝓0) = ({𝒈0, 𝜎

2,𝑊0}, {𝜎𝑔
2, 𝒑0}). Let ℝ+ denote the positive reals. Then: 240 

𝜋(𝒚, 𝜽1) = 𝑓(𝒚|𝜽)𝜋(𝜽,𝝓) 

= 𝑓(𝒚|𝒈, 𝜎2,𝑊)𝜋(𝒈, 𝐺0)𝜋(𝜎2)𝜋(𝑊, 𝑃∗) 

then  241 

∫ ∫ ∫ 𝑓(𝒚|𝒈, 𝜎2,𝑊)𝜋(𝒈, 𝐺0)𝜋(𝜎2)

ℝ+

𝑑𝜎2𝑑𝒈𝑑𝐺0

ℝ𝑚𝒮𝒫𝒮
+

= 𝑓(𝒚|𝑊) 

= ∫ 𝜋(𝐺0)( ∫ ∫ 𝑓(𝒚|𝒈, 𝜎2,𝑊)𝜋(𝒈|𝐺0)𝜋(𝜎2)

ℝ+

𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮

)

𝒫𝒮
+

𝑑𝐺0 

Thus, the previous multiple integral has to be solved in order to find 𝑓(𝒚|𝑊). An analytic expression 242 

for the inner integral ∫ ∫ 𝑓(𝒚|𝒈, 𝜎2,𝑊)𝜋(𝒈|𝐺0)𝜋(𝜎2)
ℝ+

𝑑𝜎2𝑑𝒈
ℝ𝑚𝑛  is approximated using the 243 

Laplace approximation (Ghosh et al., 2006). As shown in appendix B, after obtaining this 244 

approximation, the external integral can be found in a closed form. The Laplace method is based on a 245 

second order Taylor series expansion and allows finding an approximation to integrals of the form: 246 

𝐼 = ∫ 𝑞(𝜽)𝑒𝑛ℎ(𝜽)𝑑𝜽

ℝ𝑝

, 

where 𝑞 and ℎ are smooth functions of 𝜽 and ℎ has a unique maximum at �̂�. In Bayesian statistics, 247 

𝑛ℎ(𝜽) is usually taken to be the log-likelihood or the log of the unnormalized posterior. Hence, �̂� can 248 
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be the MLE or the posterior mode when the posterior is unimodal. The Laplace approximation has 249 

the form (Ghosh et al., 2006): 250 

𝐼 = 𝑒𝑛ℎ(�̂�)(2𝜋)𝑝 2⁄ 𝑛−𝑝 2⁄ |∆ℎ(�̂�)|
−1 2⁄

𝑞(�̂�)(1 + 𝑂(𝑛−1)), 

where 𝑝 = dim(𝜽) and |∆ℎ(�̂�)| is the determinant of the Hessian matrix of −ℎ evaluated at �̂�. The 251 

inner integral in 𝑓(𝒚|𝑊) can be written as: 252 

∫ ∫ 𝜋(𝒈|𝐺0)𝜋(𝜎2)𝑒ln 𝑓(𝒚|𝒈,𝜎2,𝑊)

ℝ+

𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮

≔ ∫ 𝑞(𝜽∗)𝑒𝑛ℎ(𝜽∗)𝑑𝜽∗

ℝ𝑚𝒮+1

, 

where 𝜽∗ ≔ (𝒈, 𝜎2).  253 

Under the assumption that 𝑓(𝒚|𝒈, 𝜎2,𝑊) has a unique maximum at �̂�∗ ≔ (�̂�, �̂�2), Laplace 254 

approximation can be used. The 𝒚 component of the likelihood function is a 𝑀𝑉𝑁(𝑊𝑔, 𝜎2𝐼). 255 

Therefore, following standard results from linear models theory, if 𝑊 is of full column rank then, 256 

�̂� = (𝑊′𝑊)−1𝑊′𝒚 is the MLE of 𝒈, and  �̂�2 =
‖𝒚−𝑊�̂�‖2

𝑛
=

𝒚′(𝐼−𝐻𝑊)𝒚

𝑛
=

(𝑛−𝑟)

𝑛
𝑆2 is the MLE of 𝜎2, 257 

where  𝑆2 =
𝒚′(𝐼−𝐻𝑊)𝒚

𝑛−𝑟
  is the least squares estimator of 𝜎2, 𝑟 = 𝑟𝑎𝑛𝑘(𝑊′𝑊) = 𝑚𝒮 and 𝐻𝑊 =258 

𝑊(𝑊′𝑊)−1𝑊′ is the projection matrix onto the column space of 𝑊.  259 

After computing all the required expressions and making algebraic simplifications (see Appendix B), 260 

it follows that: 261 

𝐵𝐹10𝐺𝑊 

≈ (
|𝚺|

𝑏
)

𝑎
2

(
|𝚺 + ∑ �̂�𝑗�̂�𝑗

′𝑚
𝑗=1 |

𝑏 + ∑ �̂�0𝑗
2𝑚

𝑗=1

)

−(
𝑎+𝑚

2
)

(
𝑆𝑆𝑅

𝑆𝑆𝑅0
)

−(
𝑛+𝑣+2

2
) 𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

(
|𝑊0′𝑊0|

|𝑊′𝑊|
)

1
2

 

× exp(
−𝑛𝜏2

2
(

1

𝑆𝑆𝑅
−

1

𝑆𝑆𝑅0
)) (

2

𝑛
)

𝑚(𝒮−1)
2

(∏
Γ(

𝑎 + 𝑚 + 1 − 𝑙
2 )

Γ (
𝑎 + 1 − 𝑙

2 )

𝒮

𝑙=2

) 



15 
 

where 𝑆𝑆𝑅 = 𝒚′(𝐼 − 𝐻𝑊)𝒚, 𝑆𝑆𝑅0 = 𝒚′(𝐼 − 𝐻𝑊0
)𝒚, 𝐻𝑊0

= 𝑊0(𝑊0′𝑊0)
−1𝑊0

′, 𝑆0
2 =

‖𝒚−𝑊0�̂�0‖2

𝑛−𝑟0
, 𝑟0 =262 

𝑟𝑎𝑛𝑘(𝑊0′𝑊0) = 𝑚, �̂�0 = (𝑊0′𝑊0)
−1𝑊0

′𝒚.  263 

Following similar steps (see Appendix B), 264 

𝐵𝐹10𝐺𝑊
∗ =

𝑓(𝒚|𝑊,𝑀1
∗)

𝑓(𝒚|𝑊0, 𝑀0
∗)

 

≈ (
|𝚺|

𝑏
)

𝑎𝑚
2

∏(
|𝚺 + �̂�𝑗�̂�𝑗

′ |

𝑏 + �̂�0𝑗
2 )

−(
𝑎+1
2

)𝑚

𝑗=1

(
𝑆𝑆𝑅

𝑆𝑆𝑅0
)

−(
𝑛+𝑣+2

2
) 𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

(
|𝑊0′𝑊0|

|𝑊′𝑊|
)

1
2

 

× exp(
−𝑛𝜏2

2
(

1

𝑆𝑆𝑅
−

1

𝑆𝑆𝑅0
)) (

2

𝑛
)

𝑚(𝒮−1)
2

(∏
Γ(

𝑎 + 2 − 𝑙
2 )

Γ (
𝑎 + 1 − 𝑙

2 )

𝒮

𝑙=2

)

𝑚

. 

𝐵𝐹10𝐺𝑊𝐻
∗ ≈ (

|𝚺|

𝑏𝒮
)

𝑎𝑚
2

∏(
|𝚺 + �̂�𝑗�̂�𝑗

′ |

∏ (𝑏 + �̂�0𝑗𝑙
2 )𝒮

𝑙=1

)

−(
𝑎+1
2

)𝑚

𝑗=1

(∏
Γ(

𝑎 + 2 − 𝑙
2 ) Γ (

𝑎
2)

Γ (
𝑎 + 1 − 𝑙

2 ) Γ (
𝑎 + 1

2 )

𝒮

𝑙=2

)

𝑚

 

𝐵𝐹10𝑆𝑆𝑊 ≈ (2𝜋)𝑚(𝒮+1) 2⁄ (
𝑆𝑆𝑅

𝑆𝑆𝑅0
)

−(
𝑛+𝑣+2

2
) 𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

(
|𝑊0′𝑊0|

|𝑊′𝑊|
)

1
2

 

× exp(
−𝑛𝜏2

2
(

1

𝑆𝑆𝑅
−

1

𝑆𝑆𝑅0
)) (

2

𝑛
)

𝑚(𝒮−1)
2

(
|𝚺|

𝑏
)

𝑎
2 Γ (

𝑎
2)

Γ𝒮 (
𝑎
2)

 

×
∑ ∑ 𝐼𝛿𝑖𝑙

𝝅𝑖(1 − 𝝅)𝑚−𝑖2𝒮(𝑚−𝑖) 2⁄ Γ𝒮 (
𝑎 + 𝑚 − 𝑖

2 )
(𝑚

𝑖 )

𝑙=1
𝑚
𝑖=0 |𝚺 + ∑ �̂�𝑘�̂�𝑘 

′
𝑘:𝑔𝑘∈𝛿𝑙0

𝑐 |
−(

𝑎+𝑚−𝑖
2 )

∑ ∑ 𝐼𝛿𝑖𝑙
𝝅𝑖(1 − 𝝅)𝑚−𝑖2(𝑚−𝑖) 2⁄ Γ (

𝑎 + 𝑚 − 𝑖
2 )

(𝑚
𝑖 )

𝑙=1
𝑚
𝑖=0 |𝑏 + ∑ �̂�𝑘0

2
𝑘:𝑔𝑘∈𝛿𝑙0

𝑐 |
−(

𝑎+𝑚−𝑖
2

)
 

𝐵𝐹10𝑆𝑆𝑊
∗ ≈ (2𝜋)𝑚(𝒮+1) 2⁄ (

𝑆𝑆𝑅

𝑆𝑆𝑅0
)

−(
𝑛+𝑣+2

2
) 𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

(
|𝑊0′𝑊0|

|𝑊′𝑊|
)

1
2

 

× exp(
−𝑛𝜏2

2
(

1

𝑆𝑆𝑅
−

1

𝑆𝑆𝑅0
)) (

2

𝑛
)

𝑚(𝒮−1)
2

(
|𝚺|

𝑏
)

−1
2

(
Γ (

𝑎
2)

Γ𝒮 (
𝑎
2)

)

𝑚
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×

∑ ∑ 𝐼𝛿𝑖𝑙
𝝅𝑖(1 − 𝝅)𝑚−𝑖2−𝒮𝑖 2⁄(𝑚

𝑖 )

𝑙=1
𝑚
𝑖=0 (Γ𝒮 (

𝑎
2))

𝑖

(Γ𝒮 (
𝑎 + 1

2 ))

𝑚−𝑖

∏
1

|1 + �̂�𝑘𝚺
−1�̂�𝑘 

′ |(
𝑎+1
2

)
𝑘:𝑔𝑘∈𝛿𝑙0

𝑐

∑ ∑ 𝐼𝛿𝑖𝑙
𝝅𝑖(1 − 𝝅)𝑚−𝑖2−𝑖 2⁄ (Γ (

𝑎
2))

𝑖

(Γ (
𝑎 + 1

2 ))

𝑚−𝑖
(𝑚

𝑖 )

𝑙=1
𝑚
𝑖=0 ∏

1

|1 + �̂�0𝑘
2 𝑏−1|(

𝑎+1
2

)
𝑘:𝑔𝑘∈𝛿𝑙0

𝑐

 

Before presenting fractional Bayes factors, the following result comparing 𝑆𝑆𝑅0 and 𝑆𝑆𝑅 in the 265 

particular case of our models is presented and proven. This result will be used in the discussion 266 

section to help in the interpretation of Bayes factors and fractional Bayes factors.   267 

Result 1 For the models considered in this study, the following inequality holds: 𝑆𝑆𝑅0 ≥ 𝑆𝑆𝑅.  268 

Proof 269 

Let 𝑆𝑆𝑀1 = 𝒚′𝐻𝑊𝒚 and 𝑆𝑆𝑀0 = 𝒚′𝐻𝑊0
𝒚. Thus, proving that 𝑆𝑆𝑅0 ≥ 𝑆𝑆𝑅 is equivalent to prove that 270 

𝑆𝑆𝑀1 ≥ 𝑆𝑆𝑀0. Let 𝐶(𝑊0) be the column space of 𝑊0 and 𝐶(𝑊) the column space of 𝑊. Now, it is 271 

proven that 𝐶(𝑊0) ≼ 𝐶(𝑊), where the notation "𝐶(𝑊0) ≼ 𝐶(𝑊)" means that 𝐶(𝑊0) is a subspace 272 

of 𝐶(𝑊).  Let 𝒛 ∈ 𝐶(𝑊0), then ∃ 𝒂 ∈ ℝ𝑚 such that 𝒛 = 𝑊0𝒂, that is, 273 

𝒛 = [
𝑊1𝒂

⋮
𝑊𝒮𝒂

]. 

Similarly, let 𝒘 ∈ 𝐶(𝑊), then ∃ 𝒃 ∈ ℝ𝑚𝒮 such that 𝒘 = 𝑊𝒃. Without loss of generality vector 𝒃 274 

can be partitioned as   𝒃 = (𝒃1, … , 𝒃𝒮) where 𝒃𝑙 ∈ ℝ𝑚 ∀ 𝑙 = 1,2,… , 𝒮. Then 𝒘 is of the form 275 

𝒘 = [
𝑊1𝒃𝟏

⋮
𝑊𝒮𝒃𝒮

]. 

In particular, if 𝒃𝑙 = 𝒂 ∀ 𝑙 = 1,2, … , 𝒮, it follows that 𝒛 also has the form of an element of 𝐶(𝑊), 276 

that is, 𝒛 ∈ 𝐶(𝑊). Clearly, 𝒘 cannot be written as a linear combination of the columns of 𝑊0; 277 

therefore, 𝐶(𝑊0) ≼ 𝐶(𝑊). Applying theorem B.47 of Christensen (2011), it follows that 𝐻𝑊 − 𝐻𝑊0
 278 

is an orthogonal projection. By properties of orthogonal projections (Harville, 2000) it follows that 279 
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𝐻𝑊 − 𝐻𝑊0
 is a semi-positive definite matrix, and consequently 𝒚′(𝐻𝑊 − 𝐻𝑊0

)𝒚 ≥ 0 ⟺ 𝒚′𝐻𝑊𝒚 ≥280 

𝒚′𝐻𝑊0
𝒚. 281 

∎ 

Fractional Bayes factors 282 

O’Hagan (1994; 1995) proposed a non-subjective Bayes factor known as fractional Bayes factor 283 

which uses a fraction 𝑐 of the likelihood resulting in a “partial” Bayes factor having the following 284 

form:   285 

𝐹𝐵𝐹10 = 𝐵𝐹10

∫ 𝜋0(𝜽0)(𝑓0(𝒚|𝜽0))
𝑐
𝑑𝜽0Θ0

∫ 𝜋1(𝜽1)(𝑓1(𝒚|𝜽1))
𝑐
𝑑𝜽1Θ1

. 

