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Abstract 26 

It is important to consider heterogeneity of marker effects and allelic frequencies in across population 27 

genome-wide prediction studies. Moreover, all regression models used in genome-wide prediction 28 

overlook randomness of genotypes. In this study, a family of hierarchical Bayesian models to 29 

perform across population genome-wide prediction modeling genotypes as random variables and 30 

allowing population-specific effects for each marker was developed.  Models shared a common 31 

structure and differed in the priors used and the assumption about residual variances (homogeneous 32 

or heterogeneous). Randomness of genotypes was accounted for by deriving the joint probability 33 

mass function of marker genotypes conditional on allelic frequencies and pedigree information. As a 34 

consequence, these models incorporated kinship and genotypic information that not only permitted to 35 

account for heterogeneity of allelic frequencies, but also to include individuals with missing 36 

genotypes at some or all loci without the need for previous imputation. This was possible because the 37 

non-observed fraction of the design matrix was treated as an unknown model parameter. For each 38 

model, a simpler version ignoring population structure, but still accounting for randomness of 39 

genotypes was proposed. Implementation of these models and computation of some criteria for 40 

model comparison were illustrated using two simulated datasets. Theoretical and computational 41 

issues along with possible applications, extensions and refinements were discussed. Some features of 42 

the models developed in this study make them promising for genome-wide prediction, the use of 43 

information contained in the probability distribution of genotypes is perhaps the most appealing. 44 

Further studies to assess the performance of the models proposed here and also to compare them with 45 

conventional models used in genome-wide prediction are needed.  46 

Key words: Across population genome-enabled prediction; Bayesian modeling; heterogeneous allelic 47 

frequencies; distribution of genotypes.  48 

1. Introduction 49 
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The use of molecular markers located across the whole genome for prediction of breeding values 50 

(Meuwissen et al., 2001) and phenotypes (Goddard and Hayes, 2007, Gianola et al., 2009) has 51 

proven to be a useful tool in animals (Hayes et al., 2009), humans (Guttmacher et al., 2002; de los 52 

Campos et al., 2010) and plants (Bernardo and Yu, 2007; Desta and Ortiz, 2014). This success has 53 

given rise to a tremendous amount of research in the area of statistical genomics in order to obtain 54 

better genome-wide predictions (Goddard and Hayes, 2007; Gianola, 2013; Hill, 2014; Gianola and 55 

Rosa, 2015).  56 

Most of the methods have been developed for prediction in a single population. Across population 57 

studies usually use predictions obtained from individual populations or pool data to perform a single 58 

analysis (de Roos et al., 2009). On one hand, pooling data and performing a single analysis may 59 

increase the accuracy of genome-wide prediction because the number of records has an important 60 

impact on it (Meuwissen et al., 2001; Goddard, 2009; Zhong et al., 2009). On the other hand, it may 61 

decrease accuracy when the effects of QTL controlling the trait are not the same across populations 62 

(de Roos et al., 2009; van den Berg et al., 2015; Wientjes et al., 2015).  63 

Analyzing data from Holstein cattle performing in different European countries, Lund et al. (2011) 64 

reported that pooling data and carrying out a single analysis increased the accuracy of genomic 65 

predictions. With simulated data, de Roos et al. (2009) found that pooling data was beneficial when 66 

populations had diverged by few generations, marker density was high and heritability was low, but 67 

for more distant populations and less dense marker panels they found a small decrease in accuracy. 68 

Using simulated data, Wientjes et al. (2015) studied the effect of differences in QTL allele 69 

substitution effects across populations on the accuracy of genome-wide prediction. They found that 70 

when allele substitution effects changed across populations, the accuracies decreased in proportion to 71 

the genetic correlation between populations. Using the same dataset, van den Berg et al. (2015) 72 

looked for across population genomic prediction scenarios under which Bayesian variable selection 73 

models had a better performance than genomic BLUP (GBLUP). They concluded that Bayesian 74 
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variable selection models outperform GBLUP when the number of QTL is small as in single 75 

population analyses, but the difference in accuracy is larger in the across population case.  76 

None of these studies allowed marker effects to differ from one population to another. However, de 77 

Roos et al. (2009) highlighted the need for alternative methods that allow population-specific 78 

estimation of allele substitution effects in across population genome wide prediction. Chen et al. 79 

(2014) proposed a Bayesian model with different SNP effects for each population that permits 80 

sharing information across populations through a common set of latent variables indicating weather a 81 

given marker is associated with a QTL or not. They did not model covariance matrices of marker 82 

effects explicitly. With real and simulated data they found that this model increased the accuracy of 83 

across population genome-wide prediction, especially when the number of QTL was small and 84 

correlations among QTL effects from different populations were high. Recently, Bayesian models 85 

that account for genetic heterogeneity have been proposed. Multivariate models considering 86 

correlated population specific marker effects were developed by Lehermeir et al. (2015) while de los 87 

Campos et al. (2015a) proposed a model with main marker effects and interactions. Using real data 88 

from three plant populations, Lehermeir et al. (2015) found cases in which the strategy of pooling 89 

data and ignoring structure performed better and others where the multivariate models yielded better 90 

predictive performance. For example, in highly differentiated populations within group and 91 

multivariate analyses performed better. Using real datasets from pigs and wheat, de los Campos et al. 92 

(2015a) found modest superiority of the interaction model relative to the model using pooled data 93 

and the model that analyzed each subpopulation separately. Similar studies have implemented 94 

multivariate models in multibreed dairy cattle populations (Karoui et al., 2012; Olson et al., 2012; 95 

Makgahlela et al., 2013). Huang et al. (2014) used non-linear models to perform genome wide 96 

prediction in layer hens when the reference population was comprised by individuals from several 97 

breeds or lines and compared them with a multiple-trait GBLUP model. They found that the various 98 

models used had a similar predictive performance.  99 
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If several populations are to be evaluated simultaneously, the possible existence of genotype by 100 

environment interaction, lack of persistence of linkage phase and variation in allelic frequencies 101 

across populations indicate the need for an analysis that accounts for the fact that combining them 102 

creates a structured complete population. It has been reported that population structure may act as an 103 

effect modifier (de los Campos et al., 2015a).  Furthermore, it has to be considered that not only the 104 

allele substitution effects of a particular locus in different populations may be correlated, but also its 105 

frequencies in each population (e.g., due to gene flow). 106 

Another feature that has been overlooked in the random linear regression models used in genome-107 

wide prediction is the randomness of the matrix containing a one to one mapping from the set of 108 

genotypes to a subset of the integers, namely the design matrix. This matrix is treated as fixed in 109 

genome-wide prediction models, while in classical quantitative genetics theory it is treated as random 110 

(Falconer and Mackay, 1996; Lynch and Walsh, 1998). Besides being in agreement with the classical 111 

theory, taking into account the randomness of this matrix, that is, the randomness of genotypes, 112 

permits the estimation of allelic frequencies because when treated as an observable discrete random 113 

matrix, its probability mass function (pmf) depends on the allelic frequencies. Thus, under a 114 

Bayesian setting, allelic frequencies are treated as random because these are unknown parameters. 115 

Further, the works of Wright (1930; 1937) provide additional support to treat allelic frequencies as 116 

random variables making Bayesian inference even more attractive.  117 

Thus, the objective of this study was to propose hierarchical Bayesian models to carry out 118 

simultaneous genome-wide prediction in several populations accounting for randomness of marker 119 

genotypes, heterogeneity and correlation of allelic frequencies across populations, and population-120 

specific allelic substitution effects.  121 

2.  Methods 122 

2.1 The models 123 
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Hereinafter the complete population or simply the population is defined as the set of individuals with 124 

phenotypes considered in the study. Suppose that there exists some criterion (e.g., environment, race, 125 

breed, line, etc.) to split this population into 𝒮 subpopulations.  To make the problem more tractable, 126 

some simplifying assumptions are made. The first one is linkage equilibrium. The second one is 127 

Hardy-Weinberg equilibrium. The third one is that starting from the oldest individuals with 128 

phenotypes, the pedigree is fully known. Lastly, mutations are ignored.  129 

The basic linear model used to describe the relationship between response variables and marker allele 130 

substitution effects is 𝒚 = 𝑊𝒈 + 𝒆, where 𝒚 is a vector containing dependent variables (e.g., records 131 

corrected for non-genetic factors), 𝑊 is an observable random matrix containing a one to one 132 

mapping from individual marker genotypes to a subset of the integers to be defined later, 𝒈 is an 133 

unknown random vector of marker allelic substitution effects for every population and 𝒆 is a random 134 

vector of residuals. A more detailed notation is the following. If records are sorted by subpopulation 135 

as well as the columns of 𝑊 and the elements of 𝒈, then for every 𝑙 = 1,2,… , 𝒮, 𝒚𝑙 = 𝑊𝑙𝒈𝑙 + 𝒆𝑙, 136 

with dimensions: (𝒚𝑙)𝑛𝑙×1, (𝑊𝑙)𝑛𝑙×𝑚, (𝒈𝑙)𝑚×1 and (𝒆𝑙)𝑛𝑙×1 where 𝑛𝑙 is the sample size of 137 

subpopulation 𝑙, and 𝑚 is the number of marker loci. Thus, the total sample size is 𝑛 = ∑ 𝑛𝑙
𝒮
𝑙=1 . 138 

The scenario where only a part of matrix 𝑊 is observed because some individuals are not genotyped 139 

or individuals are genotyped for different numbers of marker loci is also considered. This is done by 140 

treating this non-observed part of 𝑊 as a parameter in the model as it will be explained later. 141 

The case of diploid individuals and biallelic marker loci is considered. The effect of every marker 142 

locus is defined as the regression of records on a function of the number of copies of the reference 143 

allele and in quantitative genetics it corresponds to the allele substitution effect (Falconer and 144 

Mackay, 1996; Lynch and Walsh, 1998). The number of copies can be “centered” at zero giving the 145 

following codification. Let A and B be the marker alleles at each locus and let B be the reference 146 

allele. Then: 147 
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𝑊𝑙 = {𝑤𝑖𝑗
𝑙 }

𝑛𝑙×𝑚
= {

1, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐵𝐵 
0, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐴𝐵

−1, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐴𝐴
. 

Different versions of the hierarchy that represents the stochastic component of each model were 148 

considered. Models vary according to the assumptions on the variance of residuals and the priors 149 

posed over the marker effects. The most parsimonious model is the one considering homoscedastic 150 

residuals and homogeneous marker effect covariance matrices. The hierarchical Bayesian model 151 

assuming homoscedastic residuals and multivariate Gaussian priors for marker effects has the 152 

following structure: 153 

𝒚|𝑊,𝒈, 𝜎2~𝑀𝑉𝑁(𝑊𝒈, 𝜎2𝐼) 

𝑊|𝒑1
∗ , 𝒑2

∗ , … , 𝒑𝑚
∗ ~𝜋(∙|𝒑1

∗ , 𝒑2
∗ , … , 𝒑𝑚

∗ ) 

𝒑𝑗
∗
𝑖𝑖𝑑
∼ 𝜋(𝒑∗), 𝑗 = 1,2,… ,𝑚 

𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (
𝜏2

2
,
𝑣

2
) ≔ 𝐼𝐺 (

𝜏2

2
,
𝑣

2
) 

𝒈|𝐺~𝑀𝑉𝑁(0, 𝐺), 𝐺 = 𝐵𝑙𝑜𝑐𝑘 𝐷𝑖𝑎𝑔 {𝐺𝑗}
𝑚

𝑗 = 1   

𝐺𝑗

𝑖𝑖𝑑
∼ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑎, 𝜮) ≔ 𝐼𝑊(𝑎, 𝜮) 

𝐺𝑗 =

[
 
 
 
 

𝜎𝑗1
2 𝜎𝑗1,2

⋯ 𝜎𝑗1,𝒮

𝜎𝑗2
2 ⋯ 𝜎𝑗2,𝒮

⋱ ⋮
𝑠𝑦𝑚 𝜎𝑗𝒮

2
]
 
 
 
 

 

where 𝜎2 is the residual variance, 𝜎𝑗𝑙

2 is the variance of the effect of the 𝑗𝑡ℎ marker in the 𝑙𝑡ℎ 154 

subpopulation, 𝜎𝑗𝑙,𝑙′ 
 is the covariance between effects of marker 𝑗 in subpopulations 𝑙 and 𝑙′, 𝒑𝑗

∗ is a 155 

parameter associated with allelic frequencies of the 𝑗𝑡ℎ marker in each subpopulation and 𝜋(𝒑∗) is its 156 

density. Details on these parameters and their probability density function (pdf) are given later.  157 
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In the case of heterogeneous residual variances across subpopulations, residual variances 𝜎1
2, … , 𝜎𝒮

2 158 

are given independent 𝐼𝐺 (
𝜏2

2
,
𝑣

2
)  priors and then: 𝒚|𝑊,𝒈, 𝑅~𝑀𝑉𝑁(𝑊𝒈,𝑉), 𝑅 = (𝜎𝑒1

2 , … , 𝜎𝑒𝒮
2 ) and 159 

𝑉 = 𝐵𝑙𝑜𝑐𝑘 𝐷𝑖𝑎𝑔. {𝜎𝑒𝑙
2 𝐼𝑛𝑙

}
𝒮     
𝑙 = 1

. Hill (1984) found that in the presence of heterogeneous 160 

environmental variances, across population analyses assuming homogenous residuals variances 161 

yielded an excess of individuals selected from populations with higher environmental variances. This 162 

is why heterogeneity of residual variances across subpopulations was considered in this study.  163 

The general framework assumes that in each subpopulation there is a fraction of genotyped 164 

individuals and a fraction of non-genotyped or partially genotyped individuals. Let 𝑊ℴ and 𝑊𝑁 165 

denote the observed (data) and non-observed (an unknown parameter) parts of 𝑊. Let 𝑃∗ =166 

(𝒑1
∗ , 𝒑2

∗ , … , 𝒑𝑚
∗ ); therefore, 𝜋(𝑊|𝑃∗) = 𝜋(𝑊ℴ,𝑊𝑁|𝑃∗) can be expressed as: 167 

𝑓(𝑊ℴ|𝑊𝑁 , 𝑃∗)𝜋(𝑊𝑁|𝑃∗). Thus, the full likelihood has the form: 168 

𝑓(𝒚,𝑊ℴ|𝑊𝑁 , 𝒈, 𝑅, 𝑃∗) = 𝑓(𝒚|𝑊ℴ,𝑊𝑁 , 𝒈, 𝑅, 𝑃∗)𝑓(𝑊ℴ|𝑊𝑁 , 𝒈, 𝑅, 𝑃∗) 

= 𝑓(𝒚|𝑊, 𝒈, 𝑅)𝑓(𝑊ℴ|𝑊𝑁 , 𝑃∗). 

Henceforth, 𝑓(𝒚|𝑊,𝒈, 𝑅) will be referred to as the 𝒚 component of the likelihood and 169 

𝑓(𝑊ℴ|𝑊𝑁 , 𝑃∗) will be referred to as the 𝑊 component.  170 

The simplest case for the covariance matrix of marker effects is 𝐺 = 𝐼⨂𝐺0. Under this setting the 171 

assumption is that the covariance structure is the same for all markers. This is statistically convenient 172 

due to the fact that the number of covariance parameters is reduced. Further, in analysis considering a 173 

single population, it has been found that specifying a different variance for each marker does not 174 

allow too much Bayesian learning about marker effect variances (Gianola et al., 2009). Here, models 175 

assigning the same covariance matrix to the effects of all marker loci and models considering a 176 

different covariance matrix for the effects of each marker locus were considered and these models 177 

were referred to as homogeneous marker effect covariance matrix models and heterogeneous marker 178 



9 
 

effect covariance matrix models. Let 𝒫𝒮
+ denote the space of symmetric positive definite matrices of 179 

dimension 𝒮 × 𝒮. Then, the marginal prior distribution of 𝒈 is: 180 

𝜋(𝒈) = ∫ 𝜋(𝒈|𝐺0)𝜋(𝐺0)𝑑𝐺0

𝒫𝒮
+

∝
1

|𝚺 + ∑ 𝒈𝑗𝒈𝑗
′𝑚

𝑗=1 |
(
𝑎+𝑚

2
)
. 