Thus, given 𝑊, the fractional Bayes factor for the homogeneous marker effect covariance matrix 286 

model with homoscedastic residuals and Gaussian prior for 𝒈 has the form: 287 

𝐹𝐵𝐹10𝐺𝑊 = 𝐵𝐹10𝐺𝑊

𝑓𝑐(𝒚|𝑊0, 𝑀0𝐺)

𝑓𝑐(𝒚|𝑊,𝑀1𝐺)
 

= 𝐵𝐹10𝐺𝑊

∫ 𝜋(𝜎𝑔
2) (∫ ∫ (𝑓0(𝒚|𝒈𝟎, 𝜎𝑒

2,𝑊))
𝑐
𝜋(𝒈𝟎|𝜎𝑔

2)𝜋(𝜎𝑒
2)

ℝ+
𝑑𝜎𝑒

2𝑑𝒈𝟎ℝ𝑚 )
ℝ+

𝑑𝜎𝑔
2

∫ 𝜋(𝐺0) (∫ ∫ (𝑓1(𝒚|𝒈, 𝜎2,𝑊))
𝑐
𝜋(𝒈|𝐺0)𝜋(𝜎2)

ℝ+
𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮 )
𝒫𝒮

+ 𝑑𝐺0
 

Hence, ln(𝑓𝑖(𝒚|𝜽𝑖))
𝑐
, 𝑖 = 0,1, and their corresponding Hessian matrices evaluated at the MLE have 288 

to be found in order to find the Laplace approximation to the integrals inside the brackets in the 289 

numerator and denominator of 𝐹𝐵𝐹10𝐺𝑊. This is easily done because ln(𝑓𝑖(𝒚|𝜽𝑖))
𝑐
= 𝑐 ln 𝑓𝑖(𝒚|𝜽𝑖). 290 

The determinants of the negative Hessian matrices are now denoted by �̃�0, �̃�1 and they satisfy: 291 

�̃�0 = 𝑐𝑚+1𝐷0 and �̃�1 = 𝑐𝑚𝒮+1𝐷1. The approximate 𝐹𝐵𝐹10𝐺𝑊 is denoted as 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝐺𝑊. 292 

Fractional Bayes factors derived in this study were 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑆𝑆𝑊 , 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝑆𝑆𝑊
∗  and 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝐺𝐻𝑊
∗ . It turned 293 

out that 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝐺𝑊 = 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝐺𝑊
∗  because the components making 𝐵𝐹̅̅ ̅̅

10𝐺𝑊 different from 𝐵𝐹̅̅ ̅̅
10𝐺𝑊
∗  294 

cancelled when multiplying them by  
𝑓𝑐(𝒚|𝑊0,𝑀0)

𝑓𝑐(𝒚|𝑊,𝑀1)
 and 

𝑓𝑐(𝒚|𝑊0,𝑀0
∗)

𝑓𝑐(𝒚|𝑊,𝑀1
∗)

 respectively. For details on the 295 
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derivation see Appendix B. Moreover, the same cancellation happened when deriving 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑆𝑆𝑊 and 296 

𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑆𝑆𝑊
∗ . The resulting expression was: 297 

𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝐺𝑊 = 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝐺𝑊
∗ = 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝑆𝑆𝑊 = 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑆𝑆𝑊
∗ ≔ 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝑊 

= 𝑐𝑚(𝒮−1) 2⁄ (
𝑆𝑆𝑅

𝑆𝑆𝑅0
)

𝑛(𝑐−1)
2 𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

. 

Notice that in the case 𝑚 > 𝑛 where 𝑊 and 𝑊0 are not of full column rank, this expression is 298 

invariant to the choice of the generalized inverses (𝑊′𝑊)− and (𝑊0′𝑊0)
−. This follows because of 299 

the uniqueness of the projection operator onto the column space of 𝑊, 𝐻𝑊 (Harville, 2000), which 300 

implies that 𝑆𝑆𝑅 and 𝑆𝑆𝑅0 are invariant to the choice of the generalized inverses. The approximate 301 

fractional Bayes factor 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝐺𝐻𝑊
∗  was equal to 1 (see Appendix B for details). Thus, it does not 302 

provide information for comparing the corresponding models.   303 

Based on the fact that the 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑊 is invariant to the choice of generalized inverses of 𝑊′𝑊 and 304 

𝑊0′𝑊0 when 𝑚 > 𝑛, a brief discussion about the possible use of this criterion in the non-full rank 305 

case is provided in Appendix C. The issue is that the derivation that led to the fractional Bayes factor 306 

in the full rank case cannot be applied to the non-full rank case due to the fact that |𝑊′𝑊| =307 

|𝑊0
′𝑊0| = 0 and  (𝑊′𝑊)−1 and (𝑊0

′𝑊0)
−1 do not exist. Although expressions involving these 308 

quantities cancel later on, it is clear that the derivations presented in Appendix B do not justify using 309 

𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑊 in the non-full rank case.  310 

These Bayes factors are useful for carrying out the conventional model selection conditioned on 𝑊, 311 

that is, conditioned on the observed genotypes. When part of 𝑊 is not observed, the joint distribution 312 

of 𝒚 and 𝑊𝑁 given 𝑊ℴ can be obtained and then summing over the set 𝒢𝑁 yields Bayes factors and 313 

fractional Bayes factors conditioned on 𝑊ℴ. Recall that  𝐵𝐹10𝑊 =
𝑓(𝒚|𝑊,𝑀1)

𝑓(𝒚|𝑊0,𝑀0)
, to find 𝐵𝐹10𝑊ℴ =314 

𝑓(𝒚|𝑊ℴ𝑀1)

𝑓(𝒚|𝑊0
ℴ𝑀0)

 the following computation has to be performed: 315 
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𝑓(𝒚|𝑊ℴ, 𝑀1) = ∑𝜋(𝒚,𝑊𝑁|𝑊ℴ, 𝑀1)

𝒢𝑁

 

= ∑𝑓(𝒚|𝑊,𝑀1)𝜋(𝑊𝑁|𝑊ℴ, 𝑀1)

𝒢𝑁

 

= ∑{𝑓(𝒚|𝑊,𝑀1) ∫ 𝜋(𝑊𝑁|𝑊ℴ, 𝑃∗)𝜋(𝑃∗)𝑑𝑃∗

Ω

}

𝒢𝑁

. 

For 𝒓 known: 316 

𝜋(𝑊𝑁|𝑊ℴ, 𝑀1) = ∏ ∫ 𝜋(𝒘𝑗
𝑁|𝒘𝑗

ℴ, 𝒑𝑗)𝜋(𝒑𝑗|𝒓)𝑑𝒑𝑗

Ω𝑗
𝒓

𝑚

𝑗=1

 

where Ω𝑗
𝒓 ≔ {𝒑𝑗 ∈ ℝ𝒮|0 < 𝑝𝑙𝑗 ≤ 𝑟𝑙  ∀ 𝑙, ∑ 𝑟𝑙 = 1𝒮

𝑙=1 } and Ω = Ω1
𝒓 × ⋯× Ω𝑚

𝒓  is the support of the 317 

distribution of 𝑃. For all 𝑗, the pmf 𝜋(𝒘𝑗
𝑁|𝒘𝑗

ℴ, 𝒑𝑗) can be found using Bayes theorem as 318 

𝜋(𝒘𝑗
𝑁|𝒘𝑗

ℴ, 𝒑𝑗) = 𝜋(𝒘𝑗|𝒑𝑗) 𝜋(𝒘𝑗
ℴ|𝒑𝑗)⁄ , but computing 𝜋(𝒘𝑗

ℴ|𝒑𝑗) requires ∑ 𝜋(𝒘𝑗|𝒑𝑗)𝒢𝑁  which can 319 

be unfeasible from the computational point of view. Alternatively, 𝜋(𝑊𝑁|𝑊ℴ, 𝑃∗) can be derived 320 

from first principles by noticing that the dependence on 𝑊ℴ comes from the term where genotypes of 321 

individuals are conditioned on parental genotypes and then proceeding as in section 2.1.1 of part I. 322 

Using the expressions derived in section 2.2.1 of part I and assuming 𝒓 known: 323 

𝜋(𝑊𝑁|𝑊ℴ, 𝑀1) ∝ 

2𝑛𝑁
𝐻
∏ ∫ 𝑝(𝒮+1)𝑗

𝛼𝒮+1−1
∏{

1

𝑟
𝑙

2𝑓𝑙𝑗𝑁
𝑝𝑙𝑗

𝑛
𝑙𝑁

𝐵𝑗
+𝛼𝑙−1

(𝑟𝑙 − 𝑝𝑙𝑗)
𝑛𝑙𝑁

𝐴𝑗

∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑙𝑗𝑁

𝑖′=𝑓𝑙𝑗𝑁
+1

}

𝒮

𝑙=1

𝑑𝒑𝑗

Ω𝑗
𝒓

𝑚

𝑗=1

 

where  𝑓𝑙𝑗𝑁
 is the number of founders with missing genotypes at locus 𝑗 in subpopulation 𝑙, 𝑛𝑙𝑗𝑁

 is 324 

the total number of individuals with missing genotypes at locus 𝑗 in subpopulation 𝑙.  Given that 325 

∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑙𝑗𝑁

𝑖′=𝑓𝑙𝑗𝑁
+1

 does not depend on 𝑃∗, the problem of finding 𝜋(𝑊𝑁|𝑊ℴ, 𝑀1) 326 

involves the evaluation of 𝑚 integrals of the form: 327 
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∫ 𝑝(𝒮+1)𝑗
𝛼𝒮+1−1

∏{𝑝𝑙𝑗
𝑛𝑙𝑁

𝐵𝑗
+𝛼𝑙−1

(𝑟𝑙 − 𝑝𝑙𝑗)
𝑛𝑙𝑁

𝐴𝑗

}

𝒮

𝑙=1

𝑑𝒑𝑗

Ω𝑗
𝒓

, 

this integral corresponds to the expectation of the function ∏ (𝑟𝑙 − 𝑝𝑙𝑗)
𝑛𝑙𝑁

𝐴𝑗
𝒮
𝑙=1  of the random vector 𝒑𝑗 328 

taken over 𝜋(𝒑𝑗|𝒓). It does not have a closed form solution, but these integrals could be evaluated 329 

numerically in order to find a numerical approximation to 𝜋(𝑊𝑁|𝑊ℴ ,𝑀1). A similar situation occurs 330 

when 𝒓 is not known, that is, integrals with no closed form solutions have to be evaluated in order to 331 

find 𝜋(𝑊𝑁|𝑊ℴ, 𝑀1).  332 

Notice that matrices 𝑊 and 𝑊0 contain the same random variables but in different arrays. 333 

Consequently, 𝑊𝑁 and 𝑊ℴ are the same in both cases and the analytic form of 𝜋(𝑊0|𝒑0), can be 334 

easily derived from 𝜋(𝑊|𝑃∗) by setting 𝒮 = 1 and taking into account that the prior posed over 𝒑0 is 335 

the product of 𝑚 𝐵𝑒𝑡𝑎(𝛼, 𝛽) densities.  336 

𝑓(𝒚|𝑊ℴ, 𝑀0) = ∑𝑓(𝒚|𝑊0, 𝑀0)𝜋(𝑊𝑁|𝑊ℴ, 𝑀0)

𝒢𝑁

 

where 𝜋(𝑊𝑁|𝑊ℴ,𝑀0) = ∫ 𝜋(𝑊𝑁|𝑊ℴ , 𝒑0)𝜋(𝒑0)𝑑𝒑0Ω0
, Ω0 = [0,1] × [0,1] × ⋯× [0,1], an 337 

𝑚 −dimensional unit hypercube. 338 

𝜋(𝑊𝑁|𝑊ℴ, 𝒑0) = 2𝑛𝑁
𝐻
∏{𝑝𝑗

𝑛𝑁

𝐵𝑗

(1 − 𝑝𝑗)
𝑛𝑁

𝐴𝑗

∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆
𝑖′𝑗

, 𝑤𝐷
𝑖′𝑗

)

𝑛𝑁𝑗

𝑖′=𝑓𝑁𝑗+1

}

𝑚

𝑗=1

, 

then, using the fact that 𝑛𝑁

𝐵𝑗 + 𝑛𝑁

𝐴𝑗 = 2𝑓𝑁𝑗 (which is twice the total number of founders with missing 339 

genotypes at locus 𝑗), it follows that: 340 

𝜋(𝑊𝑁|𝑊ℴ, 𝑀0) =
2𝑛𝑁

𝐻

𝐵(𝛼, 𝛽)𝑚
∏ ∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆

𝑖′
, 𝑤𝐷

𝑖′
)

𝑛𝑁𝑗

𝑖′=𝑓𝑁𝑗+1

∫𝑝𝑗
𝑛𝑁

𝐵𝑗
+𝛼−1(1 − 𝑝𝑗)

𝑛𝑁

𝐴𝑗
+𝛽−1

𝑑𝑝𝑗

1

0

𝑚

𝑗=1
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=
2𝑛𝑁

𝐻

𝐵(𝛼, 𝛽)𝑚
∏{

Γ(𝑛𝑁

𝐵𝑗 + 𝛼)Γ (𝑛𝑁

𝐴𝑗 + 𝛽)

Γ(2𝑓𝑁𝑗 + 𝛼 + 𝛽)
∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑁𝑗

𝑖′=𝑓𝑁𝑗+1

}

𝑚

𝑗=1

, 

 341 

where 𝑛𝑁𝑗 is the total number of individuals with missing genotypes at locus 𝑗. Applying properties 342 

of the Gamma function (Casella and Berger, 2002; Kosmala 2004) this can be reduced to (see 343 

Appendix A): 344 

𝜋(𝑊𝑁|𝑊ℴ, 𝑀0) 

= 2𝑛𝑁
𝐻
∏{

∏ (𝑛𝑁

𝐵𝑗 − 𝑘 + 𝛼)
𝑛𝑁

𝐵𝑗

𝑘=1
∏ (𝑛𝑁

𝐴𝑗 − 𝑘 + 𝛽)
𝑛𝑁

𝐴𝑗

𝑘=1

∏ (2𝑓𝑁𝑗 − 𝑘 + 𝛼 + 𝛽)
2𝑓𝑁𝑗

𝑘=1

∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆
𝑖′𝑗

, 𝑤𝐷
𝑖′𝑗

)

𝑛𝑁𝑗

𝑖′=𝑓𝑁𝑗+1

} .

𝑚

𝑗=1

 

Therefore, in the case 𝒮 = 1, there is an explicit expression for 𝜋(𝑊𝑁|𝑊ℴ, 𝑀0).  345 

Notice that obtaining an approximation to the pdf 𝑓(𝒚|𝑊ℴ, 𝑀1) involves computation of 346 

𝑆𝑆𝑅, �̂�, |𝚺 + ∑ �̂�𝑗�̂�𝑗
′𝑚

𝑗=1 |
(𝑎+𝑚) 2⁄

 and |𝑊′𝑊| for every possible value of 𝑊𝑁. Thus, this could be 347 

computationally unfeasible even for small or moderate sample sizes and chip densities.   348 

Regarding interpretation of Bayes factors, their values can be classified according to the 349 

recommendations of Raftery (1996). This author proposed a scale to interpret Bayes factors based on 350 

a previous scale proposed by Jeffreys (1961); however, Raftery’s scale is more granular and more 351 

conservative (Raftery, 1996).  The scale is as follows: if 𝐵𝐹10< 1, the evidence is negative (i.e., 352 

against model 1), values between 1 and 3 indicate that evidence for model 1 is not worth more than a 353 

bare mention, values between 3 and 20 indicate positive evidence in favor of model 1, values 354 

between 20 and 150 indicate strong evidence in favor of model 1 and values greater than 150 suggest 355 

very strong evidence for model 1.  356 

2.3.2 Deviance information criterion 357 
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As in part I, another criterion used to compare models is the Deviance Information Criterion (DIC; 358 

Spiegelhalter et al., 2002). It combines a measure of goodness of fit based on the posterior 359 

distribution with a penalty for model complexity. In part I it was shown that for our family of models 360 

𝐷𝐼𝐶 can be written as the sum of two components, one computed from the 𝒚 component of the 361 

likelihood and the other from the 𝑊 component of the likelihood: 362 

𝐷𝐼𝐶 = −2 log 𝑓(𝒚|𝑊ℴ, �̂�𝐵
𝑁 , �̂�𝐵, �̂�𝐵) + 2𝑝𝐷𝐼𝐶−𝒚 − 2 log 𝑓(𝑊ℴ|�̂�𝐵

𝑁 , �̂�𝐵
∗) + 2𝑝𝐷𝐼𝐶−𝑊 

: = 𝐷𝐼𝐶𝒚 + 𝐷𝐼𝐶𝑊 

where 𝑝𝐷𝐼𝐶−𝒚 = 2(log 𝑓(𝒚|𝑊ℴ, �̂�𝐵
𝑁 , �̂�𝐵, �̂�𝐵) − 𝐸𝑊𝑁,𝒈,𝑅,𝑃∗|𝒚,𝑊ℴ[log 𝑓(𝒚|𝑊,𝒈, 𝑅)]) and  𝑝𝐷𝐼𝐶−𝑊 =363 

2(𝑓(𝑊ℴ|�̂�𝐵
𝑁 , �̂�𝐵

∗) − 𝐸𝑊𝑁,𝑃∗|𝒚,𝑊ℴ[𝑓(𝑊ℴ|𝑊𝑁 , 𝑃∗)]). 364 

2.4 Analysis of simulated data 365 

With the aim of providing an example of the implementation of some of the proposed models and to 366 

compare their performance, the two small simulated datasets described in part I were used here as 367 

well. For the sake of completeness some minor details about the simulation are provided. After 368 

simulating a historical population using a forward-in-time approach, subpopulations were created 369 

using individuals pertaining to the historical population as founders. Each subpopulation had 370 

different selection criteria, selection pressures, and mating systems. Dataset 1 was comprised of three 371 

subpopulations with different number of generations, migration was allowed and the heritability of 372 

the trait was high. Dataset 2 consisted of two subpopulations with two generations each, migration 373 

was not allowed and the heritability of the trait was low (see Table 2 of companion paper for further 374 

details). These simulations were performed using the software QMSIm (Sargolzaei and Schenkel, 375 

2013). For further details, see part I.  376 

These datasets were used to carry out analyses using the following models.  Spike and slab prior and 377 

heterogeneous marker effect covariance matrices with 𝜋0 = 0.5, 𝜋0 = 0.9 and 𝜋0 = 0.2 and their 378 

null versions. All models assumed homoscedastic residuals. In the results and discussion sections, 379 
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results from the models fitted to these datasets in part I will also be considered. Models fit in part I 380 

were Multivariate Gaussian prior and homogeneous marker effect covariance matrices, Multivariate 381 

Gaussian prior and heterogeneous marker effect covariance matrices, both with homoscedastic 382 

residuals. Not all models were used to analyze these data because of the following reasons. Firstly, 383 

taking into account that simulations did not consider heteroscedastic residuals, only models with 384 

homoscedastic residuals were fit. Secondly, some models have computational issues that make their 385 

implementation intractable. This is the case of models with a spike and slab prior over 𝒈 with 386 

homogeneous marker effect covariance matrices. In these models, the full conditional distribution of 387 

the covariance matrix 𝐺0 involves all the combinations of 𝑖 out of 𝑚 markers with null effects for 388 

𝑖 = 0,1, … ,𝑚; therefore, it is not easy to sample from 𝜋(𝐺0|𝐸𝑙𝑠𝑒) due to the number of 389 

combinations being exponential in 𝑚. As shown in section 2.2.2, for the model with heterogeneous 390 

marker effect covariance matrices, it is easy to sample from the full conditional distribution of the 391 

covariance matrix of each marker locus which makes its implementation possible. 392 

 Data were analyzed using the MCMC algorithm described in part I assuming that 𝒓 = (
1

𝒮
, … ,

1

𝒮
) and 393 

using the product of 𝒮 independent uniform (0,
1

𝒮
) distributions as proposal for 𝜋(𝑃|𝐸𝑙𝑠𝑒). The 394 

following criteria for model comparison were computed: approximate Bayes factors and fractional 395 

Bayes factors derived in section 2.3.1, the squared correlation between predicted breeding values and 396 

phenotypes in the testing populations (predictive ability), squared correlations between true and 397 

predicted breeding values in the testing and training populations (accuracy) and DIC.  398 

The hyper-parameter 𝜋0 was assumed to be given. In practice, values close to 1 are used reflecting 399 

the belief that many of the SNP do not have an effect. Alternatively, this hyperparameter can be 400 

tuned or a prior can be posed over it in order to reflect uncertainty. Here, three values of this 401 

parameter were implemented in the analyses, 0.9, 0.5 and 0.2. This does not correspond to a tuning 402 

procedure; it was done only for illustrative purposes. The three values were chosen to reflect 403 
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situations in which the prior belief is that a high proportion of marker loci do not have an effect 404 

(𝜋0 = 0.9), approximately half of them have an effect (𝜋0 = 0.5), and a high proportion of markers 405 

have an effect (𝜋0 = 0.2). In dataset 2, the full genotypes of three individuals (one founder from 406 

each subpopulation and a non-founder from subpopulation 1) were not included in the analysis in 407 

order to simulate the case of missing genotypes.  408 

For each analysis, 20.000 iterations were run, considering the first 10.000 as burn-ins. In-house R 409 

scripts (R Core Team, 2015) were created to accommodate spike and slab priors and to compute 410 

Bayes factors and Fractional Bayes factors as well as DIC. Analyses were performed using the 411 

University of Florida’s high performance computing cluster.   412 

3. Results 413 

3.1 Bayes factors  414 

Using the expressions derived in section 2.3.1, approximate Bayes factors and fractional Bayes 415 

factors were computed for dataset 1. Recall that 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝐺𝑊 = 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝐺𝑊
∗ = 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝑆𝑆𝑊 = 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑆𝑆𝑊
∗ ; 416 

therefore, the same expression permits the comparison of models  𝑀1𝐺 , 𝑀1𝐺
∗ , 𝑀1𝑆𝑆 and 𝑀1𝑆𝑆

∗  with 417 

their corresponding null models. Because of the same reason that makes the sampling from the full 418 

conditional distribution of 𝐺0 under model 𝑀1𝑆𝑆 difficult, approximate Bayes factors for models with 419 

spike and slab priors were not computed.  According to the Raftery’s scale, 𝐵𝐹̅̅ ̅̅
10𝐺𝑊 and  𝐵𝐹̅̅ ̅̅

10𝐺𝑊
∗  420 

suggested very strong evidence in favor of all full models (they were greater than 150) in dataset 1. 421 

The same result was found when using the fractional Bayes factor which was computed with 𝑐 =422 

0.5.  423 

In dataset 2, computation of Bayes factors was not possible because 𝑚 > 𝑛1. Furthermore, even 424 

though only three individuals were assumed to be non-genotyped and the number of markers was 425 

small, computation of the fractional Bayes factor was not performed due to its computational 426 

demands. All evidence provided by the approximate fractional Bayes factors computed using the 427 
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posterior means of 𝑊𝑁 (which could be seen as a sort of plug-in criteria) was against the full models, 428 

that is, all fractional Bayes factors were smaller than 1.  429 

3.2 DIC, predictive ability and accuracies of predicted breeding values  430 

In dataset 1, 𝐷𝐼𝐶𝑊 is common to all full models and to all null models, i.e., there are only two values. 431 

It is due to the fact that there were no missing genotypes (see part I for details). The values were 432 

4717671 for full models, and 6589105 for null models, that is, information coming from observed 433 

genotypes provided evidence in favor of the full models. It means that in this population, genotypic 434 

data provided support for the assumption of heterogeneous and correlated allelic frequencies when 435 

comparing it with the competing assumption that allelic frequencies are the same in all 436 

subpopulations.   437 

Tables 2 and 3 contain DIC values for datasets 1 and 2 respectively, whereas Table 4 shows 438 

predictive abilities and accuracies for the two datasets. For Tables 2 to 4, the following is the 439 

meaning of abbreviations for the different models fitted to datasets 1 and 2: 𝑀1𝐺= full model with 440 

Multivariate Gaussian prior and homogeneous marker effect covariance matrices, 𝑀1𝐺
∗  = full model 441 

with Multivariate Gaussian prior and heterogeneous marker effect covariance matrices, 𝑀1𝑆𝑆0.5
∗  = full 442 

model with spike and slab prior, 𝜋0 = 0.5 and heterogeneous marker effect covariance matrices, 443 

𝑀1𝑆𝑆0.9
∗  = full model with spike and slab prior, 𝜋0 = 0.9 and heterogeneous marker effect covariance 444 

matrices, 𝑀1𝑆𝑆0.2
∗  = full model with spike and slab prior, 𝜋0 = 0.2 and heterogeneous marker effect 445 

covariance matrices. The remaining models with subindex 1 replaced by 0 correspond to null 446 

versions of the corresponding full models. 447 

Table 2 𝒚 component and total DIC for dataset 1 448 

Model 𝑫𝑰𝑪𝒚 Total DIC 

𝑀1𝐺 33702.55 4751373.55 

𝑀1𝐺
∗  11599.05 4729270.05 

𝑀1𝑆𝑆0.5
∗  11604.09 4729275.09 
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𝑀1𝑆𝑆0.9
∗  11648.94 4729319.94 

𝑀1𝑆𝑆0.2
∗  11437.05 4729108.05 

𝑀0𝐺 15396.32 6604501.32 

𝑀0𝐺
∗  13008.42 6602113.42 

𝑀0𝑆𝑆0.5
∗  12502.17 6601607.17 

𝑀0𝑆𝑆0.9
∗  12625.29 6601730.29 

𝑀0𝑆𝑆0.2
∗  12137.88 6601242.88 

 449 

Therefore, according to the component of total DIC computed from the 𝒚 component of the 450 

likelihood, except for the models with homogeneous marker effect covariance matrices (variances), 451 

full models should be preferred over their null versions in this dataset. When considering total DIC, 452 

all full models had a smaller DIC. Additionally, the model with the smallest DIC, and therefore the 453 

one to be preferred was model 𝑀0𝑆𝑆𝐻0.2 followed by model 𝑀1𝐺𝐻. Notwithstanding, the DIC values 454 

for models  𝑀1𝐺𝐻, 𝑀1𝑆𝑆𝐻0.5, 𝑀1𝑆𝑆𝐻0.9 and 𝑀1𝑆𝑆𝐻0.2 were close.  455 

Table 3 𝒚 component, 𝑊 component and total DIC for dataset 2 456 

Model 𝑫𝑰𝑪𝒚 𝑫𝑰𝑪𝑾 Total DIC 

𝑀1𝐺 1314.0 38367.4 39681.4 

𝑀1𝐺
∗  1328.8 38356.4 39684.2 

𝑀1𝑆𝑆0.5
∗  1313.6 38394.9 39708.5 

𝑀1𝑆𝑆0.9
∗  1304.8 38382.7 39687.5 

𝑀1𝑆𝑆0.2
∗  1323.4 38373.8 39697.2 

𝑀0𝐺 1365.6 38180.3 39545.9 

𝑀0𝐺
∗  1370.1 38179.0 39549.1 

𝑀0𝑆𝑆0.5
∗  1350.4 38173.4 39523.8 

𝑀0𝑆𝑆0.9
∗  1361.2 38195.8 39557.0 

𝑀0𝑆𝑆0.2
∗  1245.5 38178.4 39432.9 

 457 

In this dataset the two components of the DIC values and therefore DIC values were similar for all 458 

models. The 𝒚 components of DIC were smaller for the full models except for the model with spike 459 
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and slab prior for 𝒈 and 𝜋0 = 0.2.  Conversely, the 𝑊 components were smaller for null models as 460 

well as total DIC values.  461 

Table 4 Predictive abilities and accuracies in datasets 1 and 2 462 

Model Predictive Ability 
Accuracy in testing 

population 

Accuracy in Training 

population 

Dataset1 Dataset 2 Dataset1 Dataset2 Dataset1 Dataset2 

𝑀1𝐺 0.29 0.019 0.27 0.04 0.32 0.17 

𝑀1𝐺
∗  0.76 0.016 0.83 0.03 0.94 0.21 

𝑀1𝑆𝑆0.5
∗  0.81 0.017 0.88 0.04 0.92 0.19 

𝑀1𝑆𝑆0.9
∗  0.81 0.018 0.88 0.04 0.90 0.14 

𝑀1𝑆𝑆0.2
∗  0.79 0.016 0.86 0.03 0.94 0.20 

𝑀0𝐺 0.53 0.004 0.50 0.07 0.55 0.24 

𝑀0𝐺
∗  0.83 0.013 0.88 0.05 0.88 0.23 

𝑀0𝑆𝑆0.5
∗  0.72 0.003 0.77 0.06 0.86 0.24 

𝑀0𝑆𝑆0.9
∗  0.69 0.008 0.76 0.05 0.85 0.20 

𝑀0𝑆𝑆0.2
∗  0.72 0.009 0.79 0.05 0.79 0.24 

 463 

According to the behavior of predictive abilities in dataset 1, the performance of the different models 464 

was similar except for 𝑀1𝐺. The model with the best predictive ability was model  465 

𝑀0𝐺
∗  while model 𝑀1𝐺 had the worst. The accuracies in testing dataset 1 showed a pattern similar to 466 

that followed by predictive abilities. The performance of the models was similar except for model 467 

𝑀1𝐺 which made the poorest job when predicting breeding values and model 𝑀0𝐺 which had the 468 

worst performance of all null models. The highest accuracies of predicted breeding values in testing 469 

population 1 were observed for models 𝑀1𝑆𝑆0.5
∗ , 𝑀1𝑆𝑆0.2

∗ ,  and  𝑀0𝐺
∗ . Finally, the accuracies of 470 

predicted breeding values in the training population showed the same behavior than the other 471 

measures, a poorer performance for models with homogeneous covariance matrix (or variance for 472 

null models) of marker effects with model 𝑀1𝐺 having the smallest accuracy. Models with the 473 

highest accuracies were 𝑀1𝐺
∗  and 𝑀1𝑆𝑆0.2

∗ .  474 
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For dataset 2, predictive abilities and accuracies in the testing sets were very low. Accuracies in 475 

training set were slightly larger. All these measures based on squared correlations did not show 476 

marked differences between models. Full models had higher predictive abilities and smaller 477 

accuracies in testing and training sets.  478 

4. Discussion 479 

 4.1 General features of the models 480 

The set of hierarchical Bayesian linear regression models for simultaneous genome-wide prediction 481 

in several subpopulations accounting for randomness of genotypes developed in part I was extended 482 

by incorporating spike and slab priors. The slab components of the conditional priors for marker 483 

effects were 𝒮-variate Gaussian distributions considering homogeneous or heterogeneous covariance 484 

matrices (or variances) and the spike component was multivariate mass at zero for full models and 485 

univariate mass at zero for null models. Then, in order to provide general criteria for comparison of 486 

the proposed models with some null versions of them, approximate Bayes factors and fractional 487 

Bayes factors were derived under the assumption that 𝑛𝑙 ≥ 𝑚 ∀ 𝑙 = 1,2,… , 𝒮 and the possible use of 488 

fractional Bayes factors for the case 𝑚 > 𝑛 was briefly discussed. These Bayes factors and fractional 489 