For details, see Appendix A. Similarly, for the heterogeneous marker effect covariance matrix model 181 

it can be shown (appendix A) that: 𝜋(𝒈) ∝
1

∏ (1+
1

𝑎+1−𝒮
𝒈𝑗

′𝚺∗
−1𝒈𝑗)

(
𝑎+1

2
)

𝑚
𝑗=1

, which is the product of 𝑚 182 

multivariate t distributions with scale matrix 𝚺∗ =
1

𝑎+1−𝒮
𝚺 and degrees of freedom 𝑎 + 1 − 𝒮; 183 

therefore, under this prior, marker effects are marginally independent and identically distributed.  At 184 

this point, the following remark can be made.  185 

Remark 1 Under the assumption of homogeneous marker effect covariance matrices, a priori the 186 

marker effects are marginally dependent. This happens because when integrating with respect to the 187 

common covariance matrix 𝐺0, the term ∑ 𝒈𝑗𝒈𝑗
′𝑚

𝑗=1  and the hyper-hyperparameter 𝚺 are factored, 188 

resulting in a function that cannot be written as the product of 𝑚 functions, each one depending on a 189 

different 𝒈𝑗. Moreover, the joint prior density is not standard.  190 

To take into account the belief that allelic frequencies of the same marker vary across subpopulations 191 

and may be correlated, the prior 𝜋(𝒑∗) is built based on a Dirichlet distribution. To do that, the allelic 192 

frequency of the reference allele in marker locus 𝑗 in subpopulation 𝑙  has to be expressed on a 193 

complete population basis, that is, 𝑝𝑙𝑗 is expressing the frequency of the reference allele in locus 𝑗 in 194 

subpopulation 𝑙 relative not to subpopulation 𝑙, but to the complete population. Thus, the frequencies 195 

of the two alleles at a given marker locus and a given subpopulation do not add to one, but to some 196 

sort of relative frequency of that subpopulation in that locus denoted as 𝑟𝑙𝑗. Let 𝒓 = (𝒓1, … , 𝒓𝒮), 𝒓𝑙 =197 

(𝑟𝑙1, … , 𝑟𝑙𝑚), 𝑙 = 1,2,… , 𝒮. With this parameterization ∑ 𝑝𝑙𝑗
𝒮
𝑙=1 ≤ 1, ∀ 𝑗 = 1,2, … ,𝑚, with equality if 198 

and only if the reference allele is fixed in all subpopulations. Conversely, allelic frequencies 199 



10 
 

expressed on a subpopulation basis satisfy the constraint that the sum of the frequencies of the two 200 

alleles at each marker locus equals one within each subpopulation. Let 𝑞𝑗𝑙 , 𝑗 = 1,2, … ,𝑚, 𝑙 =201 

1,2,… , 𝒮, be the frequencies of the non-reference alleles expressed on a complete population basis, 202 

then 𝑝𝑙𝑗 + 𝑞𝑙𝑗 = 𝑟𝑙𝑗. The two parameterizations of allelic frequencies are related by the one to one 203 

mapping 𝑝𝑙𝑗
∗ = 𝑝𝑙𝑗 𝑟𝑙𝑗⁄ .  204 

Consider the case when 𝒓 is known and 𝑟𝑙1 = ⋯ = 𝑟𝑙𝑚 = 𝑟𝑙  ∀ 𝑙. Then, elements of vector 𝒓 =205 

(𝑟1, … , 𝑟𝒮) can be seen as subpopulation weights, that is, they are related to subpopulation sizes. By 𝒓 206 

being known, it is meant that it is either actually known or it is specified following some assumption. 207 

A pragmatic decision would be to assign equal subpopulation weights, an assumption that was 208 

also made in other studies (e.g., Gianola et al. 2010). Once 𝒓 has been specified, there is an extra 209 

restriction over each  𝒑𝑗 = (𝑝1𝑗, … , 𝑝𝒮𝑗). For 𝑙 = 1,2, … , 𝒮 the following condition must be satisfied: 210 

𝑝𝑙𝑗 ≤ 𝑟𝑙. Therefore, the support of the distribution of 𝒑𝑗 given 𝒓 is Ω𝑗
𝒓 ≔ {𝒑𝑗 ∈ ℝ𝒮|0 < 𝑝𝑙𝑗 ≤211 

𝑟𝑙  ∀ 𝑙, ∑ 𝑟𝑙 = 1𝒮
𝑙=1 }. Notice that the condition ∑ 𝑟𝑙 = 1𝒮

𝑙=1  implies that vectors in Ω𝑗
𝒓 satisfy ∑ 𝑝𝑙𝑗

𝒮
𝑙=1 ≤212 

1. Thus, under this approach the prior used for each 𝒑𝑗 is one corresponding to a scaled Dirichlet 213 

random vector. If 𝜷 = (𝛽1, … , 𝛽𝒮)~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜶), 𝜶 ∈ ℝ𝒮+1, then the prior assigned to 𝒑𝑗 is the 214 

distribution of vector (𝛽1𝑟1, … , 𝛽𝒮𝑟𝒮) which clearly pertains to Ω𝑗
𝒓. Then, the pdf 𝜋(𝒑𝑗|𝒓) is derived 215 

using standard results from the theory of distributions of transformations of random variables 216 

(Casella and Berger, 2002). This derivation is simplified by the fact that the transformation is linear 217 

and therefore the Jacobian is constant. It follows that: 𝜋(𝒑𝑗|𝒓) ∝ ∏ {(
𝑝𝑙𝑗

𝑟𝑙
)

𝛼𝑙−1

}𝒮
𝑙=1 𝑝(𝒮+1)𝑗

𝛼𝒮+1−1
, where 218 

 𝑝(𝒮+1)𝑗 = 1 − ∑
𝑝𝑙𝑗

𝑟𝑙

𝒮
𝑙=1 .  219 

The second approach is to assume that 𝒓 is unknown. The density 𝜋(𝒑|𝒓) could be used and a 220 

Dirichlet distribution could be assigned to each 𝒓𝑗 adding one more level to the hierarchy. However, 221 

using 𝑝𝑙𝑗 + 𝑞𝑙𝑗 = 𝑟𝑙𝑗 and properties of the Dirichlet distribution, the following strategy allows 222 
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assigning a prior to allelic frequencies and the weights 𝒓 without putting an extra level in the 223 

hierarchy. To this end it is assumed that 𝑟𝑙𝑗 varies for each 𝑗 and each 𝑙. A 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 ((𝜶𝑝, 𝜶𝑞)) 224 

prior is posed over (𝒑𝑗, 𝒒𝑗), where 𝒒𝑗 is the analog of 𝒑𝑗 for the non-reference allele at each locus 225 

and 𝜶𝑝 = (𝛼1𝑝, … , 𝛼𝒮𝑝), 𝜶𝑞 = (𝛼1𝑞, … , 𝛼𝒮𝑞). Consequently, by properties of the Dirichlet 226 

distribution it follows that 𝒓𝑗~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 ((𝛼1𝑝 + 𝛼1𝑞, … , 𝛼𝒮𝑝 + 𝛼𝒮𝑞)).  227 

2.1.1 Deriving the joint pmf of marker genotypes conditional on allelic frequencies 228 

Given the kinship structure of a population (i.e., the pedigree) one can find several generations 229 

comprised of genotyped, partially genotyped and non-genotyped individuals. Therefore, the approach 230 

is to derive the pmf of the complete matrix 𝑊, i.e., the joint pmf of individuals with phenotypic 231 

records. Under this setting, 𝑚 is the total number of marker loci to be included in the analysis (it 232 

usually corresponds to the size of the densest marker panel used in the population).  233 

Across columns, that is, across marker loci, the problem is simplified by assuming linkage 234 

equilibrium, which implies independence of genotypes at different loci. Therefore, for an arbitrary 235 

subpopulation, the joint density of its column vectors is simply the product of their marginal pmf. 236 

When considering all subpopulations, the same assumption implies that marker genotypes at different 237 

loci are independent. The following derivations hold for any of the previously discussed approaches 238 

to model allelic frequencies distributions.   Under the assumption of Hardy-Weinberg equilibrium it 239 

follows that marginally:  240 

𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ ∼ {

1, 𝑤𝑖𝑡ℎ     𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦    𝑝
𝑙𝑗
∗2           

0,  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 2𝑝
𝑙𝑗
∗ (1 − 𝑝

𝑙𝑗
∗ )

−1,   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝
𝑙𝑗
∗ )2

 

Recall that 𝑝𝑙𝑗
∗ = 𝑝𝑙𝑗 𝑟𝑙𝑗⁄ . Notice that 𝑝𝑙𝑗

∗  is used instead of 𝑝𝑙𝑗 because it allows defining a proper 241 

pmf in the sense that the sum of the probabilities of the three possible values of 𝑤𝑖𝑗
𝑙  equals one 242 

(which does not happen when using 𝑝𝑙𝑗). The pmf  𝜋(𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ ) can be also written as: 243 
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𝜋(𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ ) = (𝑝𝑙𝑗
∗2)

𝐼1𝑖
(2𝑝𝑙𝑗

∗ (1 − 𝑝𝑙𝑗
∗ ))

𝐼0𝑖
((1 − 𝑝𝑙𝑗

∗ )2)
𝐼−1𝑖

, 

where 𝐼𝑧𝑖  is the indicator variable of the mutually exclusive events 𝑤𝑖𝑗
𝑙 = 𝑧, 𝑧 ∈ {−1,0,1}. By the 244 

linkage equilibrium assumption it follows that for individual 𝑖 in population 𝑙: 𝜋(𝒘𝑖
𝑙|𝒑𝑗

∗) =245 

∏ 𝜋(𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ )𝑚
𝑗=1 . 246 

The rows of matrix 𝑊 represent individuals with records. Because of the kinship between them, the 247 

genotype of a given individual is not independent of the genotype of their relatives. Furthermore, this 248 

non-independence has to be considered across subpopulations (e.g., half or full sibs may pertain to 249 

different subpopulations). This approach is based on the pedigree of the complete population. The 250 

“base” animals or “founders” can be pragmatically defined as the oldest individuals with phenotypic 251 

records and those individuals with phenotypes and unknown parents. To facilitate computations, it is 252 

assumed that these individuals are unrelated. Hereinafter this set is referred to as the base population, 253 

and individuals in this set are referred to as founders or base individuals. The remaining individuals 254 

in the population are referred to as non-founders. This pmf could be derived ignoring pedigree 255 

information which is equivalent to mutual independence of the rows of 𝑊, then 𝜋(𝑊|𝑃∗) =256 

∏ ∏ ∏ 𝜋(𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ )
𝑛𝑙
𝑖=1

𝒮
𝑙=1

𝑚
𝑗=1 . However, this would ignore information contained in the pedigree and 257 

would unnecessarily make the parametric space of 𝑊𝑁 larger, which does not seem to be the best 258 

way to proceed.  259 

The ordering of individuals is arbitrary, but a convenient way to do it here is according to the 260 

pedigree in such a way that the founders are given the first indices. For marker locus 𝑗 in population 𝑙 261 

the target is to find: 262 

𝜋(𝒘𝑗
𝑙|𝑝𝑙𝑗

∗ ) = 𝜋(𝑤1𝑗
𝑙 , 𝑤2𝑗

𝑙 , … ,𝑤𝑛𝑙𝑗
𝑙 |𝑝𝑙𝑗

∗ ) = 𝑃(𝑤1𝑗
𝑙 = 𝜔1, 𝑤2𝑗

𝑙 = 𝜔2, … , 𝑤𝑛𝑙𝑗
𝑙 = 𝜔𝑛𝑙

|𝑝𝑙𝑗
∗ ) 

with 𝜔𝑖 ∈ {−1,0,1}, 1 ≤ 𝑖 ≤ 𝑛𝑙. This joint pmf can be written as: 263 

𝜋(𝒘𝑗
𝑙|𝑝𝑙𝑗

∗ ) = 𝜋(𝑤𝑛𝑙𝑗
𝑙 |𝑤1𝑗

𝑙 , … , 𝑤(𝑛𝑙−1)𝑗
𝑙 , 𝑝𝑙𝑗

∗ )𝜋(𝑤1𝑗
𝑙 , … , 𝑤(𝑛𝑙−1)𝑗

𝑙 |𝑝𝑙𝑗
∗ ) 
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= 𝜋(𝑤𝑛𝑙𝑗
𝑙 |𝑤1𝑗

𝑙 , … , 𝑤(𝑛𝑙−1)𝑗
𝑙 , 𝑝𝑙𝑗

∗ )𝜋(𝑤(𝑛𝑙−1)𝑗
𝑙 |𝑤1𝑗

𝑙 , … ,𝑤(𝑛𝑙−2)𝑗
𝑙 , 𝑝𝑙𝑗

∗ )𝜋(𝑤1𝑗
𝑙 , … ,𝑤(𝑛𝑙−2)𝑗

𝑙 |𝑝𝑙𝑗
∗ ) 

= 𝜋(𝑤𝑛𝑙𝑗
𝑙 |𝑤1𝑗

𝑙 , … ,𝑤(𝑛𝑙−1)𝑗
𝑙 , 𝑝𝑙𝑗

∗ )⋯𝜋(𝑤1𝑗
𝑙 |𝑝𝑙𝑗

∗ ) 

= ∏{𝜋(𝑤(𝑛𝑙−𝑖)𝑗
𝑙 |𝑤1𝑗

𝑙 , … , 𝑤(𝑛𝑙−𝑖−1)𝑗
𝑙 , 𝑝𝑙𝑗

∗ )}

𝑛𝑙−2

𝑖=0

𝜋(𝑤1𝑗
𝑙 |𝑝𝑙𝑗

∗ ). 