Bayes factors were approximations because some of the multiple integrals required to find the 490 

marginal distribution of data given a model were approximated via the Laplace method.  491 

Spike and slab priors assign positive mass at zero; therefore, models considering this class of priors 492 

can be used for variable selection and they induce a stronger shrinkage towards zero (Gianola, 2013; 493 

Xu and Ghosh, 2015). Our spike and slab models can perform variable selection at the marker level, 494 

that is, it is assumed that either a given marker has effects in all subpopulations or it does not have 495 

effect in any subpopulation. In statistics, this is known as sparsity at the group level (Xu and Ghosh, 496 

2015). Xu and Ghosh (2015) reparametrized the coefficients of the multiple linear regression as the 497 

product of a positive diagonal matrix and a vector, i.e., 𝑔𝑗 ≔ 𝑉𝑔𝑏𝑗, 𝑗 = 1,2,… ,𝑚. Then, they posed 498 



29 
 

independent univariate spike and slab priors for the elements of the positive diagonal matrix and 499 

independent multivariate spike and slab priors for 𝑏𝑗. This strategy permits to induce two kinds of 500 

sparsity, at group level and within group. Thus, an extension of our models that would induce 501 

sparsity at the group (i.e., marker) and within group levels would be to consider conditional priors 502 

similar those developed in Xu and Ghosh (2015). Therefore, a given marker would have positive 503 

probability of having null effects only in a proper subset of subpopulations. 504 

Uncertainty on the hyper-parameter 𝜋0 can be accounted for by posing a prior over it. A usual choice 505 

is a Beta distribution or its special case the Uniform(0,1). Implementation of this approach in the 506 

models presented here is straightforward. It implies adding one more level in the hierarchy. In this 507 

case, the question arising is the impact of this on inferences. Using the Kullback-Leibler divergence, 508 

Lehmann and Casella (1998, Theorem 5.7) provide theoretical justification for the idea that 509 

parameters that are in lower levels of the hierarchy have a smaller impact on inference. 510 

Notwithstanding, this does not mean that the impact of this extra level in the hierarchy is negligible 511 

and therefore, if the prior knowledge about 𝜋0 is poor or null it may be worth to account for 512 

uncertainty. As mentioned before, alternatively this parameter can be tuned.  513 

Regarding approximate Bayes factors and fractional Bayes factor, those derived here were obtained 514 

via Laplace approximation which has an error of order 𝑂(𝑛−1)  (Ghosh et al., 2006). This means that 515 

the error of approximation is bounded from above by a constant times 𝑛−1. There is a refinement 516 

based on the Laplace method that allows obtaining an approximation with error of order  𝑂(𝑛−2) 517 

when 𝑞(𝜽) is a positive function (Tierney and Kadane, 1986), which is always satisfied in the 518 

context of this study (see section 2.3.1). This refinement could be implemented to obtain more 519 

accurate approximations of Bayes factors and fractional Bayes factors.  520 

Other authors, e.g., Raftery (1996) and Lewis and Raftery (1997) have also used the Laplace method 521 

or modifications of it (DiCiccio et al., 1997) to derive approximate Bayes factors. The following 522 
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comments regarding the algebraic expressions of Bayes factors and fractional Bayes factors are made 523 

for a given dataset, that is, given 𝒚, 𝑛,𝑚 and 𝑊ℴ. It is well known that for nested models (i.e., the 524 

null model corresponds to the full model with some parameters set to zero) 𝑆𝑆𝑅0 > 𝑆𝑆𝑅 (Searle, 525 

1971). In this case the models are not nested; therefore, this standard result cannot be used. However, 526 

Result 1 establishes the relationship between 𝑆𝑆𝑅0 and 𝑆𝑆𝑅 for our models. 527 

Thus, by Result 1, the following component of the algebraic expression for 𝐵𝐹10𝐺𝑊 is always greater 528 

or equal than 1: (
𝑆𝑆𝑅

𝑆𝑆𝑅0
)

−(
𝑛+𝑣+2

2
)

 and as a consequence it never provides evidence against model 1. 529 

Conversely, for 𝑛 ≥ 2 the following component is always smaller or equal than 1, that is, it never 530 

provides evidence in favor of model 1: exp(
−𝑛𝜏2

2
(

1

𝑆𝑆𝑅
−

1

𝑆𝑆𝑅0
)) (

2

𝑛
)

𝑚(𝒮−1)

2
. Of course, the strength of 531 

the evidence in favor or against model 1 (when 𝑆𝑆𝑅0 > 𝑆𝑆𝑅) depends on the observed data. Both 532 

expressions depend on the data and the hyper-parameters assigned to the residual variance. On the 533 

other hand, the following expression 534 

(
|𝑊0′𝑊0|

|𝑊′𝑊|
)

1
2

= (
|𝑊1′𝑊1 + 𝑊2′𝑊2 + ⋯+ 𝑊𝒮′𝑊𝒮|

|𝑊1′𝑊1||𝑊2′𝑊2|⋯ |𝑊𝒮′𝑊𝒮|
)

1
2

, 

depends only on the data. However, there are no general results establishing the relationship between 535 

the determinants inside the parenthesis and this is why it cannot be established if this component is 536 

always smaller or greater than 1. Of course, these determinants are always positive because of the 537 

assumption that all submatrices 𝑊1, … ,𝑊𝒮 are of full column rank.  Thus, if this component favors 538 

model 1 or not depends on each dataset. The following component depends on both, the priors and 539 

the data: 540 

𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

(∏
Γ(

𝑎 + 𝑚 + 1 − 𝑙
2 )

Γ (
𝑎 + 1 − 𝑙

2 )

𝒮

𝑙=2

)(
|𝚺 + ∑ �̂�𝑗�̂�𝑗

′𝑚
𝑗=1 |

𝑏 + ∑ �̂�0𝑗
2𝑚

𝑗=1

)

−(
𝑎+𝑚

2
)

. 



31 
 

The relative value of this component with respect to 1 cannot be established. Thus, as with the 541 

previous component, its contribution to the evidence in favor or against model 1 varies with each 542 

dataset. A similar situation occurs with 𝐵𝐹10𝐺𝑊
∗  and 𝐵𝐹10𝐺𝑊𝐻

∗ , while for 𝐵𝐹10𝑆𝑆𝑊 and 𝐵𝐹10𝑆𝑆𝑊
∗  there 543 

are new terms induced by the spike and slab priors posed over 𝒈 and 𝒈0 whose relative value with 544 

respect to 1 depends on the observed data. However, the following statement can be made for the 545 

term involving gamma functions. In its positive domain, the Gamma function has a minimum point at 546 

approximate coordinates (1.461, 0.885) (Kosmala, 2004), this implies that after 1.461 the function 547 

is increasing. Furthermore as 𝑥 ↓ 0, Γ(𝑥) → ∞. Note that for 𝑙 = 2,3,… , 𝒮 and 𝑎 > 𝒮 − 1 (recall that 548 

the inverse Wishart distribution requires this condition) 
𝑎+𝑚+1−𝑙

2
>

𝑚

2
  and 

𝑎+1−𝑙

2
> 0. Therefore, 549 

given that in genome-wide prediction 𝑚 has order of magnitude of at least 102, for values of 𝑎 such 550 

that 𝑎 + 1 − 𝒮 ≥ 1.461  this term is always greater than 1.  551 

Regarding fractional Bayes factors, as mentioned before,  552 

𝐹𝐵𝐹10𝐺𝑊 = 𝐹𝐵𝐹10𝐺𝑊
∗ = 𝐹𝐵𝐹10𝑆𝑆𝑊 = 𝐹𝐵𝐹10𝑆𝑆𝑊

∗  

= 𝑐𝑚(𝒮−1) 2⁄ (
𝑆𝑆𝑅

𝑆𝑆𝑅0
)

𝑛(𝑐−1)
2 𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

 

due to cancellation of terms making approximate Bayes factors different. Recall that 𝑐 ∈ (0,1). As 553 

𝑐 ↑ 1 and 𝑚 and 𝑛 remain constant the fractional Bayes factor approaches 
𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄ . For 𝑐 ∈ (0,1) 554 

the exponent 
𝑛(𝑐−1)

2
 is always negative and therefore (

𝑆𝑆𝑅

𝑆𝑆𝑅0
)

𝑛(𝑐−1)

2
 never provides evidence against 555 

model 1. On the contrary, 𝑐𝑚(𝒮−1) 2⁄  provides evidence against model 1; however, as noted before, 556 

given 𝑚 and 𝒮, as 𝑐 ↑ 1 the evidence provided by this component is negligible because the whole 557 

expression approaches 1. 558 
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Some recommendations to choose the value of 𝑐 are given in O’Hagan (1994) and Ghosh et al. 559 

(2006). Finally, the behavior of 
𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄  depends on the magnitude of the difference between 𝑆𝑆𝑅 560 

and 𝑆𝑆𝑅0 and the number of subpopulations.  561 

An important aspect of these approximations is that they require 𝑛𝑙 ≥ 𝑚 ∀ 𝑙 = 1,2,… , 𝒮. As 562 

discussed in section 2.3.1, the fast growth in the number of genotyped individuals may make this 563 

assumption possible for SNP chips of moderate size (i.e., 50 to 100k). However, the availability of 564 

denser chips and full sequences implies that 𝑚 also grows. On one hand, it is said that the higher the 565 

number of SNP the better the accuracy of genome-wide predictions because more LD between 566 

markers and QTL is “captured”. On the other hand, some studies with real data such as Vázquez et 567 

al. (2010) in Holstein cattle and de los Campos et al. (2013) in humans have found that using subsets 568 

of SNP yields reasonable accuracy of genome-wide predictions. Moreover, the curve relating 569 

accuracy to marker density has been reported to reach a plateau for traits as height in humans 570 

(Vázquez et al., 2012) which suggests that in some cases not too much accuracy is lost when 571 

selecting subsets of SNP using some criteria.  572 

Finally, the ability of our models to include non-genotyped individuals allows having a larger 𝑛, 573 

which combined with the factors mentioned before, increases the likelihood of having situations with 574 

𝑛𝑙 ≥ 𝑚 ∀ 𝑙 = 1,2, … , 𝒮.  The approximate fractional Bayes factor 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑊 could be used for the case 575 

𝑚 > 𝑛 but there is no formal mathematical justification for it. A brief discussion with an outline of 576 

the steps required to justify its use in such case is provided in Appendix C. Thus, the use of this 577 

expression for model comparison in the non-full rank case has to be seen as an ad hoc approach 578 

because there is no formal proof of its validity yet. Therefore, the question if the approximate 579 

fractional Bayes factor derived here is also valid for the non-full rank case remains to be formally 580 

answered. Thus, refuting this result or establishing a rigorous proof of it is an open problem.  581 

4.2 Simulation results 582 
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Our small simulations correspond to two populations comprised by three and two subpopulations 583 

respectively. One trait per population was simulated. In both cases subpopulations had different 584 

mating designs, selection criteria, selection pressures and heritabilities. However, these populations 585 

display two contrasting scenarios. The first one (dataset 1) corresponded to a population comprised 586 

of three subpopulations that diverged by several generations, heritabilities were high, migration was 587 

allowed, the number of individuals in each subpopulation was larger than the number of SNP and 588 

there were no missing genotypes. Conversely, the second scenario (dataset 2) considered a 589 

population comprised by two subpopulations that diverged by only two generations, trait 590 

heritabilities were low, there was no migration, the number of individuals was smaller than the 591 

number of SNP in one subpopulation (hence the model was not of full rank) and there were missing 592 

genotypes.  593 

In dataset 1, predictive ability did not suggest a superior predictive capability of full models, that is, 594 

models accounting for potential heterogeneity induced by the existence of subpopulations. As shown 595 

in Table 4, its values were very similar across models (except for the model with a homogeneous 596 

covariance matrix of marker effects which had considerably lower predictive ability). In this dataset, 597 

the number of marker loci considered in the analysis was equal to the number of QTL; therefore, it 598 

could be expected that the smallest value of 𝜋0 had the best performance. The different squared 599 

correlations between predicted and observed values yielded similar results for the three values of 𝜋0 600 

used here with a slightly better performance for the model with the smallest value of 𝜋0. While this 601 

set of correlations did not provide conclusive evidence in favor of the full models, the DIC, Bayes 602 

factors and fractional Bayes factors favored the full models.  603 

Due to the low heritabilities in the two subpopulations forming dataset 2, predictive ability and 604 

accuracies were very low (Table 4). In this dataset full models had slightly higher predictive abilities 605 

than their null versions. Conversely, accuracies of predicted breeding values in training and 606 
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validation datasets suggested a tiny superiority of null models. Total DIC and  607 

𝐷𝐼𝐶𝑊 provided evidence in favor of null models, but differences were not substantial. In addition, the 608 

“plug-in” fractional Bayes factors also gave evidence in favor of null models. As in part I, the 609 

performance of the fitted models was more similar in dataset 2 than in dataset 1.  610 

A broad observation is that when combining the results obtained here with those obtained in the 611 

companion paper, the overall behavior observed in part I was kept. In general, what was observed in 612 

these small simulations was that under the biological scenario simulated in dataset 1, full models 613 

tended to have better performance, whereas in the setting simulated in dataset 2, null models tended 614 

to outperform full models. In all cases differences were small (except for models  𝑀1𝐺 and 𝑀0𝐺 in 615 

dataset 1). Therefore, after including the outputs of the spike and slab models, our results are still in 616 

agreement with those found by Olson et al. (2012), Makgahlela et al. (2013), de los Campos et al. 617 

(2015) and Lehermeier et al. (2015).  618 

5. Conclusions 619 

This study enlarges the family of hierarchical Bayesian models for across population genome-wide 620 

prediction accounting for randomness of genotypes derived in the companion paper (part I) by 621 

considering the so called spike and slab priors (multivariate and univariate) for marker allele 622 

substitution effects. This class of priors allows a stronger shrinkage towards zero and variable 623 

selection at group level. This development concedes even more flexibility to our family of models 624 

because the user will have more modelling options that permit to cope with a wider spectrum of 625 

biological scenarios. For example, for traits controlled by genes with major effects or controlled by a 626 

small number of genes, using spike and slab priors is theoretically advantageous. 627 

The approximate Bayes factors and fractional Bayes factors derived here can be used to complement 628 

other criteria such as measures of accuracy of predicted breeding values and correlations between 629 

predicted breeding values and phenotypes when comparing models. These criteria were derived 630 
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under the assumption of a full rank model which is currently satisfied in certain populations and we 631 

believe that it will become an increasingly more frequent situation as more individuals are 632 

genotyped. The invariance of our approximate fractional Bayes factor to the choice of the generalized 633 

inverses of 𝑊′𝑊 and 𝑊0
′𝑊0 seems promising because it allows the use of this criterion in the non-634 

full rank case. However, a formal justification or rejection of this criterion remains an open problem. 635 

For now, this criterion might be used ad hoc, keeping always in mind the risks that it implies.  636 

In addition to all the possible extensions and refinements of our models discussed in the companion 637 

paper, the modification of the spike and slab priors presented here to allow sparsity within group 638 

(marker) is another aspect that opens a path for further research.  639 
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Appendix A: Joint posteriors, full conditionals and details of some derivations 730 

 731 

Joint posteriors  732 

Spike and slab prior for 𝒈, homogeneous marker effect covariance matrix and homoscedastic 733 

residuals 734 

𝜋(𝒈, 𝜎2,𝑊𝑁 , 𝐺, 𝑃|𝒚,𝑊ℴ) ∝ (𝜎2)−
𝑛
2 exp (

−1

2𝜎2
(𝒚 − 𝑊𝒈)′(𝒚 − 𝑊𝒈)) 

× ∑∑𝐼𝛿𝑖𝑙
𝜋0

𝑖 (1 − 𝜋0)
𝑚−𝑖 ∏ 𝑀𝑉𝑁(𝒈𝑘; 𝟎, 𝐺0)

𝑘:𝑔𝑘∈𝛿𝑖𝑙0
𝑐

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

 

× |𝐺0|−
1
2
(𝑎+𝒮+1) exp (

−1

2
𝑡𝑟(𝚺(𝐺0)−1)) 

× (𝜎2)−(
𝑣
2
+1) exp(

−𝜏2

2𝜎2
) 

× 𝜋(𝑊|𝑃∗)𝜋(𝑃∗). 

Spike and slab prior for 𝒈, heterogeneous marker effect covariance matrix and homoscedastic 735 

residuals 736 

𝜋(𝒈, 𝜎2,𝑊𝑁 , 𝐺, 𝑃|𝒚,𝑊ℴ) ∝ (𝜎2)−
𝑛
2 exp (

−1

2𝜎2
(𝒚 − 𝑊𝒈)′(𝒚 − 𝑊𝒈)) 

× ∑∑𝐼𝛿𝑖𝑙
𝜋0

𝑖 (1 − 𝜋0)
𝑚−𝑖 ∏ 𝑀𝑉𝑁(𝒈𝑘; 𝟎, 𝐺𝑘)

𝑘:𝑔𝑘∈𝛿𝑖𝑙0
𝑐

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

 

× ∏|𝐺𝑗|
−

1
2
(𝑎+𝒮+1)

𝑚

𝑗=1

exp(
−1

2
𝑡𝑟(𝚺𝐺𝑗

−1)) , 

× (𝜎2)−(
𝑣
2
+1) exp(

−𝜏2

2𝜎2
) 

× 𝜋(𝑊|𝑃∗)𝜋(𝑃∗) 

 737 

Full conditionals 738 

Spike and slab prior for 𝒈 739 

Derivations for the heterogeneous marker effect covariance matrix model are presented. The 740 

homogeneous marker effect covariance matrix model is simply a special case with covariance 741 

matrices satisfying:  𝐺1 = 𝐺2 = ⋯ = 𝐺𝑚 = 𝐺0. 742 

𝜋(𝒈|𝐸𝑙𝑠𝑒) ∝ ∑∑[𝐼𝛿𝑖𝑙
𝜋0

𝑖 (1 − 𝜋0)
𝑚−𝑖 ∏ 𝑀𝑉𝑁(𝒈𝑘; 𝟎, 𝐺𝑘)

𝑘:𝑔𝑘∈𝛿𝑖𝑙0
𝑐

]

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

× 𝑓(𝒚|𝑊,𝒈, 𝜎2) 
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∝ exp (−
1

2
(𝒈′𝑊′𝑊𝒈 − 2𝒈′𝑊′𝒚))∑∑𝐼𝛿𝑖𝑙

𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖 ∏ exp(−
1

2
𝒈′𝐺𝑘

−1𝒈)

𝑘:𝑔𝑘∈𝛿𝑙𝑖0
𝑐

(𝑚
𝑖 )

𝑙=1

𝑚

𝑖=0

. 

Notice that under a particular 𝛿𝑖𝑙: 743 

𝒈′𝑊′𝑊𝒈 = ∑∑ 𝒈𝑗
′𝑊𝑗

′𝑊ℎ𝒈ℎ

𝑚

ℎ=1

𝑚

𝑗=1

 

= ∑𝒈𝑗
′𝑊𝑗

′ ∑ 𝑊ℎ𝒈ℎ

𝑚

ℎ=1

𝑚

𝑗=1

 

= ∑ 𝒈𝑘
′ 𝑊𝑘

′

𝑘:𝒈𝑘∈𝛿𝑖𝑙0

∑ 𝑊ℎ𝒈ℎ

𝑚

ℎ=1

+ ∑ 𝒈𝑘
′ 𝑊𝑘

′

𝑘:𝒈𝑘∈𝛿𝑖𝑙0
𝑐

∑ 𝑊ℎ𝒈ℎ

𝑚

ℎ=1

 

but for 𝒈𝑘 ∈ 𝛿𝑖𝑙0, 𝒈𝑘 = 0, hence, under 𝛿𝑖𝑙: 744 

𝒈′𝑊′𝑊𝒈 = ∑ 𝒈𝑘
′ 𝑊𝑘

′

𝑘:𝒈𝑘∈𝛿𝑖𝑙0
𝑐

∑ 𝑊ℎ𝒈ℎ

𝑚

ℎ:𝒈𝑘∈𝛿𝑖𝑙0
𝑐

 

= ∑ ∑ 𝒈𝑘
′ 𝑊𝑘

′𝑊ℎ𝒈ℎ

ℎ:𝒈𝑘∈𝛿𝑖𝑙0
𝑐𝑘:𝒈𝑘∈𝛿𝑖𝑙0

𝑐

 

= 𝒈𝛿𝑖𝑙0
𝑐

′ 𝑊𝛿𝑖𝑙0
𝑐
′ 𝑊𝛿𝑖𝑙0

𝑐 𝒈𝛿𝑖𝑙0
𝑐  

where 𝒈𝛿𝑖𝑙0
𝑐 = (𝒈𝑘1

′ ⋯ 𝒈𝑘𝑚−𝑖

′ )′, 𝑘: 𝒈𝑘 ∈ 𝛿𝑖𝑙0
𝑐  corresponds to the vector of dimension 𝒮(𝑚 − 𝑖) 745 

with the non-null marker effects under 𝛿𝑖𝑙, 𝑊𝛿𝑖𝑙0
𝑐
′  is the submatrix of the design matrix corresponding 746 

to 𝒈𝛿𝑖𝑙0
𝑐 . 747 

Similarly 748 

𝒈′𝑊′𝒚 = ∑ 𝒈𝑘
′ 𝑊𝑘

′

𝑘:𝒈𝑘∈𝛿𝑖𝑙0
𝑐

𝒚 

= 𝒈𝛿𝑖𝑙0
𝑐

′ 𝑊𝛿𝑖𝑙0
𝑐
′ 𝒚, 

in addition, notice that: 749 

∑ 𝒈𝑘
′ 𝐺𝑘

−1𝒈𝑘

𝑘:𝒈𝑘∈𝛿𝑖𝑙0
𝑐

= 𝒈𝛿𝑖𝑙0
𝑐

′ 𝐺𝛿𝑖𝑙0
𝑐

−1 𝒈𝛿𝑖𝑙0
𝑐  

where  750 

𝐺𝛿𝑖𝑙0
𝑐

−1 = (

𝐺𝑘1

−1

⋱
𝐺𝑘𝑚−𝑖

−1
) 

therefore, 751 

𝜋(𝒈|𝐸𝑙𝑠𝑒) ∝ 

∑∑𝐼𝛿𝑖𝑙
𝜋0

𝑖 (1 − 𝜋0)
𝑚−𝑖

(𝑚
𝑖 )

𝑙=1

exp (−
1

2
(𝒈𝛿𝑖𝑙0

𝑐
′ (

𝑊𝛿𝑖𝑙0
𝑐
′ 𝑊𝛿𝑖𝑙0

𝑐

𝜎2
+ 𝐺𝛿𝑖𝑙0

𝑐
−1 )𝒈𝛿𝑖𝑙0

𝑐 ) −
2

𝜎2
𝒈𝛿𝑖𝑙0

𝑐
′ 𝑊𝛿𝑖𝑙0

𝑐
′ 𝒚)

𝑚

𝑖=0

 

i.e., 752 

𝜋(𝒈|𝐸𝑙𝑠𝑒) = 
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∑𝜋0
𝑖 (1 − 𝜋0)

𝑚−𝑖 ∑𝐼𝛿𝑖𝑙

(𝑚
𝑖 )

𝑙=1

𝑀𝑉𝑁 (𝒈𝛿𝑖𝑙0
𝑐 ; (

𝑊𝛿𝑖𝑙0
𝑐
′ 𝑊𝛿𝑖𝑙0

𝑐

𝜎2
+ 𝐺𝛿𝑖𝑙0

𝑐
−1 )

−1
𝑊𝛿𝑖𝑙0

𝑐
′ 𝒚

𝜎2
, (

𝑊𝛿𝑖𝑙0
𝑐
′ 𝑊𝛿𝑖𝑙0

𝑐

𝜎2
+ 𝐺𝛿𝑖𝑙0

𝑐
−1 )

−1

) .

𝑚

𝑖=0

 

 753 

In the case of the full conditional distribution of a single marker effect: 754 

𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) ∝ (𝜋0𝐼{𝒈𝑗=𝟎} + (1 − 𝜋0)𝑀𝑉𝑁(𝒈𝑗; 0, 𝐺𝑗)𝐼{𝒈𝑗≠𝟎})𝑓(𝒚|𝑊, 𝒈, 𝜎2) 

∝ 𝜋0 exp(−
1

2
(𝒈(−𝑗)

′ 𝑊(−𝑗)
′ 𝑊(−𝑗)𝒈(−𝑗) − 2𝒈(−𝑗)

′ 𝑊(−𝑗)
′ 𝒚)) 𝐼{𝒈𝑗=𝟎} 

+(1 − 𝜋0) exp(−
1

2
(𝒈𝑗

′ (𝑊𝑗
′𝑊𝑗 + 𝐺𝑗

−1)𝒈𝑗 − 2𝒈𝑗
′𝑊𝑗

′(𝒚 − 𝑊(−𝑗)𝒈(−𝑗)))) 𝐼{𝒈𝑗≠𝟎} 

where 𝒈(−𝑗) corresponds to the vector 𝒈 without subvector 𝒈𝑗 and 𝑊(−𝑗) corresponds to the design 755 

matrix after deleting columns corresponding to marker 𝑗, and 𝑊𝑗 is the design matrix corresponding 756 

to 𝒈𝑗. Thus, the full conditional of 𝒈𝑗 is also a spike and slab distribution. A more explicit form of 757 

this distribution can be found by computing the mixing probabilities. To this end: 758 

 759 

𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) =
𝜋0𝑓(𝒚|𝑊, 𝑔, 𝜎2)𝐼{𝒈𝑗=𝟎} + (1 − 𝜋0)𝜋(𝒈𝑗)𝑓(𝒚|𝑊, 𝒈, 𝜎2)𝐼{𝒈𝑗≠𝟎}

𝜋0𝑓(𝒚|𝑊, 𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) + (1 − 𝜋0) ∫ 𝜋(𝒈𝑗)𝑓(𝒚|𝑊,𝒈, 𝜎2)
𝒈𝑗≠𝟎

𝑑𝒈𝑗

 

⇒ 𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒) =
𝜋0𝑓(𝒚|𝑊, 𝑔, 𝜎2)𝐼{𝒈𝑗=𝟎}

𝜋0𝑓(𝒚|𝑊,𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) + (1 − 𝜋0) ∫ 𝜋(𝒈𝑗)𝑓(𝒚|𝑊, 𝒈, 𝜎2)
𝒈𝑗≠𝟎

𝑑𝒈𝑗

 

 let 𝑚(𝒚|𝑊,𝒈(−𝑗), 𝜎
2) = ∫ 𝜋(𝒈𝑗)𝑓(𝒚|𝑊, 𝒈, 𝜎2)

𝒈𝑗≠𝟎
𝑑𝒈𝑗, then: 760 

𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) =
𝜋0𝑓(𝒚|𝑊, 𝑔, 𝜎2)𝐼{𝒈𝑗=𝟎} + (1 − 𝜋0)𝜋(𝒈𝑗)𝑓(𝒚|𝑊, 𝒈, 𝜎2)𝐼{𝒈𝑗≠𝟎}

𝜋0𝑓(𝒚|𝑊,𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) + (1 − 𝜋0)𝑚(𝒚|𝑊, 𝒈(−𝑗), 𝜎
2)

 

 761 

also notice that the pdf 𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) can be written as 762 

𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒)𝐼{𝒈𝑗=𝟎} + (1 − 𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒))
𝜋(𝒈𝑗)𝑓(𝒚|𝑊,𝒈,𝜎2)

𝑚(𝒚|𝑊,𝒈(−𝑗),𝜎
2)

𝐼{𝒈𝑗≠𝟎}, this follows because 763 

 764 

𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒)𝐼{𝒈𝑗=𝟎} + (1 − 𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒))
𝜋(𝒈𝑗)𝑓(𝒚|𝑊,𝒈, 𝜎2)

𝑚(𝒚|𝑊, 𝒈(−𝑗), 𝜎
2)

𝐼{𝒈𝑗≠𝟎} 

=
𝜋0𝑓(𝒚|𝑊, 𝑔, 𝜎2)𝐼{𝒈𝑗=𝟎}

𝜋0𝑓(𝒚|𝑊, 𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) + (1 − 𝜋0)𝑚(𝒚|𝑊,𝒈(−𝑗), 𝜎
2)

𝐼{𝒈𝑗=𝟎} 

+(1 −
𝜋0𝑓(𝒚|𝑊, 𝑔, 𝜎2)𝐼{𝒈𝑗=𝟎}

𝜋0𝑓(𝒚|𝑊, 𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) + (1 − 𝜋0)𝑚(𝒚|𝑊,𝒈(−𝑗), 𝜎
2)

)
𝜋(𝒈𝑗)𝑓(𝒚|𝑊, 𝒈, 𝜎2)

𝑚(𝒚|𝑊, 𝒈(−𝑗), 𝜎
2)

𝐼{𝒈𝑗≠𝟎} 

 765 

=
𝜋0𝑓(𝒚|𝑊, 𝑔, 𝜎2)𝐼{𝒈𝑗=𝟎}

𝜋0𝑓(𝒚|𝑊, 𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) + (1 − 𝜋0)𝑚(𝒚|𝑊,𝒈(−𝑗), 𝜎
2)

𝐼{𝒈𝑗=𝟎} 
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+(
(1 − 𝜋0)𝑚(𝒚|𝑊, 𝒈(−𝑗), 𝜎

2)

𝜋0𝑓(𝒚|𝑊, 𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) + (1 − 𝜋0)𝑚(𝒚|𝑊, 𝒈(−𝑗), 𝜎
2)

)
𝜋(𝒈𝑗)𝑓(𝒚|𝑊,𝒈, 𝜎2)

𝑚(𝒚|𝑊, 𝒈(−𝑗), 𝜎
2)

𝐼{𝒈𝑗≠𝟎} 

 766 

=
𝜋0𝑓(𝒚|𝑊, 𝑔, 𝜎2)𝐼{𝒈𝑗=𝟎} + (1 − 𝜋0)𝜋(𝒈𝑗)𝑓(𝒚|𝑊, 𝒈, 𝜎2)𝐼{𝒈𝑗≠𝟎}

𝜋0𝑓(𝒚|𝑊,𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) + (1 − 𝜋0)𝑚(𝒚|𝑊, 𝒈(−𝑗), 𝜎
2)

 

= 𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒). 