When considering all the 𝑚 marker loci we have:  264 

𝜋(𝑊𝑙|𝒑𝑙
∗) = ∏{𝜋(𝒘𝑛𝑙−𝑖

𝑙 |𝒘1
𝑙 , … , 𝒘𝑛𝑙−𝑖−1

𝑙 , 𝒑𝑙
∗)}

𝑛𝑙−2

𝑖=0

𝜋(𝒘1
𝑙 |𝒑𝑙

∗), 

where each one of the pmf 𝜋(𝒘𝑛𝑙−𝑖
𝑙 , |𝒘1

𝑙 , … ,𝒘𝑛𝑙−𝑖−1
𝑙 , 𝒑𝑙

∗) is the product: 265 

∏ 𝜋(𝑤(𝑛𝑙−𝑖)𝑗
𝑙 , |𝑤1𝑗

𝑙 , … ,𝑤(𝑛𝑙−𝑖−1)𝑗
𝑙 , 𝑝𝑙𝑗

∗ ), 0 ≤ 𝑖 ≤ 𝑛𝑙 − 2𝑚
𝑗=1  and 𝜋(𝒘1

𝑙 |𝒑𝑙
∗) = ∏ 𝜋(𝑤1𝑗

𝑙 |𝑝𝑙𝑗
∗ ).𝑚

𝑗=1  266 

Now, a conditional independence argument is used to simplify 𝜋(𝑊𝑙|𝒑𝑙
∗). Given the genotypes of the 267 

parents of individual 𝑖, its genotype is independent of the genotype of collateral relatives and other 268 

ancestors. It is possible that the parents of individual 𝑖 in population 𝑙 pertain to subpopulations 𝑙∗ 269 

and 𝑙′. Thus, at this point the complete population is considered. In addition, notice that given the 270 

parental genotypes, the genotype of an individual does not depend on the allelic frequencies because 271 

this conditional pmf is determined using basic segregation rules (see Appendix A). From these 272 

arguments it follows that for individual  𝑖, 𝜋(𝒘𝑖|𝒘1, … , 𝒘𝑖−1, 𝑃
∗) = 𝜋(𝒘𝑖|𝒘𝑆𝑖

, 𝒘𝐷𝑖
), where 𝒘𝑆𝑖

 and 273 

𝒘𝐷𝑖
 are the genotypes of the parents of individual 𝑖. The pmf of non-founder genotypes at marker 274 

locus 𝑗 conditioned on their parental genotypes is presented in Appendix A. Therefore, 𝜋(𝑊|𝑃∗) can 275 

be written as 𝜋(𝑊|𝑃∗) = 𝜋(𝑊𝑁𝐹|𝑊𝐹)𝜋(𝑊𝐹|𝑃∗) where 𝑊𝐹 is the submatrix of 𝑊 formed by 276 

considering the rows corresponding to founders and 𝑊𝑁𝐹 is the submatrix of 𝑊 comprised of the 277 

rows corresponding to non-founders. Let 𝑓 be the total number of founders. Under the assumption 278 

that these individuals are unrelated, the pmf of their genotypes given allelic frequencies is: 279 
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𝜋(𝑊𝐹|𝑃∗) = ∏𝜋(𝑊𝑖|𝑃
∗)

𝑓

𝑖=1

= ∏∏𝜋(𝑤𝑖𝑗|𝑃
∗)

𝑓

𝑖=1

𝑚

𝑗=1

= ∏∏∏𝜋(𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ )

𝑓𝑙

𝑖=1

𝒮

𝑙=1

𝑚

𝑗=1

 

= ∏∏∏(𝑝𝑙𝑗
∗2)

𝐼1𝑖
(2𝑝𝑙𝑗

∗ (1 − 𝑝𝑙𝑗
∗ ))

𝐼0𝑖
((1 − 𝑝𝑙𝑗

∗ )2)
𝐼−1𝑖

𝑓𝑙

𝑖=1

𝒮

𝑙=1

𝑚

𝑗=1

 

= ∏∏(𝑝𝑙𝑗
∗2)

𝑛𝑙

𝐵𝐵𝑗

(2𝑝𝑙𝑗
∗ (1 − 𝑝𝑙𝑗

∗ ))
𝑛𝑙

𝐴𝐵𝑗

((1 − 𝑝𝑙𝑗
∗ )2)

𝑛𝑙

𝐴𝐴𝑗
𝒮

𝑙=1

𝑚

𝑗=1

 

= ∏∏2𝑛𝑙

𝐴𝐵𝑗

𝑝𝑙𝑗
∗ 2𝑛𝑙

𝐵𝐵𝑗
+𝑛𝑙

𝐴𝐵𝑗

(1 − 𝑝𝑙𝑗
∗ )

2𝑛𝑙

𝐴𝐴𝑗
+𝑛𝑙

𝐴𝐵𝑗
𝒮

𝑙=1

𝑚

𝑗=1

= 2𝑛𝐻
∏∏𝑝𝑙𝑗

∗ 𝑛𝑙

𝐵𝑗

(1 − 𝑝𝑙𝑗
∗ )

𝑛𝑙

𝐴𝑗
𝒮

𝑙=1

𝑚

𝑗=1

, 

replacing  𝑝𝑙𝑗
∗ = 𝑝𝑙𝑗/𝑟𝑙𝑗  ∀  𝑙 = 1,2. . , 𝒮, ∀ 𝑗 = 1,2, … ,𝑚:   280 

𝜋(𝑊𝐹|𝑃, 𝒓) = 2𝑛𝐻
∏∏

1

𝑟𝑙𝑗
2𝑓𝑙

𝑝𝑙𝑗
𝑛𝑙

𝐵𝑗

(𝑟𝑙𝑗 − 𝑝𝑙𝑗)
𝑛𝑙

𝐴𝑗
𝒮

𝑙=1

𝑚

𝑗=1

 

where 𝑓𝑙 is the number of founders in the 𝑙𝑡ℎ subpopulation; thus, 𝑓 = ∑ 𝑓𝑙
𝒮
𝑙=1 , 𝑛

𝑙

𝐵𝐵𝑗 , 𝑛
𝑙

𝐴𝐵𝑗
 and 𝑛

𝑙

𝐴𝐴𝑗
 281 

are the counts of founders with genotypes BB, AB and AA at marker locus 𝑗 in subpopulation 𝑙 282 

respectively, 𝑛
𝑙

𝐵𝑗 = 2𝑛
𝑙

𝐵𝐵𝑗 + 𝑛
𝑙

𝐴𝐵𝑗
 is the total count of B alleles at marker locus 𝑗 in founders from 283 

subpopulation 𝑙, 𝑛
𝑙

𝐴𝑗 = 2𝑛
𝑙

𝐴𝐴𝑗 + 𝑛
𝑙

𝐴𝐵𝑗
  is the total count of A alleles at marker locus 𝑗 in founders 284 

from subpopulation 𝑙 and 𝑛𝐻 = ∑ ∑ 𝑛
𝑙

𝐴𝐵𝑗𝒮
𝑙=1

𝑚
𝑗=1   is the total number of heterozygous loci in the base 285 

population. In terms of the random variables 𝑤𝑖𝑗
𝑙 , 𝑛

𝑙

𝐵𝐵𝑗 , 𝑛
𝑙

𝐴𝐵𝑗
 and 𝑛

𝑙

𝐴𝐴𝑗
 can be written as: 𝑛

𝑙

𝐵𝐵𝑗 =286 

∑ 𝐼1𝑖
𝑓𝑙
𝑖=1 , 𝑛

𝑙

𝐴𝐴𝑗 = ∑ 𝐼−1𝑖
𝑓𝑙
𝑖=1 , 𝑛

𝑙

𝐴𝐵𝑗 = 𝑓𝑙 − (𝑛𝑙

𝐵𝐵𝑗 + 𝑛
𝑙

𝐴𝐴𝑗) = 𝑓𝑙 − ∑ (𝑤𝑖𝑗
𝑙 )

2𝑓𝑙
𝑖=1 . 287 

For non-founders: 288 

𝜋(𝑊𝑁𝐹|𝑊𝐹) = ∏ ∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆
𝑖′

𝑗, 𝑤𝐷
𝑖′

𝑗)

𝑛

𝑖′=𝑓+1

𝑚

𝑗=1

= ∏∏ ∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′
𝑗

𝑙 , 𝑤𝐷
𝑖′

𝑗
𝑙 )

𝑛𝑙

𝑖′=𝑓𝑙+1

𝒮

𝑙=1

𝑚

𝑗=1

 

where 𝑤𝑆
𝑖′

𝑗
𝑙  and 𝑤𝐷

𝑖′
𝑗

𝑙  are the genotypes for marker 𝑗 of the parents of individual 𝑖′ from 289 

subpopulation 𝑙. Hence: 290 
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𝜋(𝑊|𝑃∗) = ∏∏∏𝜋(𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ )

𝑓𝑙

𝑖=1

𝒮

𝑙=1

𝑚

𝑗=1

× ∏∏ ∏ 𝜋 (𝑤𝑖′𝑗|𝑤𝑆
𝑖′𝑗

, 𝑤𝐷
𝑖′𝑗

)

𝑛𝑙

𝑖′=𝑓𝑙+1

𝒮

𝑙=1

𝑚

𝑗=1

 

= ∏∏∏{𝜋(𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ ) ∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑙

𝑖′=𝑓𝑙+1

}

𝑓𝑙

𝑖=1

𝒮

𝑙=1

𝑚

𝑗=1

 

= 2𝑛𝐻
∏∏{𝑝𝑙𝑗

∗ 𝑛𝑙

𝐵𝑗

(1 − 𝑝𝑙𝑗
∗ )

𝑛𝑙

𝐴𝑗

∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑙

𝑖′=𝑓𝑙+1

}

𝒮

𝑙=1

𝑚

𝑗=1

 

⇒ 𝜋(𝑊|𝑃, 𝒓) = 2𝑛𝐻
∏∏{

1

𝑟𝑙𝑗
2𝑓𝑙

𝑝𝑙𝑗
𝑛

𝑙

𝐵𝑗

(𝑟𝑙𝑗 − 𝑝𝑙𝑗)
𝑛

𝑙

𝐴𝑗

∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑙

𝑖′=𝑓𝑙+1

}

𝒮

𝑙=1

𝑚

𝑗=1

. 

Remark 2 Under the assumptions presented at the beginning of this section, given base genotypes, the 291 

process defining the inheritance of alleles is completely determined by the pedigree information. The 292 

pedigree allows tracing the set of possible values that genotypes can take from a given individual 293 

back to the base population. It implies that allelic frequencies have to be known only in the base 294 

population because the distribution of genotypes in the set of non-founders is completely determined 295 

by the pedigree. Stated another way, given the pedigree, only the founder genotypes carry 296 

information about allelic frequencies.  297 

The next step is to formally define the support (set of values of 𝑊 with non-null probability) of the 298 

pmf 𝜋(𝑊|𝑃∗) and its cardinality (i.e., the number of elements contained in this set). If we had a 299 

population of 𝑛 unrelated individuals genotyped for 𝑚 biallelic loci, then the total number of possible 300 

values of 𝑊 would be 3𝑛𝑚. However, given the kinship between individuals, the number of possible 301 

values of 𝑊 is smaller than 3𝑛𝑚. Let 𝒢 be the support of 𝜋(𝑊|𝑃∗), then number of possible values 302 

that 𝑊 can take is |𝒢|, namely the cardinality of the set 𝒢. To find |𝒢|, the pedigree of the population 303 

is used because along with the genotypes of founders, it defines how many individuals could 304 

potentially have one, two or three genotypes for each marker locus. For example, a progeny from 305 

parents with genotypes AA and AA has genotype AA with probability one, while a progeny from 306 
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parents AA and AB could have genotypes AA or AB with probabilities equal to ½.  Let ℱ be the set 307 

of founders, then |ℱ| = 𝑓, thus there are 3𝑓𝑚 possible values for the submatrix of 𝑊 corresponding 308 

to founders under the assumption that they are unrelated. Hereinafter, each one of these possible 309 

values is defined as a “base genotypic configuration”. Notice that each one of these 𝑓𝑚 genotypic 310 

configurations induces a different set of possible genotypes in the rest of the population. Under base 311 

genotypic configuration 𝑘, 1 ≤ 𝑘 ≤ 3𝑚𝑓, for each marker locus the remaining 𝑛 − 𝑓 individuals are 312 

grouped into three mutually exclusive sets: 𝑂1𝑗
𝑘 ≔ {𝑖: |{𝑆𝑖𝑗 × 𝐷𝑖𝑗}

𝑘
| = 1,1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 3𝑚𝑓}, 313 

𝑂2𝑗
𝑘 ≔ {𝑖: |{𝑆𝑖𝑗 × 𝐷𝑖𝑗}

𝑘
| = 2,1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 3𝑚𝑓}, 𝑂3𝑗

𝑘 ≔ {𝑖: |{𝑆𝑖𝑗 × 𝐷𝑖𝑗}
𝑘
| = 3, 1 ≤ 𝑗 ≤314 

𝑚, 1 ≤ 𝑘 ≤ 3𝑚𝑓}, where |{𝑆𝑖𝑗 × 𝐷𝑖𝑗}
𝑘
| is the cardinality of the set of possible genotypes at marker 315 

locus 𝑗 resulting from the mating of the parents of individual 𝑖 under base genotypic configuration 316 

𝑘, {𝑆𝑖𝑗 × 𝐷𝑖𝑗}
𝑘
. Consequently, |𝑂𝑙𝑗

𝑘 | is the number of individuals in the population for which there are 317 

𝑙 possible genotypes at marker 𝑗, 1 ≤ 𝑙 ≤ 3 given the 𝑘𝑡ℎ base genotypic configuration. Hence, at 318 

each marker locus and each base genotypic configuration the following equality is satisfied: |𝑂1𝑗
𝑘 | +319 

|𝑂2𝑗
𝑘 | + |𝑂3𝑗

𝑘 | = 𝑛 − 𝑓. Therefore, at each marker locus and base genotypic configuration the total 320 

number of possible genotypes in the 𝑛 − 𝑓 non-founder individuals is 1|𝑂1𝑗
𝑘 |2|𝑂2𝑗

𝑘 |3|𝑂3𝑗
𝑘 |

, and under the 321 

linkage equilibrium assumption, the total number of possible genotypes across marker loci given 322 

base genotypic configuration 𝑘 is 323 

∏1|𝑂1𝑗
𝑘 |2|𝑂2𝑗

𝑘 |3|𝑂3𝑗
𝑘 |

𝑚

𝑗=1

= 2
∑ |𝑂2𝑗

𝑘 |𝑚
𝑗=1 3

∑ |𝑂3𝑗
𝑘 |𝑚

𝑗=1  

Accordingly, given the pedigree of the population, the total number of possible values that matrix 𝑊 324 

can take is obtained by summing the above expression over 𝑘: |𝒢| = ∑ 2
∑ |𝑂2𝑗

𝑘 |𝑚
𝑗=1 3

∑ |𝑂3𝑗
𝑘 |𝑚

𝑗=13𝑚𝑓

𝑘=1 . As a 325 

check of the adequacy of this expression, notice that ignoring pedigree and assuming that all 326 

individuals in the population are unrelated is equivalent to treat them all as founders which implies 327 
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that 𝑓 = 𝑛, consequently |𝑂1𝑗
𝑘 | = |𝑂2𝑗

𝑘 | = |𝑂3𝑗
𝑘 | = 0, ∀ 𝑗 = 1,2,… ,𝑚, ∀ 𝑘 = 1,2,… , 3𝑚𝑛, thus 328 

|𝒢| = ∑ 20303𝑚𝑛

𝑘=1 = 3𝑚𝑛. Before defining the support of 𝑊, the following sets are defined. The 𝑘𝑡ℎ 329 

base genotypic configuration is defined as follows: 𝒢ℱ
𝑘 ≔ {𝑤𝑖𝑗𝑘: 𝑖 ∈ ℱ, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑘 ≤ 3𝑚𝑓}. 330 

For each set 𝒢ℱ
𝑘, that is, for each genotypic configuration, 1 ≤ 𝑘 ≤ 3𝑚𝑓, define: 𝒢𝑂1

𝑘 ≔ {𝑤𝑖𝑗: 𝑖 ∈331 

𝑂1𝑗
𝑘 , 1 ≤ 𝑗 ≤ 𝑚}, 𝒢𝑂2

𝑘 ≔ {𝑤𝑖𝑗: 𝑖 ∈ 𝑂2𝑗
𝑘 , 1 ≤ 𝑗 ≤ 𝑚}, 𝒢𝑂3

𝑘 ≔ {𝑤𝑖𝑗: 𝑖 ∈ 𝑂3𝑗
𝑘 , 1 ≤ 𝑗 ≤ 𝑚}. As mentioned 332 

before, each set 𝒢ℱ
𝑘  induces a set  𝒢𝑂1

𝑘 ∪ 𝒢𝑂2

𝑘 ∪ 𝒢𝑂3

𝑘 , thus: 𝒢 = ⋃ {𝒢ℱ
𝑘 ∪ 𝒢𝑂1

𝑘 ∪ 𝒢𝑂2

𝑘 ∪ 𝒢𝑂3

𝑘 }3𝑚𝑓

𝑘=1 . 333 

Remark 3 When some individuals are not genotyped or partially genotyped, that is, when a fraction 334 

of matrix 𝑊 is not observed, 𝜋(𝑊|𝑃∗) = 𝑓(𝑊ℴ|𝑊𝑁, 𝑃∗)𝜋(𝑊𝑁|𝑃∗) where 𝜋(𝑊𝑁|𝑃∗) =335 

∑ 𝜋(𝑊|𝑃∗)𝒢ℴ , 𝒢ℴ is the set of possible values of 𝑊ℴ. However, as will become clear in section 2.2, 336 

explicit computation of 𝜋(𝑊𝑁|𝑃∗) is not required. In this case, some of the elements of 𝜋(𝑊|𝑃∗) 337 

can be conceptually partitioned as follows:  𝑛
𝑙

𝐵𝑗 = 𝑛
𝑙ℴ

𝐵𝑗 + 𝑛
𝑙𝑁

𝐵𝑗 , 𝑛
𝑙

𝐴𝑗 = 𝑛
𝑙ℴ

𝐴𝑗 + 𝑛
𝑙𝑁

𝐴𝑗 , 𝑛𝐻 = 𝑛ℴ
𝐻 + 𝑛𝑁

𝐻  338 

where subindex 𝑙ℴ indicates that the corresponding count comes from genotyped individuals in the 339 

𝑙𝑡ℎ subpopulation and subindex 𝑙𝑁 indicates that the corresponding count comes from non-genotyped 340 

individuals.  341 

2.2 Full conditionals, homoscedastic residuals, homogeneous and heterogeneous marker effect 342 

covariance matrix models 343 

Henceforth, it is assumed that vector 𝒈 and columns of matrix 𝑊 are ordered by marker unless 344 

otherwise indicated. The full conditionals are denoted as 𝜋(∙ |𝐸𝑙𝑠𝑒). Firstly, 345 

𝒈|𝐸𝑙𝑠𝑒~𝑀𝑉𝑁 ((𝐼𝑚⨂(𝐺0)−1 +
𝑊′𝑊

𝜎2 )
−1

1

𝜎2
𝑊′𝒚, (𝐼𝑚⨂(𝐺0)−1 +

𝑊′𝑊

𝜎2 )
−1

). If 𝑊𝑘 denotes the 346 

submatrix of 𝑊 corresponding to marker 𝑘, 𝑊𝑘 is of dimension 𝑛 × 𝒮 and has the form 𝑊𝑘 =347 

(𝒘1𝑘
′ ⋯ 𝒘𝑛𝑘

′ )′, 𝒘𝑖𝑘 = (0 ⋯ 𝑤𝑖𝑘 ⋯ 0)1×𝒮 , 𝑖 = 1,2, … , 𝑛, the only non-null entry of vector  348 

𝒘𝑖𝑘 is the random variable corresponding to the genotype of the 𝑖𝑡ℎ individual for the 𝑘𝑡ℎ marker 𝑤𝑖𝑘 349 

and it is located at position 𝑙, 𝑙 = 1,2,… , 𝒮, where 𝑙 is the subpopulation to which individual 𝑖 350 
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pertains.  Other full conditionals are 𝐺0|𝐸𝑙𝑠𝑒~𝐼𝑊(𝑎 + 𝑚, 𝚺 + ∑ 𝒈𝑗𝒈𝑗
′𝑚

𝑗=1 ), 351 

𝜎2|𝐸𝑙𝑠𝑒~𝐼𝐺 (
𝑣+𝑛

2
,
(𝒚−𝑊𝒈)′(𝒚−𝑊𝒈)+𝜏2

2
). To arrive at 𝜋(𝑊𝑁|𝐸𝑙𝑠𝑒) the following definitions have to be 352 

made. The rows of 𝑊 for individuals with missing genotypes are partitioned as 𝑊𝑀𝐶 ,𝑊𝑀1 , … . ,𝑊𝑀𝐾  353 

which respectively represent the rows of 𝑊 for non-genotyped individuals, and individuals partially 354 

genotyped having missing genotypes for loci subsets 𝑀1𝑁,… ,𝑀𝐾𝑁. Accordingly, the subvector of 355 

the data vector corresponding to records from non-genotyped or partially genotyped individuals can 356 

be partitioned as 𝒚𝑁  = (𝒚𝑀𝐶 ′, 𝒚𝑀1′, … . , 𝒚𝑀𝐾 ′)′. The rows of 𝑊 corresponding to partially genotyped 357 

individuals are partitioned as follows: 𝑊𝑀𝑘 = (𝑊𝑀𝑘ℴ ⋮ 𝑊𝑀𝑘𝑁), where superindex 𝑀𝑘ℴ denotes the 358 

set of loci with observed genotypes, while superindex 𝑀𝑘𝑁 denotes the set of marker loci with 359 

missing genotypes. Similarly, when doing computations among these submatrices and 𝒈, this vector 360 

can be arranged as (𝒈𝑀𝑘ℴ′ ⋮ 𝒈𝑀𝑘𝑁′)′, then:  361 

𝜋(𝑊𝑁|𝐸𝑙𝑠𝑒) = 𝜋(𝑊𝑁|𝒚𝑁 ,𝑊ℴ, 𝒈, 𝜎2, 𝑃∗) 

∝ 𝜋+(𝑊|𝑃∗) exp (
−1

2𝜎2
(−2𝒈′𝑊𝑁′𝒚𝑁 + 𝒈′𝑊𝑁′𝑊𝑁𝒈)) 

× ∏exp(
−1

2𝜎2
ℎ(𝑊𝑀𝑘 , 𝒈𝑀𝑘 , 𝒚𝑀𝑘))

𝐾

𝑘=1

 

where 362 

ℎ(𝑊𝑀𝑘 , 𝒈𝑀𝑘 , 𝒚𝑀𝑘) = 2(𝒈𝑀𝑘𝑁′𝑊𝑀𝑘𝑁′𝑊𝑀𝑘ℴ𝒈𝑀𝑘ℴ − 𝒈𝑀𝑘𝑁′𝑊𝑀𝑘𝑁′𝒚𝑀𝑘) + 𝒈𝑀𝑘𝑁′𝑊𝑀𝑘𝑁′𝑊𝑀𝑘𝑁𝒈𝑀𝑘𝑁, 

𝜋+(𝑊|𝑃∗) = 𝑓+(𝑊ℴ|𝑊𝑁 , 𝑃∗)𝜋(𝑊𝑁|𝑃∗) and 𝑓+(𝑊ℴ|𝑊𝑁 , 𝑃∗) is the part of the 𝑊 component of 363 

the likelihood depending on 𝑊𝑁. Notice that this is a non-standard pmf and that when 𝑊ℴ depends 364 

only on 𝑊𝑁 the form of 𝜋(𝑊𝑁|𝐸𝑙𝑠𝑒) remains the same because 𝑓+(𝑊ℴ|𝑊𝑁)𝜋(𝑊𝑁|𝑃∗) =365 

𝜋+(𝑊|𝑃∗). When 𝒓 is known  366 

𝜋(𝑃|𝐸𝑙𝑠𝑒) = 𝜋(𝑃|𝑊ℴ,𝑊𝑁 , 𝒓) = 𝜋(𝑃|𝑊, 𝒓) 
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∝ ∏𝑝(𝒮+1)𝑗
𝛼𝒮+1−1

∏{𝑝𝑙𝑗
𝑛𝑙

𝐵𝑗
+𝛼𝑙−1(𝑟𝑙 − 𝑝𝑙𝑗)

𝑛𝑙

𝐴𝑗

}

𝒮

𝑙=1

𝑚

𝑗=1

 

which is the product of 𝑚 non-standard pdf. Recall that when 𝒓 is unknown, there is a slight 367 

difference in this expression as was shown in section 2.1.  368 

Remark 4 In the absence of missing genotypes, that is, 𝑊ℴ = 𝑊, the previous expression is not the 369 

full conditional density of 𝑃, but its posterior density.   370 

For the heterogeneous marker effect covariance matrix model 𝐺 is a block-diagonal matrix 371 

comprised by 𝑚 blocks of dimension 𝒮 × 𝒮 as described in section 2.1. Under this model 𝜋(𝐺) =372 

∏ 𝜋(𝐺𝑗)
𝒮
𝑙=1 . This prior pdf is the only difference with the previous model; therefore, the joint 373 

posterior is very similar (see Appendix A). Hence, all full conditionals are the same except for 374 

𝒈|𝐸𝑙𝑠𝑒~𝑀𝑉𝑁 ((𝐺−1 +
𝑊′𝑊

𝜎2
)

−1
1

𝜎2
𝑊′𝒚, (𝐺−1 +

𝑊′𝑊

𝜎2
)

−1

) , 𝐺−1 = 𝐵𝑙𝑜𝑐𝑘 𝑑𝑖𝑎𝑔. (𝐺𝑗
−1), 𝑗 = 1,2… ,𝑚 375 

and  𝐺𝑗|𝐸𝑙𝑠𝑒
𝑖𝑛𝑑
~ 𝐼𝑊(𝑎 + 1, 𝚺 + 𝒈𝑗𝒈𝑗

′ ). The full conditionals for models with heteroscedastic 376 

residuals are presented in Appendix A along with joint posteriors. 377 

2.3 Model comparison via Deviance Information Criterion  378 

The term null model refers to simplified versions of the proposed models. These null models ignore 379 

the factor splitting the complete population into subpopulations; therefore, each marker has a single 380 

overall effect and allelic frequencies are assumed to be the same across subpopulations.  381 

Null models are as follows: 𝒚 = 𝑊0𝒈0 + 𝜺,  where 𝒚 is the same as before, 𝒈0 is an 𝑚 × 1 382 

unobservable random vector containing allele substitution effects of each marker,  (𝑊0)𝑛×𝑚 is the 383 

random observable design matrix which is of the form (𝑊1
′ ⋮ ⋯ ⋮ 𝑊𝒮

′)′ when ordering data by 384 

subpopulation, and 𝜺 is a random vector of residuals. The priors for 𝒈0 are simply univariate versions 385 

of the priors used for 𝒈. Thus, 𝒈0|𝐺
𝐷~𝜋(∙ |𝐺𝐷), 𝐺𝐷 = 𝐷𝑖𝑎𝑔 (𝜎𝑔1

2 , … , 𝜎𝑔𝑚
2 ), 𝜎𝑔𝑗

2
𝑖𝑖𝑑
∼ 𝐼𝐺 (

𝑎

2
,
𝑏

2
), (for the 386 
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homogeneous marker effect variance model 𝜎𝑔1
2 = ⋯ = 𝜎𝑔𝑚

2 = 𝜎𝑔
2) and the residual variance 𝜎2 is  387 

given an 𝐼𝐺 (
𝜏2

2
,
𝑣

2
) prior as before. In addition, 𝒑 = (𝑝1, 𝑝2, … , 𝑝𝑚) is a vector of overall reference 388 

allele frequencies,  𝑊0|𝒑~𝜋(𝑊0|𝒑) is a simplified version of 𝜋(𝑊|𝑃∗) (shown later), and the prior 389 

for 𝒑 is  𝑝𝑗

𝑖𝑖𝑑
∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽), 𝑗 = 1,2,… ,𝑚.  390 

The Deviance Information Criterion (DIC; Spiegelhalter et al., 2002) combines a measure of 391 

goodness of fit based on the posterior distribution and a penalty for model complexity, and despite 392 

some criticism it has been used in different areas to perform model comparison (Gelman et al., 2014; 393 

Spiegelhalter et al., 2014). It has the following form: 394 

𝐷𝐼𝐶 = −2 log 𝑓(𝑫𝒂𝒕𝒂|�̂�𝐵) + 2𝑝𝐷𝐼𝐶 

where 𝑝𝐷𝐼𝐶 = 2(log 𝑓(𝑫𝒂𝒕𝒂|�̂�𝐵) − 𝐸𝜽|𝑫𝒂𝒕𝒂[log 𝑓(𝑫𝒂𝒕𝒂|𝜽)]), �̂�𝐵 = 𝐸[𝜽|𝒚] is the posterior mean of 395 

the unknown parameters. The first component of 𝐷𝐼𝐶  is a measure of model adequacy, whereas the 396 

second one is the effective number of parameters which is a penalty for increasing model complexity 397 

(Spiegelhalter et al., 2002). Models with a smaller DIC are preferred. Recall that for any of our 398 

models the likelihood has two components: 𝑓(𝒚,𝑊ℴ|𝑊𝑁 , 𝒈, 𝑅, 𝑃∗) = 𝑓(𝒚|𝑊,𝒈, 𝑅)𝑓(𝑊ℴ|𝑊𝑁 , 𝑃∗) 399 

that were denoted as the 𝒚 component and the 𝑊 component. Thus, the general form of the DIC is: 400 

𝐷𝐼𝐶 = −2 log 𝑓(𝒚|𝑊ℴ, �̂�𝐵
𝑁 , �̂�𝐵, �̂�𝐵) + 2𝑝𝐷𝐼𝐶−𝒚 − 2 log 𝑓(𝑊ℴ|�̂�𝐵

𝑁 , �̂�𝐵
∗) + 2𝑝𝐷𝐼𝐶−𝑊 

≔ 𝐷𝐼𝐶𝒚 + 𝐷𝐼𝐶𝑊 

where 𝑝𝐷𝐼𝐶−𝒚 = 2(log 𝑓(𝒚|𝑊ℴ, �̂�𝐵
𝑁 , �̂�𝐵, �̂�𝐵) − 𝐸𝑊𝑁,𝒈,𝑅,𝑃∗|𝒚,𝑊ℴ[log 𝑓(𝒚|𝑊,𝒈, 𝑅)]) and  𝑝𝐷𝐼𝐶−𝑊 =401 

2(𝑓(𝑊ℴ|�̂�𝐵
𝑁 , �̂�𝐵

∗) − 𝐸𝑊𝑁,𝑃∗|𝒚,𝑊ℴ[𝑓(𝑊ℴ|𝑊𝑁 , 𝑃∗)]). Thus, as the likelihood, the DIC can be 402 

decomposed into a 𝒚 component 𝐷𝐼𝐶𝒚 and a 𝑊 component 𝐷𝐼𝐶𝑊. 403 

2.4 Parameter inference via MCMC  404 
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In this section, some issues about MCMC algorithms to carry out inference are briefly discussed. 405 

Notice that when 𝑊 is fully observed, the fact that there are no missing genotypes implies that 406 

posterior sampling for the (hyper) parameters of the 𝑊 component of the likelihood and the (hyper) 407 

parameters of the 𝒚 component can be performed separately. The full conditionals of 𝒈, 𝐺,𝜎2, 𝑔0, and 408 

𝜎𝑔
2 are known; therefore, samples from the joint posterior can be obtained using a Gibbs sampler 409 

(Casella and George, 1992) while samples from the posterior distribution of allelic frequencies can 410 

be obtained using a Metropolis-Hastings algorithm. Specifically, independent Metropolis algorithms 411 

are considered here. For the scenario of 𝒓 known, the new samples can be generated in two steps: 412 

firstly a Dirichlet vector is sampled, and secondly its elements are scaled with the appropriate 413 

elements of 𝒓. Alternatively, uniform(0, 𝑟𝑙) distributions can be used as proposal, which simplifies 414 

computations. With such proposal, given the current state of the chain denoted as 𝑃𝑡, the acceptance 415 

probability of the new sample 𝑃+
𝑡  is min {

𝜋(𝑃+
𝑡 |𝑊)

𝜋(𝑃𝑡|𝑊)
, 1}. For null models, the posterior distribution of 416 

𝒑0 is the product of 𝑚 Beta(𝑝𝑗; 𝑛
𝐵𝑗 + 𝛼 , 𝑛𝐴𝑗 + 𝛽) distributions, 𝑗 = 1,2… ,𝑚. Hence, direct 417 

sampling can be implemented if needed and the functional form of the posterior mean is known. 418 

When 𝒓 is unknown, the candidate to sample from the posterior of (𝒑𝑗, 𝒒𝑗), 𝑗 = 1,2, … ,𝑚, could be a 419 

Dirichlet distribution.  420 

On the other hand, when matrix 𝑊 is partially observed a Metropolis-within-Gibbs strategy (Robert 421 

and Casella, 2010) can be used to sample from the joint posterior. This strategy is useful due to the 422 

fact that nor 𝜋(𝑊𝑁|𝐸𝑙𝑠𝑒) neither 𝜋(𝑃∗|𝐸𝑙𝑠𝑒) are standard distributions and the existence of the 423 

parameter 𝑊𝑁 does not allow to carry out separate sampling algorithms as before because this is a 424 

parameter of both components of the likelihood. Accordingly, there are two Metropolis steps in the 425 

algorithm to sample from the posterior of the full models. The first one is used to obtain samples 426 

from 𝜋(𝑊𝑁|𝐸𝑙𝑠𝑒). A good proposal is 𝜋(𝑊𝑁|𝑊ℴ, 𝑃∗) because obtaining direct samples from this 427 

distribution via the inverse transform method for discrete random variables (Robert and Casella, 428 
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2010) is straightforward. The functional form of 𝜋(𝑊𝑁|𝑊ℴ, 𝑃∗) is derived from first principles as 429 

explained in 2.3.1. Thus, given the current state of the chain 𝑊𝑁𝑡, the acceptance probability of a 430 

new sample 𝑊+
𝑁𝑡 is: min {

𝜋(𝑊+
𝑁𝑡|𝐸𝑙𝑠𝑒)𝜋(𝑊+

𝑁𝑡|𝑊ℴ ,𝑃∗)