 767 

Therefore, the remaining task is finding the explicit form of 𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒) under the model being 768 

considered. Doing some algebra, using the completing the quadratic form technique and properties of 769 

the multivariate normal distribution it can be shown that: 770 

 771 

∫ 𝜋(𝒈𝑗)𝑓(𝒚|𝑊, 𝒈, 𝜎2)

𝒈𝑗≠𝟎

𝑑𝒈𝑗 = (2𝜋𝜎2)−𝑛 2⁄ |𝐺𝑗|
−1 2⁄

exp (−
1

2𝜎2
‖𝒚 − 𝑊(−𝑗)𝒈(−𝑗)‖2

2
) 

× |𝐺𝐹𝑗|
−1 2⁄

exp (
1

2𝜎2
‖𝐺𝐹𝑗

−1 2⁄
𝑊𝑗

′(𝒚 − 𝑊(−𝑗)𝒈(−𝑗))‖
2

2
), 

 772 

where 𝐺𝐹𝑗: = 𝑊𝑗
′𝑊𝑗 + 𝐺𝑗

−1. Now, using the fact that 773 

𝑓(𝒚|𝑊, 𝒈(−𝑗), 𝒈𝑗 = 0, 𝜎2) = (2𝜋𝜎2)−𝑛 2⁄ exp (−
1

2𝜎2
‖𝒚 − 𝑊(−𝑗)𝒈(−𝑗)‖2

2
) 

it follows that  774 

𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒) =
𝜋0

𝜋0 + (1 − 𝜋0)(|𝐺𝐹𝑗||𝐺𝑗|)
−1 2⁄

exp (
1

2𝜎2 ‖𝐺𝐹𝑗
−1 2⁄

𝑊𝑗
′(𝒚 − 𝑊(−𝑗)𝒈(−𝑗))‖

2

2

)
. 

Thus, the full conditional distribution of 𝒈𝑗 is a spike and slab distribution where the slab component 775 

is a 𝑀𝑉𝑁(𝐺𝐹𝑗
−1𝑊𝑗

′(𝒚 − 𝑊(−𝑗)𝒈(−𝑗)), 𝐺𝐹𝑗
−1) and the spike is a point mass at 0 in ℝ𝒮. 776 

 777 

Full conditionals for models with heteroscedastic residuals  778 

In this case: 779 

𝑓(𝒚|𝑊, 𝒈, 𝑅) ∝ |𝑉|−1 2⁄ exp(−
1

2
(𝒚 − 𝑊𝒈)′𝑉−1(𝒚 − 𝑊𝒈)) 

= ∏(𝜎𝑙
2)−𝑛𝑙 2⁄

𝒮

𝑙=1

exp (−
1

2𝜎𝑙
2 (𝒚𝑙 − 𝑊𝑙𝒈𝑙)

′(𝒚𝑙 − 𝑊𝑙𝒈𝑙)). 

In addition 780 

𝜋(𝑅) ∝ ∏(𝜎𝑙
2)−(𝑣 2⁄ +1) exp(−

𝜏2

2𝜎𝑙
2)

𝒮

𝑙=1

. 

In the following, only the full conditionals that change with respect to the homoscedastic models and 781 

those presented in part I are presented.  782 

Under a spike and slab prior for 𝒈, the full conditionals that change with respect to the 783 

homoscedastic residuals model are: 784 
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𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒) = 

𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒)𝐼{𝒈𝑗=𝟎} + (1 − 𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒))𝑀𝑉𝑁(𝐺𝑉𝐹𝑗
−1 𝑊𝑗

′𝑉−1(𝒚 − 𝑊(−𝑗)𝒈(−𝑗)), 𝐺𝑉𝐹𝑗
−1 )𝐼{𝒈𝑗≠𝟎} 

 785 

where 𝐺𝑉𝐹𝑗
−1 = 𝑊𝑗

′𝑉−1𝑊𝑗 + (𝐺0)−1 and 786 

 787 

𝑝(𝒈𝑗 = 0|𝐸𝑙𝑠𝑒) =
𝜋0

𝜋0 + (1 − 𝜋0)(|𝐺𝑉𝐹𝑗||𝐺𝑗|)
−1 2⁄

exp (
1
2‖𝐺𝑉𝐹𝑗

−1 2⁄
𝑊𝑗

′𝑉−1(𝒚 − 𝑊(−𝑗)𝒈(−𝑗))‖
2

2

)
 

The full conditionals 𝜋(𝑅|𝐸𝑙𝑠𝑒) and 𝜋(𝑊𝑁|𝐸𝑙𝑠𝑒) change with respect to the homoscedastic model 788 

but these are the same as for the model with Gaussian prior presented in part I. 789 

For the model with spike and slab prior for 𝒈 and heterogeneous marker effect covariance matrices, 790 

𝜋(𝑅|𝐸𝑙𝑠𝑒) and 𝜋(𝑊|𝐸𝑙𝑠𝑒) also remain unchanged with respect to the model with Gaussian prior. 791 

Regarding the full conditional of marker additive effects 𝜋(𝒈𝑗|𝐸𝑙𝑠𝑒), it is similar to the case of the 792 

model with homogeneous marker effect covariance matrices, the only difference is that in this model 793 

𝐺𝑉𝐹𝑗
−1 = 𝑊𝑗

′𝑉−1𝑊𝑗 + 𝐺𝑗
−1.  794 

 795 

Algebraic simplification of 𝝅(𝑾𝑵|𝑾𝓸,𝑴𝟎) 796 

 797 

Here we recursively use the following well-known property of the Gamma function: Γ(𝛼 + 1) =798 

𝛼Γ(𝛼) as well as the definition of the Beta function. 799 

 800 

𝜋(𝑊𝑁|𝑊ℴ, 𝑀0) =
2𝑛𝑁

𝐻

𝐵(𝛼, 𝛽)𝑚
∏{

Γ(𝑛𝑁

𝐵𝑗 + 𝛼)Γ (𝑛𝑁

𝐴𝑗 + 𝛽)

Γ(2𝑓𝑁𝑗 + 𝛼 + 𝛽)
∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆

𝑖′
𝑗, 𝑤𝐷

𝑖′
𝑗)

𝑛𝑁𝑗

𝑖′=𝑓𝑁𝑗+1

}

𝑚

𝑗=1

 

= 2𝑛𝑁
𝐻

∏{
Γ(𝑛𝑁

𝐵𝑗 + 𝛼)Γ (𝑛𝑁

𝐴𝑗 + 𝛽)

𝐵(𝛼, 𝛽)Γ(2𝑓𝑁𝑗 + 𝛼 + 𝛽)
∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆

𝑖′
𝑗, 𝑤𝐷

𝑖′
𝑗)

𝑛𝑁𝑗

𝑖′=𝑓𝑁𝑗+1

}

𝑚

𝑗=1

, 

notice that  801 

Γ(2𝑓𝑁𝑗 + 𝛼 + 𝛽) = (2𝑓𝑁𝑗 − 1 + 𝛼 + 𝛽)Γ(2𝑓𝑁𝑗 − 1 + 𝛼 + 𝛽) 

= (2𝑓𝑁𝑗 − 1 + 𝛼 + 𝛽)(2𝑓𝑁𝑗 − 2 + 𝛼 + 𝛽)Γ(2𝑓𝑁𝑗 − 2 + 𝛼 + 𝛽) 

= (2𝑓𝑁𝑗 − 1 + 𝛼 + 𝛽)⋯ (2𝑓𝑁𝑗 − (2𝑓𝑁𝑗 − 1) + 𝛼 + 𝛽)Γ(2𝑓𝑁𝑗 − (2𝑓𝑁𝑗 − 1) + 𝛼 + 𝛽) 

= Γ(𝛼 + 𝛽) ∏(2𝑓𝑁𝑗 − 𝑘 + 𝛼 + 𝛽)

2𝑓𝑁𝑗

𝑘=1

 

⇒ 𝐵(𝛼, 𝛽)Γ(2𝑓𝑁𝑗 + 𝛼 + 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
Γ(𝛼 + 𝛽) ∏(2𝑓𝑁𝑗 − 𝑘 + 𝛼 + 𝛽)

2𝑓𝑁𝑗

𝑘=1

 

                                                      = Γ(𝛼)Γ(𝛽) ∏(2𝑓𝑁𝑗 − 𝑘 + 𝛼 + 𝛽)

2𝑓𝑁𝑗

𝑘=1

                                        (𝐴. 1)   

similarly,  802 
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                                                 Γ (𝑛𝑁

𝐵𝑗 + 𝛼) = Γ(𝛼)∏(𝑛𝑁

𝐵𝑗 − 𝑘 + 𝛼)

𝑛𝑁

𝐵𝑗

𝑘=1

                                      (𝐴. 2) 

                                                Γ (𝑛𝑁

𝐴𝑗 + 𝛽) = Γ(𝛽)∏(𝑛𝑁

𝐴𝑗 − 𝑘 + 𝛽)

𝑛𝑁

𝐴𝑗

𝑘=1

                                      (𝐴. 3) 

consequently, from (𝐴. 1), (𝐴. 2) and (𝐴. 3) it follows that 803 

Γ (𝑛𝑁

𝐵𝑗 + 𝛼)Γ (𝑛𝑁

𝐴𝑗 + 𝛽)

𝐵(𝛼, 𝛽)Γ(2𝑓𝑁𝑗 + 𝛼 + 𝛽)
=

Γ(𝛼)Γ(𝛽)∏ (𝑛𝑁

𝐵𝑗 − 𝑘 + 𝛼)
𝑛𝑁

𝐵𝑗

𝑘=1
∏ (𝑛𝑁

𝐴𝑗 − 𝑘 + 𝛽)
𝑛𝑁

𝐴𝑗

𝑘=1

Γ(𝛼)Γ(𝛽)∏ (2𝑓𝑁𝑗 − 𝑘 + 𝛼 + 𝛽)
2𝑓𝑁𝑗

𝑘=1

 

=
∏ (𝑛𝑁

𝐵𝑗 − 𝑘 + 𝛼)
𝑛𝑁

𝐵𝑗

𝑘=1
∏ (𝑛𝑁

𝐴𝑗 − 𝑘 + 𝛽)
𝑛𝑁

𝐴𝑗

𝑘=1

∏ (2𝑓𝑁𝑗 − 𝑘 + 𝛼 + 𝛽)
2𝑓𝑁𝑗

𝑘=1

 

 804 

plugging this expression in 𝜋(𝑊𝑁|𝑊ℴ, 𝑀0) it follows that: 805 

 806 

𝜋(𝑊𝑁|𝑊ℴ, 𝑀0) 

= 2𝑛𝑁
𝐻
∏{

∏ (𝑛𝑁

𝐵𝑗 − 𝑘 + 𝛼)
𝑛𝑁

𝐵𝑗

𝑘=1
∏ (𝑛𝑁

𝐴𝑗 − 𝑘 + 𝛽)
𝑛𝑁

𝐴𝑗

𝑘=1

∏ (2𝑓𝑁𝑗 − 𝑘 + 𝛼 + 𝛽)
2𝑓𝑁𝑗

𝑘=1

∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆
𝑖′

𝑗, 𝑤𝐷
𝑖′

𝑗)

𝑛𝑁𝑗

𝑖′=𝑓𝑁𝑗+1

} .

𝑚

𝑗=1

 

 807 

Appendix B: Details of the derivation of Bayes factors and fractional Bayes factors 808 

 809 

For model 𝑀1𝐺 the Hessian matrix of the log-likelihood is:  810 

𝐻1𝐺 =
1

𝜎2

(

 
 

−𝑊′𝑊
1

𝜎2
(𝑊′𝑊𝒈 − 𝑊′𝒚)

𝑆𝑦𝑚
1

𝜎2
(
𝑛

2
−

(𝒚 − 𝑊𝒈)′(𝒚 − 𝑊𝒈)

𝜎2
)

)

 
 

, 

thus, matrix ∆ℎ(�̂�∗) is: 811 

(

 
 

𝑊′𝑊

(𝑛 − 𝑟)𝑆2
(

𝑛

(𝑛 − 𝑟)𝑆2
)

2

(𝑊′𝑊(𝑊′𝑊)−1𝑊′𝒚 − 𝑊′𝑦)

𝑠𝑦𝑚
𝑛2

2((𝑛 − 𝑟)𝑆2)
2

)

 
 

 

= (

𝑊′𝑊

𝑆𝑆𝑅
0

0
𝑛2

2𝑆𝑆𝑅2

), 

therefore: 812 
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|∆ℎ(�̂�∗)|
1 2⁄

=
𝑛

𝑆𝑆𝑅(𝑚𝒮+2)/2
(
|𝑊′𝑊|

2
)

1
2

≔ 𝐷1 

𝜋(�̂�∗) = 𝜋(�̂�|𝐺0) 

= (2𝜋)−𝑚𝒮 2⁄ |𝐺0|−𝑚/2 exp (−
1

2
(�̂�′((𝐺0)−1⨂𝐼)�̂�))

(𝜏2)𝑣 2⁄

Γ (
𝑣
2) 2𝑣 2⁄

(�̂�2)−(𝑣 2⁄ +1) exp(
−𝜏2

2�̂�2
), 

thus  813 

∫ ∫ 𝜋(𝒈|𝐺0)𝜋(𝜎2)𝑒ln𝑓(𝒚|𝒈,𝜎2,𝑊)

ℝ+

𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮

≈
1

𝐷1

(2𝜋)−(𝑛+1) 2⁄ (
𝑆𝑆𝑅

𝑛
)

−(𝑛+𝑣+2) 2⁄

exp (−
𝑛

2
) 

×
(𝜏2)𝑣 2⁄

Γ (
𝑣
2) 2𝑣 2⁄

exp(−
𝑛𝜏2

2𝑆𝑆𝑅
)𝑛−(𝑚𝒮+1) 2⁄ |𝐺0|−𝑚/2 exp(−

1

2
(�̂�′((𝐺0)−1⨂𝐼)�̂�)) 

=
1

𝐷1

(2𝜋)−(𝑛+1) 2⁄ (
𝑆𝑆𝑅

𝑛
)

−(𝑛+𝑣+2) 2⁄

exp (−
𝑛

2
)

(𝜏2)𝑣 2⁄

Γ (
𝑣
2) 2𝑣 2⁄

exp (−
𝑛𝜏2

2𝑆𝑆𝑅
)𝑛−(𝑚𝒮+1) 2⁄  

× |𝐺0|−𝑚/2 exp (−
1

2
(𝒚′𝑊(𝑊′𝑊)−1((𝐺0)−1⨂𝐼)�̂�)(𝑊′𝑊)−1𝑊′𝒚). 

 814 

≔
𝐾1

𝐷1

|𝐺0|−𝑚 2⁄ exp (
−1

2
𝒚′𝐶(𝑊,𝐺0)𝒚), 

 where 815 

𝐾1 = (2𝜋)−(𝑛+1) 2⁄ (
𝑆𝑆𝑅

𝑛
)

−(𝑛+𝑣+2) 2⁄

exp (−
𝑛

2
)

(𝜏2)𝑣 2⁄

Γ (
𝑣
2) 2𝑣 2⁄

exp(−
𝑛𝜏2

2𝑆𝑆𝑅
)𝑛−(𝑚𝒮+1) 2⁄  

𝑆𝑆𝑅 = 𝒚′(𝐼 − 𝐻𝑊)𝒚 = (𝑛 − 𝑟)𝑆2 

𝐶(𝑊, 𝐺0) = 𝑊(𝑊′𝑊)−1(𝐼⨂(𝐺0)−1)(𝑊′𝑊)−1𝑊. 

Then:  816 

𝑓(𝒚|𝑊,𝑀1𝐺) ≈
𝐾1

𝐷1

∫ 𝜋(𝐺0)

𝒫𝒮
+

|𝐺0|−𝑚 2⁄ exp (
−1

2
𝒚′𝐶(𝑊, 𝐺0)𝒚) 𝑑𝐺0 

=
𝐾1|𝚺|𝑎 2⁄

𝐷12
𝑎𝒮 2⁄ Γ𝒮 (

𝑎
2)

∫|𝐺0|−(𝑎+𝑚+𝒮+1) 2⁄ exp(−
1

2
𝑡𝑟 ((Σ + ∑ �̂�𝑗�̂�𝑗

′
𝑚

𝑗=1
) (𝐺0)−1))𝑑𝐺0

𝒫𝒮
+

 

= 2𝑚𝒮 2⁄
𝐾1

𝐷1

|𝚺|𝑎 2⁄

|𝚺 + ∑ �̂�𝑗�̂�𝑗
′𝑚

𝑗=1 |
(𝑎+𝑚) 2⁄

Γ𝒮 (
𝑎 + 𝑚

2 )

Γ𝒮 (
𝑎
2)

. 

 817 

The second equality follows by noticing that 𝒚′𝐶(𝑊,𝐺0)𝒚 = �̂�′(𝐼𝑚⨂(𝐺0)−1)�̂�.  818 

The univariate version of the 𝐼𝑊(𝑎, 𝜮) prior posed over the covariance matrix of marker effects 𝐺0 is 819 

an 𝐼𝐺 (
𝑎

2
,
𝑏

2
) prior for the marker effect variance 𝜎𝑔

2. Therefore, the expression for the null model is 820 

easily found by replacing 𝒮 by 1, 𝑊 by 𝑊0, the 𝐼𝑊(𝑎, 𝚺) density by a 𝐼𝐺 (
𝑎

2
,
𝑏

2
) and integrating with 821 
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respect to 𝜎𝑔
2. The resulting expression is completely analogous with matrix 𝚺 replaced by the scalar 822 

𝑏 and vectors �̂�𝑗 by scalars �̂�0𝑗. This relationship holds for other models and their null versions, 823 

hence, hereinafter the derivations for the null models are not presented. Thus, 824 

 825 

𝑓(𝒚|𝑊0, 𝑀0𝐺) ≈ 2𝑚 2⁄
𝐾0

𝐷0

|𝑏|𝑎 2⁄

|𝑏 + ∑ �̂�0𝑗
2𝑚

𝑗=1 |
(𝑎+𝑚) 2⁄

Γ (
𝑎 + 𝑚

2 )

Γ (
𝑎
2)

 

 826 

where 𝐾0 is 𝐾1 with 𝒮 = 1, 𝑆𝑆𝑅 replaced by 𝑆𝑆𝑅0 = 𝑦′(𝐼 − 𝐻𝑊0
)𝑦, 𝐻𝑊0

= 𝑊0(𝑊0′𝑊0)
−1𝑊0, and 827 

𝑆2 replaced by 𝑆0
2 =

‖𝒚−𝑊0�̂�0‖2

𝑛−𝑟0
, 𝑟0 = 𝑟𝑎𝑛𝑘(𝑊0′𝑊0) = 𝑚.  828 

Using these results it follows that: 829 

𝐵𝐹10𝐺𝑊 

≈
2𝑚𝒮 2⁄

2𝑚 2⁄

𝐾1

𝐾0

𝐷0

𝐷1
(
Γ𝒮 (

𝑎 + 𝑚
2 )

Γ𝒮 (
𝑎
2)

Γ(
𝑎 + 𝑚

2 )

Γ(
𝑎
2)

⁄ )(
|𝚺|𝑎 2⁄

|𝚺 + ∑ �̂�𝑗�̂�𝑗
′𝑚

𝑗=1 |
(𝑎+𝑚) 2⁄

𝑏𝑎 2⁄

(𝑏 + ∑ �̂�0𝑗
2𝑚

𝑗=1 )
(𝑎+𝑚) 2⁄

⁄ ) 

= (
|𝚺|

𝑏
)

𝑎
2

(
|𝚺 + ∑ �̂�𝑗�̂�𝑗

′𝑚
𝑗=1 |

𝑏 + ∑ �̂�0𝑗
2𝑚

𝑗=1

)

−(
𝑎+𝑚

2
)

(
𝑆𝑆𝑅

𝑆𝑆𝑅0
)

−(
𝑛+𝑣+2

2
) 𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

(
|𝑊0′𝑊0|

|𝑊′𝑊|
)

1
2

 

× exp(
−𝑛𝜏2

2
(

1

𝑆𝑆𝑅
−

1

𝑆𝑆𝑅0
)) (

2

𝑛
)

𝑚(𝒮−1)
2

(∏
Γ(

𝑎 + 𝑚 + 1 − 𝑙
2 )

Γ (
𝑎 + 1 − 𝑙

2 )

𝒮

𝑙=2

). 

 830 

The Hessian matrix for model 𝑀1𝐺
∗  does not change with respect to model 𝑀1𝐺 because the likelihood 831 

remains the same, thus: 832 

∫ ∫ 𝜋(𝒈|𝐺)𝜋(𝜎2)𝑒ln 𝑓(𝒚|𝒈,𝜎2,𝑊)

ℝ+

𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮

≈
1

𝐷1

(2𝜋)−(𝑛+1) 2⁄ (
𝑆𝑆𝑅

𝑛
)

−(𝑛+𝑣+2) 2⁄

𝑒−𝑛 2⁄  

×
(𝜏2)𝑣 2⁄

Γ (
𝑣
2) 2𝑣 2⁄

exp(−
𝑛𝜏2

2𝑆𝑆𝑅
)𝑛−(𝑚𝒮+1) 2⁄ ∏|𝐺𝑗|

−1/2
𝑚

𝑗=1

exp(−
1

2
(�̂�𝑗

′𝐺𝑗
−1�̂�𝑗)). 

Using this it follows that: 833 

𝜋(𝒚|𝑊,𝑀1𝐺
∗ ) ≈

𝐾1|𝚺|𝑎𝑚/2

𝐷12
𝑎𝑚𝒮/2 (Γ𝒮 (

𝑎
2))

𝑚 

× ∫ ∏|𝐺𝑗|
−1(𝑎+𝒮+2)/2

𝑚

𝑗=1

exp(−
1

2
𝑡𝑟(𝚺𝐺𝑗

−1 + �̂�𝑗�̂�𝑗
′𝐺𝑗

−1))

𝒫𝒮
+×⋯×𝒫𝒮

+

𝑑𝐺 

=
𝐾1|𝚺|𝑎𝑚/2

𝐷12
𝑎𝑚𝒮/2 (Γ𝒮 (

𝑎
2))

𝑚 ∏ ∫|𝐺𝑗|
−1(𝑎+𝒮+2)/2

𝒫𝒮
+

𝑚

𝑗=1

exp (−
1

2
𝑡𝑟 ((𝚺 + �̂�𝑗�̂�𝑗

′ )𝐺𝑗
−1))𝑑𝐺𝑗 
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=
𝐾1|𝚺|𝑎𝑚/2

𝐷12
𝑎𝑚𝒮/2 (Γ𝒮 (

𝑎
2))

𝑚 ∏
2(𝑎+1)𝒮 2⁄ Γ𝒮 (

𝑎 + 1
2 )

|𝚺 + �̂�𝑗�̂�𝑗
′ |

(𝑎+1) 2⁄

𝑚

𝑗=1

 

=
𝐾1

𝐷1

2𝑚𝒮/2 (
Γ𝒮 (

𝑎 + 1
2 )

Γ𝒮 (
𝑎
2)

)

𝑚

|𝚺|𝑎𝑚/2

∏ |𝚺 + �̂�𝑗�̂�𝑗
′ |

(𝑎+1) 2⁄𝑚
𝑗=1

 

The following are the details of the computation of matrix ∆ℎ(�̂�∗) and its determinant for model 834 

𝑀1𝐺𝐻
∗ . Using matrix differentiation it follows that: 835 

𝜕2𝑙

𝜕𝒈𝜕𝒈′
= −𝑊′𝑉−1𝑊 

𝜕𝑙

𝜕𝜎𝑙
2 = −

1

2
𝑡𝑟 (𝑉−1

𝜕𝑉

𝜕𝜎𝑙
2) +

1

2
(𝒚 − 𝑊𝒈)′𝑉−1

𝜕𝑉

𝜕𝜎𝑙
2 𝑉−1(𝒚 − 𝑊𝒈) 

= −
1

2
𝑡𝑟 (𝑉−1 (

0
𝐼𝑛𝑙

0

)) +
1

2
(𝒚 − 𝑊𝒈)′𝑉−1 (

0
𝐼𝑛𝑙

0

)𝑉−1(𝒚 − 𝑊𝒈) 

= −
1

2
𝑡𝑟 ((

0
𝜎𝑙

−2𝐼𝑛𝑙

0

)) +
1

2
(𝒚 − 𝑊𝒈)′(

0
𝜎𝑙

−4𝐼𝑛𝑙

0

) (𝒚 − 𝑊𝒈) 

= −
1

2
(𝑛𝑙𝜎𝑙

−2 − 𝜎𝑙
−4(𝒚 − 𝑊𝒈)′(𝒚 − 𝑊𝒈)) 

𝜕2𝑙

𝜕(𝜎𝑙
2)2

=
𝑛𝑙

2𝜎𝑙
4 −

(𝒚𝑙 − 𝑊𝑙𝒈𝑙)
′(𝒚𝑙 − 𝑊𝑙𝒈𝑙)

𝜎𝑙
6  

𝜕2𝑙

𝜕𝜎𝑙
2𝜕𝜎𝑙′

2 = 0 

𝜕2𝑙

𝜕𝜎𝑙
2𝜕𝒈

= −(𝑊′𝑉−1
𝜕𝑉

𝜕𝜎𝑙
2 𝑉−1𝒚 − 𝑊′𝑉−1

𝜕𝑉

𝜕𝜎𝑙
2 𝑉−1𝑊𝒈) 

= −(𝑊′ (
0

𝜎𝑙
−4𝐼𝑛𝑙

0

)𝒚 − 𝑊′(
0

𝜎𝑙
−4𝐼𝑛𝑙

0

)𝑊𝒈) 

= 𝜎𝑙
−4(𝑊𝑙

′𝑊𝑙𝒈𝑙 − 𝑊𝑙
′𝒚𝑙). 

 836 

Here �̂�∗ = (�̂�, �̂�) = (�̂�, �̂�1
2𝐼𝑛1

, … , �̂�𝒮
2𝐼𝑛𝒮

), �̂�𝑙
2 ≔ 𝑆𝑙

2 = (𝒚𝑙 − 𝑊𝑙�̂�𝑙)′(𝒚𝑙 − 𝑊𝑙�̂�𝑙) (𝑛 − 𝑟𝑙)⁄ , thus 837 

∆ℎ(�̂�∗) 
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=
1

𝑛

(

 
 
 
 
 

𝑊′�̂�−1𝑊
𝑛1

2(𝑊1
′𝑊1(𝑊1

′𝑊1)
−1𝑊1

′𝒚1 − 𝑊1
′𝒚1)

𝑆𝑆𝑅1
2 ⋯

𝑛𝒮
2(𝑊𝒮

′𝑊𝒮(𝑊𝒮
′𝑊𝒮)

−1𝑊𝒮
′𝒚𝒮 − 𝑊𝒮

′𝒚𝒮)

𝑆𝑆𝑅1
2

𝑛1
3

2𝑆𝑆𝑅1
2 ⋯ 0

⋱ ⋮

𝑆𝑦𝑚
𝑛𝒮

3

2𝑆𝑆𝑅𝒮
2 )

 
 
 
 
 

 

=
1

𝑛

(

 
 
 
 

𝑊′�̂�−1𝑊 0 ⋯ 0
𝑛1

3

2𝑆𝑆𝑅1
2 ⋯ 0

⋱ ⋮

𝑆𝑦𝑚
𝑛𝒮

3

2𝑆𝑆𝑅𝒮
2)

 
 
 
 

 

then: 838 

|∆ℎ(�̂�∗)| = |
𝑊′�̂�−1𝑊

𝑛
|∏

𝑛𝑙
3

2𝑛𝑆𝑆𝑅𝑙
2

𝒮

𝑙=1

 

= ∏|
𝑛𝑙𝑊𝑙′𝑊𝑙

𝑛𝑆𝑆𝑅𝑙
|

𝑛𝑙
3

2𝑛𝑆𝑆𝑅𝑙
2

𝒮

𝑙=1

 

=
1

𝑛𝒮(𝑚+1)
∏

𝑛𝑙
𝑚+3

2𝑆𝑆𝑅𝑙
𝑚+2 |𝑊𝑙′𝑊𝑙|

𝒮

𝑙=1

 

∴ 𝐷1
∗ ≔ |∆ℎ(�̂�∗)|

1 2⁄
=

1

𝑛𝒮(𝑚+1) 2⁄ 2𝒮 2⁄
∏

𝑛𝑙
(𝑚+3) 2⁄

𝑆𝑆𝑅𝑙
(𝑚+2) 2⁄

|𝑊𝑙′𝑊𝑙|
1 2⁄

𝒮

𝑙=1

. 

 839 

Using this result, the Laplace approximation of the integral: 840 

∫ ∫ ⋯ ∫ 𝑓(𝒚|𝑊, 𝒈, 𝜎1
2, … , 𝜎𝒮

2)

ℝ+

𝜋(𝒈|𝐺)

ℝ+ℝ𝑚𝒮

𝜋(𝜎1
2, … , 𝜎𝒮

2)𝑑𝜎1
2 …𝑑𝜎𝒮

2𝑑𝒈 

is: 841 

1

𝐷1
∗ (2𝜋)−(𝑛−𝒮) 2⁄ ∏{(

𝑆𝑆𝑅𝑙

𝑛𝑙
)

−
𝑛𝑙
2

exp (−
𝑛𝑙

2
)} |𝐺|−1 2⁄ exp (−

1

2
�̂�′𝐺−1�̂�)

𝒮

𝑙=1

𝑛−𝒮(𝑚+1) 2⁄  

×
(𝜏2)𝒮𝑣 2⁄

(Γ (
𝑣
2) 2𝑣 2⁄ )

𝒮 ∏exp(−
𝑛𝑙𝜏

2

2𝑆𝑆𝑅𝑙
)

𝒮

𝑙=1

(
𝑆𝑆𝑅𝑙

𝑛𝑙
)

−(
𝑣
2
+1)

 

=
1

𝐷1
∗ (2𝜋)−(𝑛−𝒮) 2⁄

(𝜏2)𝒮𝑣 2⁄

(Γ (
𝑣
2)2𝑣 2⁄ )

𝒮
𝑛−𝒮(𝑚+1) 2⁄ exp (−

𝑛

2
)∏exp(−

𝑛𝑙𝜏
2

2𝑆𝑆𝑅𝑙
) (

𝑆𝑆𝑅𝑙

𝑛𝑙
)

−(
𝑛𝑙+𝑣

2
+1)𝒮

𝑙=1

 

× ∏|𝐺𝑗|
−1 2⁄

𝑚

𝑗=1

exp (−
1

2
�̂�𝑗

′𝐺𝑗
−1�̂�𝑗), 
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consequently: 842 

𝜋(𝒚|𝑊,𝑀1𝑆𝑆𝐻
∗ ) ≈

1

𝐷1
∗ (2𝜋)−(𝑛−𝒮) 2⁄

(𝜏2)𝒮𝑣 2⁄

(Γ (
𝑣
2) 2𝑣 2⁄ )

𝒮
𝑛−𝒮(𝑚+1) 2⁄  

× exp (−
𝑛

2
)∏exp(−

𝑛𝑙𝜏
2

2𝑆𝑆𝑅𝑙
) (

𝑆𝑆𝑅𝑙

𝑛𝑙
)

−(
𝑛𝑙+𝑣

2
+1)𝒮

𝑙=1

 

×
|𝚺|𝑎𝑚 2⁄

2𝑎𝑚𝒮 2⁄ (Γ𝒮 (
𝑎
2))

𝑚 ∏ ∫|𝐺𝑗|
−(𝑎+𝒮+2) 2⁄

exp(−
1

2
𝑡𝑟 ((𝚺 + �̂�𝑗

′ �̂�𝑗)𝐺𝑗
−1))𝑑𝐺𝑗

𝒫𝒮
+

𝑚

𝑗=1

 

=
𝐾1

∗

𝐷1
∗ 2𝑚𝒮 2⁄ (

Γ𝒮 (
𝑎 + 1

2 )

Γ𝒮 (
𝑎
2)

)

𝑚

|𝚺|𝑎𝑚 2⁄

∏ |𝚺 + �̂�𝑗
′ �̂�𝑗|

(𝑎+1) 2⁄𝑚
𝑗=1

 

where  843 

𝐾1
∗ = (2𝜋)−(𝑛−𝒮) 2⁄

(𝜏2)𝒮𝑣 2⁄

(Γ (
𝑣
2) 2𝑣 2⁄ )

𝒮
𝑛−𝒮(𝑚+1) 2⁄ exp (−

𝑛

2
)∏exp(−

𝑛𝑙𝜏
2

2𝑆𝑆𝑅𝑙
) (

𝑆𝑆𝑅𝑙

𝑛𝑙
)

−(
𝑛𝑙+𝑣

2
+1)𝒮

𝑙=1

. 