𝜋(𝑊𝑁𝑡|𝐸𝑙𝑠𝑒)𝜋(𝑊𝑁𝑡|𝑊ℴ ,𝑃∗)
, 1}. This applies to both situations: 𝒓 known and 𝒓 431 

unknown.  The second Metropolis step is used to draw samples from 𝜋(𝑃|𝐸𝑙𝑠𝑒) for 𝒓 known or 432 

𝜋(𝑃, 𝑄|𝐸𝑙𝑠𝑒) for 𝒓 unknown.  The proposals mentioned for the non-missing genotypes scenario also 433 

work here. For the null models, it turns out that ∀ 𝑗 = 1,2,… ,𝑚, 𝜋(𝑝𝑗|𝐸𝑙𝑠𝑒) is a known distribution, 434 

it is a Beta(𝑛𝐵𝑗 + 𝛼, 𝑛𝐴𝑗 + 𝛽) and consequently only one Metropolis step is needed because direct 435 

sampling from the full conditional distribution of 𝒑0 is feasible.  Notice that this full conditional 436 

distribution is the posterior distribution of 𝒑0 when matrix 𝑊 is completely observed.  437 

2.5 Simulation study 438 

In order to provide an example of the implementation of some of the proposed models and the 439 

computation of some criteria to compare their performance, two simulated datasets were used. 440 

Simulation of these datasets involved two main steps: Simulation of genotypes (QTL and SNP), and 441 

simulation of QTL effects and noise. The phenotypes were simulated as the sum of additive genetic 442 

effects (sum of QTL allele content times the allele effect) and noise. Datasets were simulated using 443 

the software QMSim (Sargolzaei and Schenkel, 2013). In both cases, a historical population was 444 

simulated by creating 1000 generations of random mating using a forward-in-time approach in order 445 

to reach mutation-drift equilibrium and to create linkage disequilibrium (Sargolzaei and Schenkel, 446 

2013). The historical population size in each generation was 1000 with 500 males and 500 females. 447 

Then, subpopulations were created from individuals pertaining to the historical population under 448 

different selection pressures and criteria, and different mating systems (Table 1).  449 

Phenotypes were simulated with different number of QTL controlling the trait and different 450 

heritabilities. Furthermore, the population structure also differed because the criteria to simulate the 451 

subpopulations were different for each trait. Briefly, dataset 1 involved three subpopulations with 452 
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different number of generations, migration was allowed and the heritability of the trait was high. 453 

Dataset 2 comprised two subpopulations with only two generations, no migration and the heritability 454 

of the trait was low (Table 1). For further details concerning the simulation see appendix B. 455 

Given that this paper is focused on proposing and explaining a set of across population genome-wide 456 

prediction models and not with their large scale implementation, the number of simulated SNP and 457 

sample size were low in order to avoid computational issues (Table 1). Phenotype 1 illustrates the 458 

situation in which the number of markers is equal to the number of QTL affecting the trait, while for 459 

phenotype 2 the number of markers is larger than the number of QTL controlling the trait. These 460 

contrasting simulation schemes, different selection pressures and criteria, mating designs and number 461 

of generations were used to mimic real life situations where different subpopulations have different 462 

backgrounds. These simulated datasets were used to carry out analyses using the following models:  463 

Homogeneous and heterogeneous marker effect covariance matrices with homoscedastic residuals 464 

and their null versions. Only models with homoscedastic residuals were used to analyze these 465 

datasets because simulations did not consider heteroscedastic residuals.  466 

 The analyses performed involved implementation of MCMC algorithms explained in section 2.4, the 467 

computation of DIC and the computation of the following quantities measuring predictive 468 

performance and accuracy: the squared correlation between predicted breeding values and 469 

phenotypes in the testing populations, hereinafter called predictive ability, and squared correlations 470 

between true and predicted breeding values computed in the testing populations (accuracy). Because 471 

true breeding values were available for the complete populations, squared correlations between true 472 

and predicted breeding values in the training populations were also computed.  473 

For dataset 1, the training population was comprised of generations 0 to 2 of subpopulation 1, 0 to 5 474 

from subpopulation 2 and generation 0 of subpopulation 3, while the testing population included 475 

generation 3 of subpopulation one, generation 6 of subpopulation 2 and generation 1 of 476 



24 
 

subpopulation 3. For dataset 2, the training population was composed of generations 0 and 1 of 477 

subpopulations 1 and 2 and the testing dataset contained generation 2 of subpopulations 1 and 2.  478 

In dataset 2, the full genotypes of three individuals (one founder from each subpopulation and a non-479 

founder from subpopulation 1) were not included in the analysis in order to simulate the case of 480 

missing genotypes.  481 

It was assumed that 𝒓 = (
1

𝒮
, … ,

1

𝒮
). In an initial analysis, a scaled Dirichlet distribution was used as 482 

proposal to draw samples from 𝜋(𝑃|𝐸𝑙𝑠𝑒), but the behavior of the chains was not satisfactory 483 

because the acceptance rate was too low (results not shown). Consequently the product of 𝒮 484 

independent uniform (0,
1

𝒮
) distributions was used as proposal. For each dataset, 20.000 iterations 485 

were run; the first 10.000 were considered burn-ins. An in-house R script (R Core Team, 2015) was 486 

created to carry out the analyses which were performed using the University of Florida’s high 487 

performance computing cluster.   488 

3. Results 489 

3.1 Simulated populations 490 

Tables 1 and 2 show features corresponding to characteristics of the simulated genomes and 491 

populations.  492 

Table 1  Parameters and selection criteria to simulate phenotypes 493 

Parameter Phenotype 1 Phenotype 2 

Heritabilities  0.70, 0.62, 0.54 0.20, 0.15 

Phenotypic variances 100, 79, 65 100, 94 

Number of QTL 600 40 

Number of SNP 600 200 

Number of 

Chromosomes 
10 2 

Base population 

structure1 

1: 28M, 180F, Phen/L 

2: 20M, 90F, Phen/H 

3: 50M, 500F, Rnd 

1: 5M, 25F, Rnd 

2: 20M, 50F, Phen/H 
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Number of 

generations, mating 

system and selection 

criteria2 

1:3,0.8,0.4, As1/Phen, Phen/L 

2: 6, 0.7, 0.1, As2/Phen, Phen/H 

3:3, 0.7, 0.2, Rnd, Rnd 

1: 2, 1, 0.9, Rnd, Rnd 

2: 2, 0.9, 0.3, Rnd, Phen/H 

 

1
For each line, the first number indicates the subpopulation, items separated by a comma respectively show: number 494 

of males, number of females, criterion used to select them (Phen = phenotype, Rnd = random, L = lowest values, H 495 
= highest values). 496 
2
For each line, the first number indicates the subpopulation, items separated by a comma respectively show: Number 497 

of generations, proportion of selected females per generation, proportion of selected males per generation, mating 498 
design (Rnd = random, As1 = assortative by similarity, As2 = assortative by dissimilarity, Phen = phenotype), and 499 
selection criterion (same abbreviations as in numeral 1). 500 

 501 

Table 2 Summary of some characteristics of the simulated populations 502 

Feature Dataset 1 Dataset 2 

Population size (males, 

females, total) 
883, 1565, 2448 67, 103, 170 

Average inbreeding per 

subpopulation 
S1:0.0182, S2: 0.0310, S3:0.0 S1: 0.0 , S2:0.0 

Average homozygosity per 

subpopulation 

S1: 0.6240, S2: 0.6359, 

S3:0.6190 
S1:0.6392, S2:0.6283 

Phenotype sample mean and 

SD (in brackets) per 

subpopulation 

S1: -19.78 (13.21) 

S2: 25.71 (9.60) 

S3: 0.26 (9.91)  

S1:-0.5959 (9.3616) 

S2:8.9253 (11.9571) 

In both datasets, none of the markers had a minor allele frequency lower than 0.05. Thus, all the 503 

simulated marker loci were considered in the analyses.   504 

3.2 DIC, predictive ability and accuracies of predicted breeding values  505 

For dataset 1, the DIC computed using the “𝑊-component” of the likelihood for the full models was 506 

4717671 and 6589105 for the null models. Thus, it provided evidence in favor of the full models 507 

when estimating allelic frequencies in the base population. Table 4 shows DIC values for dataset 1, 508 

Table 5 DIC values for dataset 2 and Table 6 shows predictive abilities and accuracies in both 509 

datasets. For Tables 4 to 6, the following is the meaning of abbreviations for the different models 510 

fitted to datasets 1 and 2: 𝑀1𝐺= full model with Multivariate Gaussian prior and homogeneous 511 

marker effect covariance matrices, 𝑀1𝐺
∗ = full model with Multivariate Gaussian prior and 512 

heterogeneous marker effect covariance matrices. Recall that all models assumed homoscedastic 513 
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residuals. The remaining models with subindex 1 replaced by 0 correspond to null versions of the 514 

corresponding full models. 515 

Table 4 𝒚 component and total DIC for dataset 1 516 

Model 𝒚 component of DIC Total DIC 

𝑀1𝐺 33702.55 4751373.55 

𝑀1𝐺
∗  11599.05 4729270.05 

𝑀0𝐺 15396.32 6604501.32 

𝑀0𝐺
∗  13008.42 6602113.42 

Thus, in dataset 1, according to the 𝒚 component of DIC, for the models with homogeneous marker 517 

effect covariance matrices (variances) the null model performed better, while for models with 518 

heterogeneous covariance matrices (variances) according to this criterion the full model should be 519 

preferred over its null version. When considering the whole likelihood to compute the DIC, the two 520 

full models had smaller DIC. Additionally, the model with the smallest DIC, and therefore the “best” 521 

one under this criterion was model 𝑀1𝐺
∗ .  522 

Table 5 𝒚 component, 𝑊 component and total DIC for dataset 2 523 

Model 𝒚 component of 

DIC 

𝑊 component of 

DIC 
Total DIC 

𝑀1𝐺 1314.0 38367.4 39681.4 

𝑀1𝐺
∗  1328.8 38356.4 39684.2 

𝑀0𝐺 1365.6 38180.3 39545.9 

𝑀0𝐺
∗  1370.1 38179.0 39549.1 

In this dataset the two components of the DIC values and therefore DIC values were similar for all 524 

models. The 𝒚 components of DIC were smaller for the full models.  Conversely, the 𝑊 components 525 

were smaller for null models as well as total DIC values.  526 

Table  6 Predictive abilities and accuracies in datasets 1 and 2 527 

Model Predictive Ability 
Accuracy in testing 

population 

Accuracy in Training 

population 

Dataset1 Dataset 2 Dataset1 Dataset2 Dataset1 Dataset2 
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𝑀1𝐺 0.29 0.019 0.27 0.04 0.32 0.17 

𝑀1𝐺
∗  0.76 0.016 0.83 0.03 0.94 0.21 

𝑀0𝐺 0.53 0.004 0.50 0.07 0.55 0.24 

𝑀0𝐺
∗  0.83 0.013 0.88 0.05 0.88 0.23 

In dataset 1, according to predictive abilities, the model with the best performance was model  528 

𝑀0𝐺
∗  while model 𝑀1𝐺 had the worst performance. The squared Pearson correlations between true 529 

and predicted breeding values in testing dataset 1 suggested that the performance of these models 530 

followed a trend similar to that indicated by predictive abilities. In training dataset 1, model  531 

𝑀1𝐺
∗  yielded the highest accuracy and model 𝑀1𝐺 had the smallest accuracy.  532 

Predictive abilities and accuracies in the testing sets were extremely low for dataset 2. Accuracies in 533 

training set were higher than those obtained in the testing set; however, they were still low. There 534 

were not substantial differences between these squared correlations. Predictive abilities were higher 535 

for the full models, while accuracies in testing and training sets were higher for the null models.  536 

4. Discussion 537 

 4.1 General features of the models 538 

A group of hierarchical Bayesian linear regression models to carry out simultaneous genome-wide 539 

prediction in several subpopulations accounting for randomness of genotypes was presented. The 540 

proposed models differed in the prior distribution assigned to the marker effects and on the 541 

assumptions made about residual variances (homogeneous or heterogeneous across subpopulations). 542 

The priors for the marker effects were multivariate (univariate) Gaussian and allowed homogeneous 543 

or heterogeneous covariance matrices (or variances).  544 

The differences between these models and other regression models currently used in across 545 

population genome-wide prediction are: 1) subpopulation-specific effects for each marker are 546 

considered and their covariance matrices are modeled explicitly, and 2) genotypes are treated as 547 

random variables with a distribution that depends on allelic frequencies as well as on pedigree 548 

information. The second feature makes these models different from all other genome-wide prediction 549 
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models. The distribution of genotypes combines pedigree and genomic information that are not used 550 

when randomness of 𝑊 is ignored. It allows accounting for heterogeneity and correlations of allelic 551 

frequencies of the same marker across subpopulations and including individuals with phenotypes and 552 

missing genotypes in various loci without carrying out a previous imputation. This is possible 553 

because the non-observed part of 𝑊, denoted as 𝑊𝑁, is treated as a parameter and therefore 554 

imputation is automatically performed. Another advantage is that the use of a Bayesian approach 555 

automatically takes into account uncertainty about the imputed genotypes.  556 

Although most of the paper has been devoted to the models allowing subpopulation-specific effects 557 

for each marker (the full models), their univariate versions (the null models) are also contributions of 558 

this study. These also allow including individuals with missing genotypes in some or all marker loci 559 

without need of external imputation and take into account randomness in genotypes. Therefore, these 560 

models could also be used either in single population analyses or to conduct across population 561 

genome-wide prediction pooling the data as has been done in previous studies (de Roos et al., 2009; 562 

Lund et al., 2011; van den Berg et al., 2015; Wientjes et al., 2015) and was also done here.   563 

Doing a joint analysis has the advantage that the number of phenotypes increases, but in our full 564 

models the number of location parameters is also incremented because each marker is allowed to 565 

have subpopulation-specific effects; moreover, the number of covariance parameters also increases. 566 

The gain in accuracy is achieved when factors such as different QTL effects across subpopulations, 567 

differences in linkage phase between QTL and markers, and differences in allelic frequencies and LD 568 

patterns make marker effects change substantially from one subpopulation to another. Consequently, 569 

the performance of these models may have considerable variation from one dataset to another.  570 

The diagonal blocks of 𝐺 were assumed to be non-structured. A way reduce dimensionality of the 571 

parameter space is to assume certain structure of 𝐺. For example, it can be assumed that all 572 

covariances and variances are the same, thus, only two parameters per block have to be estimated. 573 
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The conditional independence property used to derive 𝜋(𝑊|𝑃∗) implies that allelic frequencies are 574 

estimated in the set of oldest individuals with phenotypes. Here, this set of individuals was referred 575 

to as the base population and individuals pertaining to it were referred to as founders. This was done 576 

for pragmatic purposes. However, truncating the pedigree by ignoring individuals without phenotypic 577 

records created a group of individuals that may not be the actual base population which is defined as 578 

that comprised by ancestors with unknown parents (Henderson, 1974; Kennedy et al., 1988). 579 

Conversely, in other cases phenotypic records from this population may be available; thus, estimates 580 

of allelic frequencies in the true base population can be obtained. Here, it was further assumed that 581 

founders were unrelated which is likely to be false in many situations. However, this assumption has 582 

been made in conventional models used to do genetic analysis (Henderson, 1974; Kennedy et al., 583 

1988) because pedigrees are not always completely known. Consequently, what is called the base 584 

population is not always the true one. Nevertheless, this assumption seems to be reasonable after so 585 

many years of successful artificial selection in animals and plants based on predicted breeding values 586 

obtained from these models (Hill, 2014; Gianola and Rosa, 2015).  587 

As discussed in section 2.1.1, the pmf 𝜋(𝑊|𝑃∗) could be derived ignoring pedigree information. 588 

Then, this pmf could be found as the product of all 𝜋(𝑤𝑖𝑗
𝑙 |𝑝𝑙𝑗

∗ ) or the product of binomial 589 

distributions for gene content (i.e., the number of copies of the reference allele at each locus) across 590 

loci and individuals with each binomial distribution depending on the corresponding allelic 591 

frequencies. Notice that this requires reparametrizing the mapping of genotypes, that is, instead of 592 

having {−1,0,1} as possible values of an entry of 𝑊, values would be  {0,1,2}. In this case, all 593 

individuals in the population would be used to estimate allelic frequencies instead of using 594 

information from a base population. If pedigree information is available, it can be easily incorporated 595 

into the derivation of 𝜋(𝑊|𝑃∗) as was shown here and the resulting pmf is not very difficult to 596 

evaluate. Furthermore, as mentioned before, direct sampling from this pmf can be done via the 597 
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inverse transform method for discrete random variables. Notwithstanding, in scenarios where 598 

pedigree information is very scarce or not reliable, adding the assumption of independence among 599 

individual genotypes and using binomial distributions for the gene content of each individual at each 600 

marker locus is an option to model the distribution of matrix 𝑊 which would induce a joint pmf 601 

similar to those presented in Gianola et al., (2010) and Martínez et al. (2015). 602 

If some individuals with phenotypes have only one known parent, the pmf of their genotypes 603 

conditioned on this parent and allelic frequencies can be defined in a similar way as was done in 604 

Table A.1 for the case of a fully known pedigree (see Appendix C). In this situation, Remark 1 does 605 

not hold and the functional form of 𝜋(𝑊|𝑃∗) changes which implies that 𝜋(𝑊|𝐸𝑙𝑠𝑒) changes as 606 

well. 607 

Regarding assumptions about the distribution of allelic frequencies, our models allow for correlations 608 

between them. To do that, priors based on a Dirichlet distribution were used. Using these priors 609 

require allelic frequencies to be expressed on a complete population basis. This setting brings 610 

parameter 𝒓 into the picture. The algebra associated with this parameter is clear and straightforward, 611 

but its interpretation may be fuzzy. From an algebraic standpoint, these parameters are upper 612 

boundaries posed over allelic frequencies to force them to be in the support of the prior distribution, 613 

thus they can be seen as analytic instruments. Nevertheless, their meaning from the population 614 

genetics standpoint is not very clear. Perhaps, the easier interpretation when assuming 𝑟1𝑙 = ⋯ =615 

𝑟𝑚𝑙 = 𝑟𝑙, is that 𝑟𝑙 is the relative frequency or weight of the 𝑙𝑡ℎ subpopulation. However, making 616 

claims about the biological interpretation of this set of parameters is beyond the scope of this study.  617 

From a statistical viewpoint, two approaches were proposed. The first one assumed that 𝒓 was known 618 

(truly known or set to some ad hoc value) and 𝑟1𝑙 = ⋯ = 𝑟𝑚𝑙 = 𝑟𝑙. In the examples used here all 619 

subpopulations were given the same weight, that is, 𝑟𝑙 = 1 𝒮⁄ , ∀ 𝑙 = 1,2… , 𝒮, a pragmatic decision 620 

that has been used in other studies, e.g., Gianola et al. (2010). In this scenario, for all 𝑗, 𝒑𝑗 is modeled 621 
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as a scaled Dirichlet vector which allows non-null covariances between its elements. The second 622 

approach assumed that 𝒓 was unknown and {𝑟𝑙𝑗} varied across marker loci. For each locus the prior 623 

was a Dirichlet over allelic frequencies of both alleles in all subpopulations and it permitted 624 

obtaining posterior samples of allelic frequencies and 𝒓. Under the assumption of independence of 625 

allelic frequencies, independent priors could be assigned to each marker (e.g., Uniform(0,𝑟𝑙)) and the 626 

validity of this assumption could be tested using criteria as Bayes factors or DIC. If data are pooled 627 

and structure is ignored (as done in the null models) the full conditional pdf 𝜋(𝒑0|𝐸𝑙𝑠𝑒) is known 628 

and therefore direct sampling can be implemented when matrix 𝑊 is not completely observed. On 629 

the other hand, when it is completely observed the posterior of 𝒑0 is known and there is no need of 630 

sampling to obtain point estimators. The reason for the full conditional of 𝒑0 being a known 631 

distribution but not its posterior in the presence of missing genotypes is that 𝑊𝑁 is an extra 632 

parameter in the model and obtaining the marginal posterior of 𝒑0 implies marginalization of 633 

𝜋(𝑊𝑁 , 𝒑0|𝑊
ℴ) over 𝑊𝑁 which induces a non-standard pmf.  634 

The derivation of the pmf 𝜋(𝑊|𝑃∗) and 𝜋(𝑊0|𝒑0) not only allow inferences concerning the marker 635 

allelic frequencies in the base population, but also allow predictions for non-genotyped or partially 636 

genotyped animals without performing a previous imputation. This is likely to increase accuracy of 637 

genome-wide predictions because it allows incorporating more phenotypic records. Imputed missing 638 

genotypes can be obtained using posterior means or medians of 𝑊𝑁. However, these outputs have to 639 

be viewed as a byproduct because these models were not intended to perform imputation. The 640 

imputation of missing genotypes is an underlying process in the prediction of genotypic values of 641 

individuals with missing genotypes. Notwithstanding, because samples from the posterior of 𝑊𝑁 are 642 

available and computation of imputed genotypes is simple, there could be interest in using this output 643 

of the model and in such case the accuracy of the imputation would also be of interest. Hence, 644 

although imputation was not a main objective of our models, it is worth making a brief comment on 645 
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it. Though an assessment of imputation accuracy is a matter for further research, two statements can 646 

be made about the imputation process in our models. Firstly, one advantage of the models developed 647 

here is that they automatically take into account the uncertainty of imputation (as a consequence of 648 

using a Bayesian approach). Conversely, in the standard approach where genotype imputation is the 649 

first step and then a random linear regression model is fitted using these imputed values as if they 650 

were observations, uncertainty is not taken into account. Secondly, a disadvantage of our models is 651 

that they do not incorporate LD information when imputing missing genotypes, a source of 652 

information that is used by some of the current imputation methods (Li et al., 2009). Here, pedigree 653 

information, phenotypes and allelic frequencies are used for imputation. Thus, benchmarking of the 654 

procedure developed here with current and well-accepted procedures is material for future studies. 655 

Furthermore, another question that can be addressed in future research is if improving this imputation 656 

as discussed later in section 4.3 has a significant impact on the predictive performance of the models.   657 

As mentioned before, the regression models used in genome-wide prediction treat genotypes as fixed 658 

and their effects as random while in the classical quantitative genetics theory genotypes are treated as 659 

random and allelic substitution effects as fixed. The set of models developed here are something in 660 

between because genotypes are treated as random variables as in classical quantitative genetics, and 661 

marker effects are considered random as well like in the standard regression models used in genome-662 

wide prediction. de los Campos et al. (2015b) presented an excellent discussion on the connections 663 

between the heritability and the so-called genomic heritability obtained with linear regression 664 

models. They show why caution has to be exercised when interpreting the parameters obtained using 665 

genomic information due to the fact that sometimes the connection between parameters as the 666 

additive genetic variance and the genomic variance are not straightforward. Similarly, Gianola et al. 667 

(2015) discussed the fact that connections between genomic correlations and additive genetic 668 

correlations are ambiguous. So far, the Bayesian models proposed in this paper are intended to 669 

predict breeding values, phenotypes, and to estimate allelic frequencies in a base population using 670 
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genomic information and no claim is made about the properties of covariance parameters obtained 671 

from them.  672 

The discussion above is relevant because the regression variables are not based on genes, but proxies 673 

for the causal variants affecting the phenotypes of interest. However, taking into account these 674 

limitations and the high degree of caution needed when interpreting parameters obtained from 675 

models using molecular markers, some parameters such as the fraction of additive genetic variance 676 

explained by the markers are of interest and our models could be used to estimate these quantities.  677 

The family of models developed here could be applied or adapted to different situations. In the 678 

simulation, the case of individuals coming from a common founder population pertaining to 679 

subpopulations with different selection criteria and mating systems was considered. Other situations 680 

in which this set of models could be useful are: 1) simultaneous evaluation of individuals from 681 

different breeds or lines, 2) individuals from the same breed or line performing under different 682 

environmental conditions (e.g., different geographic regions, production systems, etc.), 3) a 683 

combination of numerals 1 and 2, 4) simultaneous evaluation of several correlated traits. In this last 684 

case, if all individuals have records for all phenotypes, the design matrix satisfies 𝑊 = 𝐼𝒮⨂𝑊+, 685 

where 𝑊+ is the matrix of dimension 𝑛 × 𝑚 containing genotypes of 𝑛 individuals at 𝑚 marker loci. 686 

In this case the model is being adapted to handle correlations between the effects of a given marker 687 

locus for different traits in a single population. Consequently, for a given choice of prior and 688 

assumption about residuals (heteroscedastic or homoscedastic) the model involves the corresponding 689 

hierarchical structure except for the pmf of 𝑊 conditional on the allelic frequencies and pedigree 690 

which is 𝜋(𝑊+|𝒑0
∗) instead of 𝜋(𝑊|𝑃∗). Recent studies have developed Bayesian multiple-trait 691 

genome-wide regression models and have shown that predictions from them are more accurate than 692 

those coming from genomic univariate models (Jia and Jannink, 2012). The hierarchical Bayesian 693 

multivariate genome-wide prediction models proposed by Jia and Jannink (2012) have similar 694 
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components to the models presented here such as the priors for 𝒈, but they do not account for 695 

randomness of genotypes. Another step to accommodate our models for multiple-trait prediction is to 696 

allow correlated residuals, that is, a non-diagonal matrix 𝑅. In this case, an inverse Wishart prior can 697 

be assigned instead of the inverse gamma prior used here. 698 

4.2 Simulation results 699 

As stated in section 2.4, the aim of this limited simulation was to provide an illustration of the 700 

implementation of models and methods developed in this study. Thus, results are not conclusive and 701 

further research involving analyses based on more elaborate simulations as well as real datasets to 702 

have a better evaluation of the performance of this family of models is needed. Nevertheless, some 703 

insights and comments derived from the analyses of these two datasets can be discussed.  704 

The correlation between phenotypes and predicted breeding values (or its square) is one of the most 705 

widely used measurements to compare genome-wide prediction models, it is associated with the 706 

response to selection and it is easy to compute. On the other hand, as mentioned previously, the DIC 707 

combines measures of model adequacy and complexity (Spiegelhalter et al., 2002). 708 

For dataset 1, the squared correlation between phenotypes and predicted breeding values (the 709 

predictive ability) did not show an advantage in predictive capability of models taking into account 710 

the population structure, i.e., the existence of the subpopulations (Table 6). While measures based on 711 

squared correlations did not provide conclusive evidence in favor of the full models, the DIC favored 712 

the full models.  713 

As expected, the predictive ability and the other correlations were much smaller in dataset 2 due to 714 

the lower heritability of the trait. Although all predictive abilities were low, according to this 715 

criterion the performance of the full models was slightly better. Accuracies of predicted breeding 716 

values suggested a tiny superiority of null models. The two subpopulations simulated in this dataset 717 

diverged by just two generations which could cause only small differences in allelic frequencies, this 718 
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scenario clearly favors the null models. Accordingly, the DIC component coming from genotypes 719 

was slightly better (smaller) for null models as opposed to the case of dataset 1. The total DIC gave 720 

evidence in favor of null models. Among predictive ability, accuracy and DIC, accuracy and DIC 721 

favored the null models, but the values were very close. The performance of the fitted models was 722 

more similar in this dataset than in dataset 1.  723 

In our small simulations, when subpopulations diverged by several generations, migration was 724 

allowed and heritabilities were high (dataset 1), full models had better performance in terms of DIC. 725 

Conversely, when populations diverged by only a few generations, there was no migration, and 726 

heritabilities were low (dataset 2) null models tended to perform better according to this criterion. 727 

However, the differences were small. On the other hand, predictive abilities showed a different 728 

pattern. In dataset 1 this criterion was higher for null models while in dataset 2 it was smaller for null 729 

models. Another feature shown by these simulations was the high variability in model performance 730 

that may exist among populations. In dataset 1, according to all criteria except the 𝑊 component of 731 

DIC, the performance of model 𝑀1𝐺 tended to be remarkably poorer while this was not the case in 732 

dataset 2.  733 

Other authors have found modest or null increments in predictive performance of models allowing 734 

heterogeneous marker effects across subpopulations compared to pooling data and analyzing the 735 

complete population as a single one (Olson et al., 2012; Makgahlela et al.,2013; de los Campos et al., 736 

2015a). All the aforementioned studies used real data from plants and animals. Working with three 737 

plant populations and using a model very similar to those proposed here, Lehermeier et al. (2015) 738 

found cases in which the strategy of pooling data and ignoring structure performed better and other 739 

cases where multivariate models yielded better predictive performance. These authors found that in 740 

highly differentiated populations within group and multivariate analyses performed better while the 741 
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converse occurred in closely related subpopulations with small sample sizes. Roughly speaking, 742 

these results are in agreement with the results found in this study.  743 

Using predictive ability, Lund et al. (2011) found a higher accuracy of predicted additive breeding 744 

values when pooling the data compared with individual analyses. Similar results were found by de 745 

Roos et al. (2009) when heritability was low, divergence of populations was small (small number of 746 

generations) and marker density was high (more persistent phase), and by Wientjes et al. (2015) 747 

when the QTL effects did not change across subpopulations. Pooling data and ignoring the 748 

population structure corresponds to the null models defined in this study, except that models 749 

considered by the authors just cited did not account for randomness of genotypes. In our simulation, 750 

individual analyses were not considered. Sample size is one the factors affecting the accuracy of 751 

genome-wide predictions (Meuwissen et al., 2001; Goddard 2009, Zhong et al., 2009). Presumably it 752 

was one of the leading factors causing the results found by Lund et al. (2011). In addition, the 753 

Holstein breed is highly inbred and there were several individuals connecting the different 754 

populations; this probably made them similar. On the other hand, the studies of de Roos et al. (2009) 755 

and Wientjes et al. (2015) used simulated data and explored different scenarios. Both studies found 756 

situations in which pooling data was not advantageous.  757 

4.3 Refinements and extensions 758 

In this section, some comments regarding possible extensions and refinements of different aspects of 759 

the family of models presented in the study are briefly discussed.  760 

In the derivation of the joint pmf of 𝑊 conditional on 𝑃∗ and pedigree information, row-wise 761 

dependence due to kinship was taken into account by using pedigree information to accommodate 762 

relationships among genotypes of related individuals. This task was highly simplified due to the 763 

conditional independence argument that permitted to find a simpler decomposition of the joint pmf 764 

and therefore, a simpler algebraic expression. However, the possible existence of column-wise 765 
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dependence due to LD was ignored here in order to make the problem more tractable from the 766 

mathematical point of view. This is an assumption frequently used in theoretical studies in 767 

quantitative genetics and it is well-accepted at least in studies concerned with first approximations to 768 

a given problem. For example, Gianola et al. (2009) treated a series of theoretical aspects of some of 769 

the Bayesian regression models used in genome-wide prediction using the assumption of linkage 770 

equilibrium which implies the mutual independence of the columns of 𝑊 used here (they also 771 

developed some results accounting for LD in the Appendix).  Most of the models currently used in 772 

genome-wide prediction are also based on this assumption, few approximations to deal with 773 

consequences of LD have been proposed (Gianola et al., 2003; Yang and Tempelman, 2012), but 774 

these have not yet been adopted in routine genetic evaluations. Their models do not consider 775 

randomness in the genotypes; thus, a consequence of considering LD in these models is the need to 776 

account for covariances between marker effects at different loci. Consequently, a refinement of our 777 

family of models in this regard, would be to accommodate LD, which can be performed at two 778 

levels:  1) account for correlations among columns of 𝑊, and 2) use a non-block-diagonal 𝐺 matrix.  779 