 844 

The null model here is actually not a single model, but independent models each fitting a 845 

subpopulation. Thus, the predicted vector of allelic effects is formed by putting together the vectors 846 

�̂�1, … , �̂�𝒮 obtained from each individual analysis. Of course, in this situation heterogeneous residual 847 

variances are assumed because if analyses for different subpopulations are independent, imposing the 848 

same residual variance for all subpopulations does not seem to be the best approach. Notice that for 849 

each subpopulation the 𝒚𝑙 component of the likelihood has the same form of the 𝒚 component 850 

likelihood of any null model with homogeneous marker effects and residual variances, but here we 851 

are considering a subvector of 𝒚 containing phenotypes from subpopulation 𝑙 and the appropriate 852 

rows of 𝑊0. Then, the approximation of  𝜋(𝒚|𝑊,𝑀0𝑆𝑆𝐻
∗ ) is computed as the product of the 853 

approximations of 𝜋(𝒚𝑙|𝑊𝑙 , 𝑀0𝑆𝑆𝐻
∗ ), 𝑙 = 1,2, … , 𝒮, which, after some simplifications, yields the 854 

expression for 𝐵𝐹10𝐺𝑊𝐻
∗  presented in section 2.3.1. 855 

Regarding fractional Bayes Factors, as mentioned in the paper, 𝐹𝐵𝐹10𝐺𝑊 = 𝐹𝐵𝐹10𝐺𝑊
∗ = 𝐹𝐵𝐹10𝑆𝑆𝑊 =856 

𝐹𝐵𝐹10𝑆𝑆𝑊
∗ , here we present some details on the derivation of 𝐹𝐵𝐹10𝐺𝑊, that is, using the Gaussian 857 

prior with homogeneous marker effect covariance matrices. In the other cases the procedure is 858 

analogous; the key step is the cancellation of terms coming from the priors. Let  859 

𝐼1 ≔ ∫ ∫(𝑓1(𝒚|𝒈, 𝜎2,𝑊))
𝑐
𝜋(𝒈|𝐺0)𝜋(𝜎2)

ℝ+

𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮

 

𝐼1 ≈
𝐾1

�̃�1

|𝐺0|−𝑚 2⁄ exp (
−1

2
�̂�′((𝐺0)−1⨂𝐼)�̂�), 

 where 860 

𝐾1 = (2𝜋)−(𝑛𝑐+1) 2⁄ (
𝑆𝑆𝑅

𝑛
)

−(𝑛𝑐+𝑣+2) 2⁄

exp (−
𝑛𝑐

2
)

(𝜏2)𝑣 2⁄

Γ (
𝑣
2) 2𝑣 2⁄

exp (−
𝑛𝜏2

2𝑆𝑆𝑅
)𝑛−(𝑚𝒮+1) 2⁄  
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�̃�1 =
𝑐(𝑚𝒮+1) 2⁄ 𝑛

√2𝑆𝑆𝑅(𝑚𝒮+2) 2⁄
|𝑊′𝑊|1/2 = 𝑐(𝑚𝒮+1) 2⁄ 𝐷1. 

Then 861 

𝑓𝑐(𝒚|𝑊,𝑀1𝐺) ≈
2𝑚𝒮 2⁄

𝑐(𝑚𝒮+1) 2⁄

𝐾1

𝐷1

|𝚺|𝑎 2⁄

|𝚺 + ∑ �̂�𝑗�̂�𝑗
′𝑚

𝑗=1 |
(𝑎+𝑚) 2⁄

Γ𝒮 (
𝑎 + 𝑚

2 )

Γ𝒮 (
𝑎
2)

. 

As mentioned in the derivations of Bayes factors, 𝑓𝑐(𝒚|𝑊0, 𝑀0𝐺) can be easily defined from the 862 

previous expression. Let 𝐵𝐹̅̅ ̅̅
10𝐺𝑊 represent the approximation of 𝐵𝐹10𝐺𝑊, then 863 

𝐹𝐵𝐹10𝐺𝑊 ≈ 𝐵𝐹̅̅ ̅̅
10𝐺𝑊

𝐾0

𝐾1

𝑐(𝑚𝒮+1) 2⁄ 𝐷1

𝑐(𝑚+1) 2⁄ 𝐷0

(
𝑏 + ∑ �̂�0𝑗

2𝑚
𝑗=1

|𝚺 + ∑ �̂�𝑗�̂�𝑗
′𝑚

𝑗=1 |
)

−(
𝑎+𝑚

2
)

 

× 2𝑚(1−𝒮) 2⁄ ∏
Γ(

𝑎 + 1 − 𝑙
2 )

Γ (
𝑎 + 𝑚 + 1 − 𝑙

2 )

𝒮

𝑙=2

 

𝐾0

𝐾1

= (
𝑆𝑆𝑅0

𝑆𝑆𝑅
)

−
𝑛𝑐+𝑣+2

2
𝑛−𝑚(1−𝒮) 2⁄ exp(−

𝑛𝜏2

2
(

1

𝑆𝑆𝑅0

−
1

𝑆𝑆𝑅
)) 

∴ 𝐹𝐵𝐹10𝐺𝑊 ≈ 𝑐𝑚(𝒮−1) 2⁄ (
𝑆𝑆𝑅0

𝑆𝑆𝑅
)

−
𝑛𝑐+𝑣+2+𝑛+𝑣+2

2 𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

 

= 𝑐𝑚(𝒮−1) 2⁄
𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

(
𝑆𝑆𝑅0

𝑆𝑆𝑅
)

−
𝑛
2
(𝑐−1)

 

= 𝑐𝑚(𝒮−1) 2⁄
𝑆𝑆𝑅(𝑚𝒮+2) 2⁄

𝑆𝑆𝑅0
(𝑚+2) 2⁄

(
𝑆𝑆𝑅

𝑆𝑆𝑅0
)

𝑛
2
(𝑐−1)

. 

 864 

Now we present some details on the derivation of 𝐹𝐵𝐹10𝑊𝐻
∗ .  865 

 866 

𝑓𝑐(𝒚|𝑊1, 𝑀1𝐺𝐻
∗ ) ≈

𝐾1
∗

�̃�1
∗
2𝑚𝒮 2⁄ (

Γ𝒮 (
𝑎 + 𝑚

2 )

Γ𝒮 (
𝑎
2)

)

𝑚

|𝚺|𝑎𝑚/2

∏ |𝚺 + ∑ �̂�𝑗�̂�𝑗
′𝑚

𝑗=1 |
(𝑎+1)/2𝑚

𝑗=1

 

𝐾1
∗ = (2𝜋)−(𝑛𝑐−𝒮) 2⁄ 𝑛−𝒮(𝑚+1) 2⁄ exp (−

𝑛𝑐

2
)

(𝜏2)𝒮𝑣 2⁄

(Γ (
𝑣
2) 2𝑣 2⁄ )

𝒮 ∏exp(−
𝑛𝑙𝜏

2

2𝑆𝑆𝑅𝑙
) (

𝑆𝑆𝑅𝑙

𝑛𝑙
)

−(
𝑛𝑙𝑐+𝑣+2

2
)𝒮

𝑙=1

 

�̃�1
∗ = 𝑐𝒮(𝑚+1)/2𝐷1

∗. 

 867 

After some simplifications it follows that 868 

 869 

𝐹𝐵𝐹10𝑊𝐻
∗ ≈

𝐾0
∗�̃�1

∗

𝐾1
∗�̃�0

∗
=

𝐾0
∗𝐷1

∗

𝐾1
∗𝐷0

∗
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𝐾0
∗

𝐾1
∗
=

𝑛𝒮(𝑚+1)/2

∏ 𝑛𝑙
𝒮
𝑙=1

(𝑚+1)/2
= (

𝐷1
∗

𝐷0
∗)

−1

 

∴ 𝐹𝐵𝐹10𝑊𝐻
∗ ≈ 1 

 870 

Appendix C: Comments about the use of 𝑭𝑩𝑭̅̅ ̅̅ ̅̅
𝟏𝟎𝑾 in the non-full rank case under the priors 871 

used in this study  872 

Notice that 𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑊 is an approximation of 𝐹𝐵𝐹10𝑊 for a full rank linear regression model. Here, 873 

𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑊 is seen as a limiting form of the approximate fractional Bayes factor of a function referred to 874 

as “augmented likelihood” and we present an outline of how to justify its convergence to the true 875 

fractional Bayes factor when the model is not of full rank.  Take into account that what follows is not 876 

rigorous enough to justify this approach.  877 

Consider the “augmented likelihood”: 878 

𝐿𝑎(𝒈, 𝜎2,𝑊, 𝜌|𝒚) ≔ (2𝜋)−𝑛 2⁄ (𝜎2)−𝑛 2⁄ exp(
−1

2𝜎2
((𝒚 − 𝑊𝒈)′(𝒚 − 𝑊𝒈) + 𝜌𝒈′𝒈)) , 𝜌 > 0 

notice that lim𝜌→0 𝐿𝑎(𝒈, 𝜎2,𝑊, 𝜌|𝒚) = 𝑓(𝒚|𝒈, 𝜎2,𝑊) ≔ 𝐿(𝒈, 𝜎2,𝑊|𝒚), the 𝒚 component of 879 

likelihood. Using this augmented likelihood instead of the proper likelihood the integral that has to 880 

be solved is: 881 

∫ 𝜋(𝐺)( ∫ ∫ 𝐿𝑎(𝒈, 𝜎2,𝑊, 𝜌|𝒚)𝜋(𝒈|𝐺0)𝜋(𝜎2)

ℝ+

𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮

)

𝒫+

𝑑𝐺 ≔ 𝐼𝜌, 

under the regularity condition that limits and integrals can be interchanged (satisfied in exponential 882 

families), it follows that: 883 

lim
𝜌→0

𝐼𝜌 = ∫ 𝜋(𝐺)( ∫ ∫ 𝐿(𝒈, 𝜎2,𝑊|𝒚)𝜋(𝒈|𝐺0)𝜋(𝜎2)

ℝ+

𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮

)

𝒫+

𝑑𝐺 ≔ 𝐼, 

thus, under the stated regularity condition, for small 𝜌, using 𝐿𝑎(𝒈, 𝜎2,𝑊, 𝜌) instead of the proper 884 

likelihood is a proxy to compute 𝐼. Then, the Laplace approximation of 885 

∫ ∫ 𝐿𝑎(𝒈, 𝜎2,𝑊, 𝜌)𝜋(𝒈|𝐺)𝜋(𝜎2)
ℝ+

𝑑𝜎2𝑑𝒈 ≔ 𝐼𝜌
∗

ℝ𝑚𝒮  (recall that Laplace approximation is used only 886 

for this inner integral) can be computed because it implies inverting a matrix of the form 𝑊′𝑊 + 𝜌𝐼 887 

which is positive definite and therefore it is invertible and its determinant is not null. This 888 

approximation is denoted as 𝐼�̅�
∗. Subsequently the same steps used before are performed in order to 889 

obtain a pseudo fractional Bayes factor.  890 

𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑊
𝜌

= 𝑐𝑚(𝒮−1) 2⁄ (
𝑆𝑆𝑅𝜌

2

𝑆𝑆𝑅𝜌0
2 )

𝑛
2
(𝑐−1)

(𝑆𝑆𝑅𝜌
2)

𝑚𝒮+2
2

(𝑆𝑆𝑅𝜌0
2 )

𝑚+2
2

, 

where 𝑆𝑆𝑅𝜌
2 = 𝒚′(𝐼 − 𝑊(𝑊′𝑊 + 𝜌𝐼)−1𝑊′)𝒚,  and 𝑆𝑆𝑅𝜌0

2 = 𝒚′(𝐼 − 𝑊0(𝑊0
′𝑊0 + 𝜌𝐼)−1𝑊0

′)𝒚. We 891 

know that:  892 

𝐼�̅�
∗~𝐼𝜌

∗ as 𝑛 → ∞ (by Laplace approximation) 893 

where 𝐼�̅�
∗~𝐼𝜌

∗ means 
𝐼�̅�
∗

𝐼𝜌
∗ → 1 as 𝑛 → ∞.  Under the regularity condition mentioned above it implies that 894 
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                                                          𝐼�̅�~𝐼𝜌 as 𝑛 → ∞                                                  (𝐶. 1) 895 

where 𝐼�̅� = ∫ 𝜋(𝐺)𝐼�̅�
∗

𝒫+ 𝑑𝐺. We also know that  896 

𝐼𝜌
∗~𝐼∗ = ∫ ∫ 𝐿(𝒈, 𝜎2,𝑊|𝒚)𝜋(𝒈|𝐺0)𝜋(𝜎2)

ℝ+

𝑑𝜎2𝑑𝒈

ℝ𝑚𝒮

𝑎𝑠 𝜌 → 0 

                                                           ⟹ 𝐼𝜌~𝐼 𝑎𝑠 𝜌 → 0                                                  (𝐶. 2) 

however, (𝐶. 1) and (𝐶. 2) do not necessarily imply that 897 

                                                      𝐼�̅�~𝐼 as(𝑛, 𝜌) → (∞, 0)                                              (𝐶. 3) 898 

because iterated limits are not always equal to multivariate (bivariate in this case) limits. Thus, it has 899 

to be shown that lim𝜌→0 (lim𝑛→∞
𝐼�̅�
∗

𝐼
) = lim(𝑛,𝜌)→(∞,0)

𝐼�̅�
∗

𝐼
= 1. To proof this, the first step is to show 900 

that the bivariate limit exists and then that it is equal to the iterated limit. If this is shown, then 901 

lim(𝑛,𝜌)→(∞,0)
𝐼�̅�
∗

𝐼
= lim𝑛→∞ (lim𝜌→0

𝐼�̅�
∗

𝐼
) = 1, and 𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝑊 which clearly satisfies 902 

𝐹𝐵𝐹̅̅ ̅̅ ̅̅
10𝑊 = lim

𝜌→0
𝐹𝐵𝐹̅̅ ̅̅ ̅̅

10𝑊
𝜌

 

is an approximation to the fractional Bayes factor in the non-full rank scenario. 903 

 904 

 905 