A potential consequence of accounting for non-independence of the columns of 𝑊 could be the 780 

reduction in the cardinality of 𝒢 that is induced by the fact that the number of possible values of a 781 

column of 𝑊 depends on the values at one or more different columns (as it happened with rows). 782 

Another assumption made here was the absence of mutations which caused that when conditioning 783 

on the genotypes of the parents of an individual, the probabilities of its genotype taking a given value 784 

were completely defined by the parental genotypes, making this random variable conditionally 785 

independent of allelic frequencies. Thus, another refinement in 𝜋(𝑊|𝑃∗) would be to account for 786 

mutation. Therefore, the derivation of 𝜋(𝑊|𝑃∗) to accommodate dependence between columns of 𝑊 787 

and mutation, and the impact of this refinement on predictive performance and the accuracy of 788 

imputed genotypes (if it is of interest) pose a problem for further research.  789 
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If relationships among founders (as defined in this paper) were to be taken into account, from the 790 

theoretical point of view it is not hard to visualize how to do it. For the sake of simplicity, the case of 791 

two individuals and one locus is considered; consequently, the sub-index associated with locus is 792 

omitted. Let 𝑊1,𝑊2 be the genotypes of individuals 1 and 2, and 𝑊𝒞 the genotypes of the set of 793 

relevant common ancestors. Suppose that 1 is not a parent of 2. Then: 794 

𝜋(𝑊1,𝑊2|𝑃
∗) = ∑ 𝜋(𝑊1,𝑊2|𝑊𝒞, 𝑃

∗)𝜋(𝑊𝒞|𝑃
∗)𝒢𝒞 = ∑ 𝜋(𝑊1|𝑊𝒞 , 𝑃

∗)𝜋(𝑊2|𝑊𝒞 , 𝑃
∗)𝜋(𝑊𝒞|𝑃

∗),𝒢𝒞   795 

where 𝒢𝒞 is the set of possible values that the set of genotypes of relevant common ancestors can 796 

take according to the pedigree (as explained in section 2.1.1) and the second equality follows from 797 

the conditional independence of the genotypes of  individuals 1 and 2 given the common ancestors 798 

and allelic frequencies. By relevant common ancestors it is meant that the genotypes of these 799 

ancestors provide information about the genotypes of 1 and 2 when conditioning on the full set of 800 

common ancestors, i.e., if  𝒟 is the whole set of common ancestors then 𝒟 = 𝒞 ∪ 𝒞𝑐 (the super-801 

index 𝑐 means complement with respect to 𝒟) and 𝜋(𝑊1,𝑊2|𝑊𝒟, 𝑃∗) = 𝜋(𝑊1,𝑊2|𝑊𝒞 , 𝑃
∗). Notice 802 

that unless individuals 1 and 2 are full sibs, their conditional pmf given the relevant common 803 

ancestors depends on 𝑃∗. Of course, it makes 𝜋(𝑊|𝑃∗) a more complex expression and reduces the 804 

cardinality of 𝒢. See Appendix D for a toy example of 𝜋(𝑊1,𝑊2|𝑊𝒞 , 𝑃
∗) when 1 and 2 are half sibs. 805 

Although the problem is tractable from the theoretical standpoint, it may be difficult to compute 806 

these values especially with complex pedigrees where the set of common ancestors may be large 807 

such as those found in animal and plant populations. The example in Appendix D shows that even in 808 

a simple case, computation of 𝜋(𝑊1,𝑊2|𝑃
∗) is involved. 809 

5. Conclusions 810 

The main contribution of this paper is the theoretical development of a set of models for across 811 

population genome-wide prediction incorporating marker genotypes not only as explanatory 812 

variables of regression models, but also as realizations of random variables providing information 813 
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about allelic frequencies and missing genotypes. Although models were intended for across 814 

population analysis, they can also be applied in single population studies and adapted for multiple-815 

trait prediction.  816 

Theoretical and computational issues along with possible applications as well as some extensions and 817 

refinements of these models pose several problems for future research. Our models treat both 818 

genotypes and marker allelic substitution effects as random; therefore, they combine features from 819 

classical quantitative genetics theory and traditional genome-wide prediction models.  820 

Some features of the models developed in this study make them promising for genome-wide 821 

prediction. Among these, the ability to include phenotypes from individuals with missing genotypes 822 

at some or all loci without the need of previous imputation and accounting for uncertainty about 823 

imputed genotypes as well as heterogeneity of allelic frequencies across subpopulations are perhaps 824 

the most appealing. Further research to assess their performance and also to compare them with other 825 

models used in genome-wide prediction is needed.  826 
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Appendix A: Conditional pmf of genotypes given parental genotypes, joint posteriors, full 966 

conditionals and details of some derivations 967 

 968 

Table A.1 Conditional pmf of genotypes at locus 𝑗 given the parental genotypes 969 

 970 

Parental genotypes 

Corresponding 

random 

variables 

𝜋(𝑤𝑖𝑗|𝑤𝑆𝑖𝑗
, 𝑤𝐷𝑖𝑗

) = Pr (𝑤𝑖𝑗 = 𝑥|𝑤𝑆𝑖𝑗
= 𝑘,𝑤𝐷𝑖𝑗

= 𝑧) 

𝑥, 𝑘, 𝑧 ∈ {−1,0,1} 

Parent 1 Parent 2 𝑤𝑆𝑖𝑗
 𝑤𝐷𝑖𝑗

 𝜋(−1|𝑤𝑆𝑖𝑗
, 𝑤𝐷𝑖𝑗

) 𝜋(0|𝑤𝑆𝑖𝑗
, 𝑤𝐷𝑖𝑗

) 𝜋(1|𝑤𝑆𝑖𝑗
, 𝑤𝐷𝑖𝑗

) 

AA AA -1 -1 1 0 0 

AA(BB) BB(AA) -1(1) 1(-1) 0 1 0 

AB AB 0 0 ¼ ½ ¼ 

AA(AB) AB(AA) -1(0) 0(-1) ½ ½ 0 

BB(AB) AB(BB) 1(0) 0(1) 0 ½ ½ 

BB BB 1 1 0 0 1 

 971 

Joint posteriors for Homogeneous marker effect covariance matrix model with homoscedastic 972 

residuals and Gaussian prior for 𝒈 973 

 974 

Weather 𝑃∗ is considered a parameter (some founders are genotyped) or a hyperparameter (none of 975 

the founders is genotyped) is not relevant when computing the joint posterior because in both cases 976 

its pdf is the same, thus it enters in the expression in the same way. Henceforth, it is assumed that 977 

vector 𝒈 and columns of matrix 𝑊 are ordered by marker unless otherwise indicated. Thus: 978 

 979 

𝜋(𝒈, 𝜎2,𝑊𝑁 , 𝐺0, 𝑃∗|𝒚,𝑊ℴ) ∝ 𝑓(𝒚|𝒈, 𝜎2,𝑊)𝜋(𝒈|𝐺0)𝜋(𝐺0)𝜋(𝜎2)𝜋(𝑊|𝑃∗)𝜋(𝑃∗) 

∝ (𝜎2)−
𝑛
2 exp(

−1

2𝜎2
(𝒚 − 𝑊𝒈)′(𝒚 − 𝑊𝒈)) 

× |𝐺0|−
𝑚
2 exp (

−1

2
𝒈′(𝐼𝑚⨂(𝐺0)−1)𝒈) 

× |𝐺0|−
1
2
(𝑎+𝒮+1) exp (

−1

2
𝑡𝑟(𝚺(𝐺0)−1)) 

× (𝜎2)−(
𝑣
2
+1) exp(

−𝜏2

2𝜎2
) 

× 𝜋(𝑊│𝑃∗)𝜋(𝑃∗) 

Where ⨂ represents the Kronecker product and 𝜋(𝑊|𝑃∗)𝜋(𝑃∗) = 𝜋(𝑊,𝑃|𝒓), when 𝒓 is assumed to 980 

be known and has the following form (see appendix A for details): 981 

𝜋(𝑊, 𝑃|𝒓) ∝ 

2𝑛𝐻
∏𝑝(𝒮+1)𝑗

𝛼𝒮+1−1
∏{

1

𝑟𝑙
2𝑓𝑙

𝑝𝑙𝑗
𝑛𝑙

𝐵𝑗
+𝛼𝑙−1(𝑟𝑙 − 𝑝𝑙𝑗)

𝑛𝑙

𝐴𝑗

∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑙

𝑖′=𝑓𝑙+1

}

𝒮

𝑙=1

𝑚

𝑗=1

. 
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When 𝒓 is unknown, the only change is that expression (𝑝𝑙𝑗)
𝑛𝑙

𝐵𝑗
+𝛼𝑙−1

(𝑟𝑙 − 𝑝𝑙𝑗)
𝑛𝑙

𝐴𝑗

 has to be replaced 982 

by (𝑝𝑙𝑗)
𝑛𝑙

𝐵𝑗
+𝛼𝑙𝑝−1

(𝑟𝑙𝑗 − 𝑝𝑙𝑗)
𝑛𝑙

𝐴𝑗
+𝛼𝑙𝑞−1

 and instead of 𝜋(𝑊, 𝑃|𝒓), 𝜋(𝑊│𝑃∗)𝜋(𝑃∗) corresponds to 983 

𝜋(𝑊, 𝑃, 𝑄), 𝑄 ≔ (𝒒1, … , 𝒒𝑗).  984 

 985 

Joint posteriors for Heterogeneous marker effect covariance matrix model with homoscedastic 986 

residuals and Gaussian prior for 𝒈 987 

 988 

𝜋(𝒈, 𝜎2,𝑊𝑁 , 𝐺, 𝑃|𝒚,𝑊ℴ) ∝ 𝑓(𝒚|𝒈, 𝜎2,𝑊)𝜋(𝒈|𝐺)𝜋(𝐺)𝜋(𝜎2)𝜋(𝑊|𝑃)𝜋(𝑃) 

∝ (𝜎2)−
𝑛
2 exp(

−1

2𝜎2
(𝒚 − 𝑊𝒈)′(𝒚 − 𝑊𝒈)) 

× |𝐺0|−
𝑚
2 exp (

−1

2
𝒈′(𝐼𝑚⨂(𝐺0)−1)𝒈) 

× ∏{|𝐺𝑗|
−

1
2
(𝑎+𝒮+1)

}

𝑚

𝑗=1

exp(
−1

2
∑𝑡𝑟(𝚺𝐺𝑗

−1)

𝑚

𝑗=1

) 

× (𝜎2)−(
𝑣
2
+1) exp(

−𝜏2

2𝜎2
) 

× 𝜋(𝑊|𝑃∗)𝜋(𝑃∗). 

 989 

 990 

Marginal prior distribution of marker effects 991 

 992 

Homogeneous marker effect covariance matrix models 993 

 994 

𝜋(𝒈) ∝ ∫ 𝜋(𝒈|𝐺0)𝜋(𝐺0)𝑑𝐺0

𝒫𝒮
+

 

∝ ∫ exp(
−1

2
𝑡𝑟 ((𝚺 + ∑ 𝒈𝑗𝒈𝑗

′
𝑚

𝑗=1
) (𝐺0)−1)) |𝐺0|−

1
2
(𝑎+𝒮+𝑚+1)𝑑𝐺0

𝒫𝒮
+

 

 995 

the expression 𝑡𝑟 ((𝚺 + ∑ 𝒈𝑗𝒈𝑗
′𝑚

𝑗=1 )(𝐺0)−1) comes from adding terms 𝒈′(𝐼𝑚⨂(𝐺0)−1)𝒈 coming 996 

from 𝜋(𝒈|𝐺0) and 𝑡𝑟(𝚺(𝐺0)−1) coming from 𝜋(𝐺0). The equality is shown using properties of the 997 

𝑡𝑟(∙)  operator as follows: 998 

𝒈′(𝐼𝑚⨂(𝐺0)−1)𝒈 = 𝑡𝑟(𝒈′(𝐼𝑚⨂(𝐺0)−1)𝒈) 

= 𝑡𝑟 ((𝒈1 ⋯ 𝒈𝑚)(
(𝐺0)−1

⋱ ⋮
(𝐺0)−1

)(

𝒈1

⋮
𝒈𝑚

)) 
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= 𝑡𝑟 (∑𝒈𝑗
′ (𝐺0)−1𝒈𝑗

𝑚

𝑗=1

) 

= 𝑡𝑟 (∑𝒈𝑗𝒈𝑗
′ (𝐺0)−1

𝑚

𝑗=1

), 

 999 

moreover, since 𝑡𝑟(𝒈′(𝐼𝑚⨂(𝐺0)−1)𝒈) = 𝑡𝑟(𝒈𝒈′(𝐼𝑚⨂(𝐺0)−1)), it follows that: 1000 

 1001 

𝒈′(𝐼𝑚⨂(𝐺0)−1)𝒈 + 𝑡𝑟(𝚺(𝐺0)−1) = 𝑡𝑟(𝚺(𝐺0)−1 + 𝒈𝒈′(𝐼𝑚⨂(𝐺0)−1)) 

= 𝑡𝑟 (𝚺(𝐺0)−1 + ∑𝒈𝑗𝒈𝑗
′ (𝐺0)−1

𝑚

𝑗=1

) 

= 𝑡𝑟 ((𝚺 + ∑𝒈𝑗𝒈𝑗
′

𝑚

𝑗=1

)(𝐺0)−1). 

 1002 

Using this, it follows that: 1003 

 1004 

𝜋(𝒈) ∝ ∫ exp(
−1

2
𝑡𝑟 ((𝚺 + ∑ 𝒈𝑗𝒈𝑗

′
𝑚

𝑗=1
) (𝐺0)−1)) |𝐺0|−

1
2
(𝑎+𝒮+𝑚+1)𝑑𝐺0

𝒫𝒮
+

 

=
2(𝑎+𝑚)𝒮 2⁄ Γ𝒮 (

𝑎 + 𝑚
2 )

|𝚺 + ∑ 𝒈𝑗𝒈𝑗
′𝑚

𝑗=1 |
(
𝑎+𝑚

2
)
 

 1005 

This result easily follows because we are integrating the kernel of an inverse Wishart density with 1006 

parameters (𝚺 + ∑ 𝒈𝑗𝒈𝑗
′𝑚

𝑗=1 , 𝑎 + 𝑚).  1007 

 1008 

Heterogeneous marker effect covariance matrix model 1009 

For this model: 1010 

𝜋(𝒈) ∝ ∏ ∫|𝐺𝑗|
−

1
2
(𝑎+𝒮+2)

𝒫𝒮
+

𝑚

𝑗=1

exp(
−1

2
𝑡𝑟 ((𝚺 + 𝒈𝑗𝒈𝑗

′ )(𝐺𝑗)
−1

))𝑑𝐺𝑗 

= ∏
2(𝑎+1)𝒮 2⁄ Γ𝒮 (

𝑎 + 1
2 )

|𝚺 + 𝒈𝑗𝒈𝑗
′ |

(
𝑎+1
2 )

𝑚

𝑗=1
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=

2(𝑎+1)𝑚𝒮 2⁄ (Γ𝒮 (
𝑎 + 1

2 ))

𝑚

∏ |𝚺 + 𝒈𝑗𝒈𝑗
′ |

(
𝑎+1
2 )𝑚

𝑗=1

, 

using the results for determinants of partitioned matrices this expression can be written as: 1011 

2(𝑎+1)𝑚𝒮 2⁄ (Γ𝒮 (
𝑎 + 1

2 ))

𝑚

∏ (|𝚺||1 + 𝒈𝑗
′𝚺−1𝒈𝑗|)

(
𝑎+1
2 )𝑚

𝑗=1

∝
1

∏ (1 +
1

𝑎 + 1 − 𝒮
𝒈𝑗

′𝚺∗
−1𝒈𝑗)

(
𝑎+1
2

)
𝑚
𝑗=1

, 

where 𝚺∗ =
1

𝑎+1−𝒮
𝚺. This is the product of multivariate t distributions with scale matrix 𝚺∗ and 1012 

degrees of freedom 𝑎 + 1 − 𝒮. 1013 

 1014 

Details on the form of 𝝅(𝑾,𝑷∗), 𝒓 known 1015 

 1016 

𝜋(𝑊|𝑃∗)𝜋(𝑃∗) = 𝜋(𝑊|𝑃, 𝒓)𝜋(𝑃|𝒓) 

= 𝜋(𝑊|𝑃, 𝒓)∏𝜋(𝑝𝑗|𝒓)

𝑚

𝑗=1

 

=
2𝑛𝐻

𝑐
∏∏{

1

𝑟
𝑙

2𝑓𝑙
𝑝𝑙𝑗

𝑛𝑙

𝐵𝑗

(𝑟𝑙 − 𝑝𝑙𝑗)
𝑛𝑙

𝐴𝑗

∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑙

𝑖′=𝑓𝑙+1

}

𝒮

𝑙=1

𝑚

𝑗=1

∏𝜋(𝑝𝑗|𝒓)

𝑚

𝑗=1

 

∝
2𝑛𝐻

𝑐
∏∏{

1

𝑟
𝑙

2𝑓𝑙
𝑝𝑙𝑗

𝑛𝑙

𝐵𝑗

(𝑟𝑙 − 𝑝𝑙𝑗)
𝑛

𝑙

𝐴𝑗

∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′𝑗
, 𝑤𝐷

𝑖′𝑗
)

𝑛𝑙

𝑖′=𝑓𝑙+1

}

𝒮

𝑙=1

𝑚

𝑗=1

× ∏𝑝(𝒮+1)𝑗
𝛼𝒮+1−1

∏(
𝑝𝑙𝑗

𝑟𝑙
)

𝛼𝑙−1
𝒮

𝑙=1

𝑚

𝑗=1

 

∝
2𝑛𝐻

𝑐
∏𝑝(𝒮+1)𝑗

𝛼𝒮+1−1
∏{

1

𝑟
𝑙

2𝑓𝑙
𝑝𝑙𝑗

𝑛𝑙

𝐵𝑗
+𝛼𝑙−1(𝑟𝑙 − 𝑝𝑙𝑗)

𝑛𝑙

𝐴𝑗

∏ 𝜋 (𝑤𝑖′𝑗
𝑙 |𝑤𝑆

𝑖′
, 𝑤𝐷

𝑖′
)

𝑛𝑙

𝑖′=𝑓𝑙+1

}

𝒮

𝑙=1

𝑚

𝑗=1

 

 1017 

𝑝(𝒮+1)𝑗 = 1 − ∑ 𝑝𝑙𝑗
𝒮
𝑙=1 , for each 𝑗, 𝒈𝑗 ∈ ℝ𝒮  corresponds to the subvector of 𝒈 containing the effects 1018 

of marker 𝑗 in each one of the 𝒮 subpopulations and ⨂ represents the Kronecker product. Analogous 1019 

steps lead to the form of 𝜋(𝑊, 𝑃∗) when 𝒓 is unknown. 1020 

 1021 

Full conditionals 1022 

 1023 

Full conditionals for models with heteroscedastic residuals  1024 

In this case: 1025 

𝑓(𝒚|𝑊, 𝒈, 𝑅) ∝ |𝑉|−1 2⁄ exp(−
1

2
(𝒚 − 𝑊𝒈)′𝑉−1(𝒚 − 𝑊𝒈)) 

= ∏(𝜎𝑙
2)−𝑛𝑙 2⁄

𝒮

𝑙=1

exp (−
1

2𝜎𝑙
2 (𝒚𝑙 − 𝑊𝑙𝒈𝑙)

′(𝒚𝑙 − 𝑊𝑙𝒈𝑙)). 

In addition 1026 
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𝜋(𝑅) ∝ ∏(𝜎𝑙
2)−(𝑣 2⁄ +1) exp(−

𝜏2

2𝜎𝑙
2)

𝒮

𝑙=1

. 

In the following, only the full conditionals that change with respect to the homoscedastic models are 1027 

presented. For the homogeneous marker effect covariance matrix model with multivariate normal 1028 

prior the full conditionals that change are: 1029 

𝜋(𝒈|𝐸𝑙𝑠𝑒) = 𝑀𝑉𝑁((𝑊′𝑉−1𝑊 + 𝐺−1)−1𝑊′𝑉−1𝒚, (𝑊′𝑉−1𝑊 + 𝐺−1)−1) 

where 𝐺−1 = (𝐺0)−1⨂𝐼. 1030 

𝜋(𝑅|𝐸𝑙𝑠𝑒) = ∏𝐼𝐺 (
𝑣 + 𝑛𝑙

2
,
𝜏2 + (𝒚𝑙 − 𝑊𝑙𝒈𝑙)

′(𝒚𝑙 − 𝑊𝑙𝒈𝑙)

2
) .

𝒮

𝑙=1

 

To define 𝜋(𝑊𝑁|𝐸𝑙𝑠𝑒) the partitions defined in section 2.2.1 are done for each subpopulation.  1031 

𝜋(𝑊𝑁|𝐸𝑙𝑠𝑒) ∝ 𝜋+(𝑊|𝑃∗)∏exp(
−1

2𝜎𝑙
2 (−2𝒈𝑙

′𝑊𝑙
𝑁′𝒚𝑙

𝑁 + 𝒈𝑙
′𝑊𝑙

𝑁′𝑊𝑙
𝑁𝒈𝑙))

𝒮

𝑙=1

 

× ∏∏exp(
−1

2𝜎𝑙
2 ℎ(𝑊𝑙

𝑀𝑘 , 𝒈𝑙
𝑀𝑘 , 𝒚𝑙

𝑀𝑘))

𝐾

𝑘=1

𝒮

𝑙=1

 

where  1032 

ℎ(𝑊𝑙
𝑀𝑘 , 𝒈𝑙

𝑀𝑘 , 𝒚𝑙
𝑀𝑘) 

= 2(𝒈𝑙
𝑀𝑘𝑁

′𝑊𝑙
𝑀𝑘𝑁

′𝑊𝑙
𝑀𝑘ℴ

𝒈𝑙
𝑀𝑘ℴ

− 𝒈𝑙
𝑀𝑘𝑁

′′𝑊𝑙
𝑀𝑘𝑁

′𝒚𝑙
𝑀𝑘) + 𝒈𝑙

𝑀𝑘𝑁
′𝑊𝑙

𝑀𝑘𝑁
′𝑊𝑙

𝑀𝑘𝑁
𝒈𝑙

𝑀𝑘𝑁
. 

 1033 

For the heterogeneous marker effect covariance matrix model with multivariate Gaussian prior for 𝒈: 1034 

 1035 

𝒈|𝐸𝑙𝑠𝑒~𝑀𝑉𝑁((𝑊′𝑉−1𝑊 + 𝐺−1)−1𝑊′𝑉−1𝒚, (𝑊′𝑉−1𝑊 + 𝐺−1)−1) 

 1036 

where 𝐺−1 = 𝐵𝑙𝑜𝑐𝑘 𝐷𝑖𝑎𝑔 (𝐺1
−1, … , 𝐺𝒮

−1).  1037 

 1038 

Appendix B: Details on data simulation 1039 

 1040 

For phenotype one (dataset 1), in a first stage three preliminary subpopulations were simulated by 1041 

selecting individuals from the historical population. Numbers of individuals and criteria to select 1042 

them were the following. In preliminary subpopulation 1, ten males and 250 females with the lowest 1043 

true breeding values, in preliminary subpopulation 2, five males and 200 females with the highest 1044 

phenotypes and in preliminary subpopulation 3, 50 males and 500 females randomly chosen. Then, 1045 

selection criteria and mating design to create new generations were: lowest phenotypes and positive 1046 

assortative in preliminary subpopulation 1, highest phenotypic values and random for preliminary 1047 

subpopulation 2, and random and random for preliminary subpopulation 3. Positive assortative 1048 

means that individuals are mated looking for similarity, while negative assortative means that 1049 

individuals are mated looking for dissimilarity, where (di)similarity can be defined in terms of 1050 

phenotypes, true or predicted breeding values (Sargolzaei and Schenkel, 2013). The numbers of 1051 

simulated generations were four, two, and three respectively. Subsequently, two more subpopulations 1052 

hereinafter referred to as subpopulations one and two were simulated as follows. Eighteen males and 1053 
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100 females from the fourth generation of the first subpopulation, two males and 40 females from the 1054 

second generation of the second subpopulation, and eight males and 40 females from the third 1055 

generation of the third subpopulation were chosen to create the subpopulation one. Ten females from 1056 

generation three of preliminary subpopulation one, 20 males and 60 females from generation two of 1057 

preliminary subpopulation two, and 20 females from generation two of preliminary subpopulation 1058 

three were chosen to generate subpopulation two. Generations zero and one of preliminary 1059 

subpopulation three were used to define subpopulation three. For the second phenotype (dataset 2) 1060 

the two subpopulations were simulated by choosing individuals from the historical subpopulation 1061 

based on different criteria and mating them according to different systems and selection criteria for 1062 

two generations.  1063 

In each case, a single pedigree was simulated which allowed individuals from a given subpopulation 1064 

to be parents of individuals from another subpopulation. This mimics what happens in certain 1065 

populations like animal populations when using semen or oocytes from individuals from a different 1066 

subpopulation (e.g., country) to produce a new generation of a given subpopulation. The number of 1067 

alleles per QTL was two, three and four; these numbers were randomly assigned using a uniform 1068 

distribution. QTL were evenly allocated across the genome as well as SNP markers.  1069 

In both datasets, additive QTL effects were scaled such that QTL effects and heritabilities were 1070 

different in each subpopulation. Within a given subpopulation, all QTL allelic effects were scaled by 1071 

the same factor. Markers with minor allele frequencies smaller than 0.05 were excluded from the 1072 

analysis.  1073 

 1074 

Appendix C: Conditional pmf of genotypes at locus 𝒋 given one parental genotype and allelic 1075 

frequencies 1076 

 1077 

The following table shows 𝜋(𝑤𝑖𝑗|𝑤𝑃𝑎𝑖𝑗
, 𝒑𝑗

∗) = Pr (𝑤𝑖𝑗 = 𝑥|𝑤𝑃𝑎𝑖𝑗
= 𝑧, 𝒑𝑗

∗), 𝑥, 𝑧 ∈ {−1,0,1}, where 1078 

𝑤𝑃𝑎𝑖𝑗
 is the genotype of the known parent of individual 𝑖 for marker locus 𝑗. If the subpopulation to 1079 

which the unknown parent pertains is known to be subpopulation 𝑙 then 𝜋(𝑤𝑖𝑗|𝑤𝑃𝑎𝑖𝑗
, 𝒑𝑗

∗) has the 1080 

following form: 1081 

 1082 

Known parental 

genotype  
𝑤𝑃𝑎𝑖𝑗

 𝜋(−1|𝑤𝑃𝑎𝑖𝑗
, 𝒑𝑗

∗) 𝜋(0|𝑤𝑃𝑎𝑖𝑗
, 𝒑𝑗

∗) 𝜋(1|𝑤𝑃𝑎𝑖𝑗
, 𝒑𝑗

∗) 

AA -1 1 − 𝑝𝑙𝑗
∗  𝑝𝑙𝑗

∗  0 

AB 0 (1 − 𝑝𝑙𝑗
∗ ) 2⁄  1 2⁄  𝑝𝑙𝑗

∗ 2⁄  

BB 1 0 1 − 𝑝𝑙𝑗
∗  𝑝𝑙𝑗

∗  

 1083 

If no information about the unknown parent is available, one pragmatic solution is to assume that the 1084 

probabilities of inherit a given allele are dictated by the unweighted average of allelic frequencies 1085 

across subpopulations (for the full models). If �̅�𝑗
∗ represents that average reference allele frequency 1086 

for marker locus 𝑗 then the conditional probabilities are same as in the previous table with 𝑝𝑙𝑗
∗  1087 

replaced by �̅�𝑗
∗. Of course, the lack of knowledge of the origin of the unknown parent is not an issue 1088 

for null models.  1089 
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 1090 

Appendix D: Toy example of the joint pmf of two half sib founders 1091 

 1092 

In this case the common parent is the relevant common ancestor. This individual is denoted with 1093 

number 3. Suppose that individuals 1, 2 and 3 belong to population 𝑙. For simplicity we focus on a 1094 

single marker, thus the subindex associated with marker is ignored. Then: 1095 

 1096 

𝜋(𝑤1, 𝑤2|𝑃
∗) = ∑ 𝜋(𝑤1|𝑤3 = 𝑘, 𝑝𝑙

∗)𝜋(𝑤2|𝑤3 = 𝑘, 𝑝𝑙
∗)𝜋(𝑤3 = 𝑘|𝑝𝑙

∗)

𝑘∈{−1,0,1}

. 

 1097 

This summation is done for every one of the 9 combinations of genotypes of individuals 1 and 2. The 1098 

following table displays the conditional probabilities (𝑤1, 𝑤2|𝑤3 = 𝑘, 𝑝𝑙
∗). 1099 

 1100 

Genotype of 3 Genotype of 2 
Genotype of 1 

AA AB BB 

AA 

AA (1 − 𝑝𝑙
∗)2 𝑝𝑙

∗(1 − 𝑝𝑙
∗) 0 

AB 𝑝𝑙
∗(1 − 𝑝𝑙

∗) 𝑝𝑙
∗2 0 

BB 0 0 0 

AB 

AA (1 − 𝑝𝑙
∗)2 4⁄  (1 − 𝑝𝑙

∗) 4⁄  𝑝𝑙
∗(1 − 𝑝𝑙

∗) 4⁄  

AB (1 − 𝑝𝑙
∗) 4⁄  1 4⁄  𝑝𝑙

∗ 4⁄  

BB 𝑝𝑙
∗(1 − 𝑝𝑙

∗) 4⁄  𝑝𝑙
∗ 4⁄  𝑝𝑙

∗2 4⁄  

BB 

AA 0 0 0 

AB 0 (1 − 𝑝𝑙
∗)2 𝑝𝑙

∗(1 − 𝑝𝑙
∗) 

BB 0 𝑝𝑙
∗(1 − 𝑝𝑙

∗) 𝑝𝑙
∗2 

   1101 

The following table presents the joint pmf of individuals 1 and 2 conditional on allelic frequencies 1102 

 1103 

Genotype 

of 2 

Genotype of 1 

AA AB BB 

AA (1 − 𝑝𝑙
∗)3 (1 −

𝑝𝑙
∗

2
) (1 − 𝑝𝑙

∗)2𝑝𝑙
∗ (

3

2
− 𝑝𝑙

∗) 
(𝑝𝑙

∗(1 − 𝑝𝑙
∗))

2

2
 

AB (1 − 𝑝𝑙
∗)2𝑝𝑙

∗ (
3

2
− 𝑝𝑙

∗) 𝑝𝑙
∗(1 − 𝑝𝑙

∗) (2𝑝𝑙
∗(1 − 𝑝𝑙

∗) +
1

2
) 𝑝𝑙

∗2(1 − 𝑝𝑙
∗) (𝑝𝑙

∗ +
1

2
) 

BB (𝑝𝑙
∗(1 − 𝑝𝑙

∗))
2

2
 𝑝𝑙

∗2(1 − 𝑝𝑙
∗) (𝑝𝑙

∗ +
1

2
) 𝑝𝑙

∗3 (
𝑝𝑙

∗ + 1

2
) 

 1104 

 1105 


