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Abstract  13 

Several statistical models used in genome-wide prediction assume uncorrelated marker allele 14 

substitution effects, but it is known that these effects may be correlated. In statistics, graphical 15 

models have been identified as a useful tool for covariance estimation in high dimensional problems 16 

and it is an area that has recently experienced a great expansion. In Gaussian covariance graph 17 

models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and 18 

the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph 𝐺. In this 19 

study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes 20 

GCov, Bayes GCov-KR and Bayes GCov-H). In simulated datasets, improvements in correlation 21 

between phenotypes and predicted breeding values and accuracies of predicted breeding values were 22 

found. Our models account for correlation of marker effects and permit to accommodate general 23 

structures as opposed to models proposed in previous studies which consider spatial correlation only. 24 

In addition, they allow incorporation of biological information in the prediction process through its 25 

use when constructing graph 𝐺, and their extension to the multiallelic loci case is straightforward.  26 

Key words Correlated marker effects, genome-enabled prediction, graphical models, high-27 

dimensional covariance estimation.  28 

 29 

Introduction 30 

Most of the Bayesian and classical models used in genome-wide prediction (Meuwissen et 31 

al., 2001) assume that marker allele substitution effects follow independent distributions which 32 

induces a diagonal covariance matrix; however, some biological phenomena point to non-33 

independent effects. On one hand, the existence of linkage disequilibrium (LD) may create a spatial 34 

correlation of marker effects (Gianola et al., 2003; Yang and Tempelman, 2012). On the other hand, 35 

the complex interactions between regions of the genome and interactions of gene products in the 36 



 

3 

metabolism also suggest that the assumption of independent effects may not be tenable. Thus, 37 

accounting for correlated marker allele substitution effects may increase the predictive performance 38 

of statistical models used in genome-wide prediction. Although it has been known that marker effects 39 

might be correlated, the problem of accounting for such a correlation has not been widely studied. So 40 

far, there have been few studies investigating this interesting problem. Gianola et al., (2003) 41 

described a series of frequentist and Bayesian models accounting for within chromosome correlated 42 

marker effects. Yang and Tempelman (2012) proposed a Bayesian antedependence model 43 

considering a nonstationary correlation structure of SNP effects. The two studies only considered 44 

correlations among nearby markers.  45 

Covariance estimation is recognized as a challenging problem in statistics (Stein, 1975), 46 

especially in high dimensional problems under the “big 𝑝 small 𝑛” condition where the sample 47 

covariance matrix is not of full rank  (Rajaratnam et al., 2008). As a consequence, high dimensional 48 

covariance estimation using graphical models is a contemporary topic in statistics and machine 49 

learning. Regularization methods imposing sparsity on estimators through structural zeros in the 50 

covariance or inverse covariance matrix have gain attention during recent years, (Carvalho et al., 51 

2007; Letac and Massan, 2007; Rajaratnam et al., 2008). In these models, the pattern of zeros of the 52 

covariance (covariance graph models) or precision matrix (concentration graph models) is defined by 53 

means of an undirected graph 𝐺. The nodes of this graph represent the underlying random variables, 54 

and when the joint distribution of these variables is multivariate Gaussian, pairs of nodes not sharing 55 

an edge in 𝐺 are either, marginally independent (Gaussian covariance graph models) or conditionally 56 

(given all other variables) independent (Gaussian concentration graph models). This paper focuses on 57 

Gaussian covariance graph models (GCovGM). In statistics, the usefulness of these models in the 58 

analysis of high dimensional data exhibiting dependencies is well known (Carvalho et al., 2007; 59 

Rajaratnam et al., 2008); consequently, given the need for flexible statistical methods to account for 60 
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correlated marker effects in genome-wide prediction, the introduction of GCovGM in this area seems 61 

promising. Until now, application of graphical models in quantitative genetics and genomics has 62 

entailed miscellaneous problems like pedigree and linkage analysis, detection of QTL (Lauritzen and 63 

Sheejan, 2003), causal inference and prediction of genetic values (Rosa et al. 2016), identification of 64 

non-informative molecular markers (Scutari et al. 2013) and estimation of linkage disequilibrium 65 

networks (Morota et al. 2012). These applications mainly used directed acyclic graph models and 66 

none of them addressed the problem of high dimensional covariance estimation.  67 

To our knowledge, this is the first study adapting the theory of GCovGM to account for 68 

correlated SNP allele substitution effects in genome-wide prediction. The theory of GCovGM has 69 

been developed to estimate the covariance matrix of an observable 𝑝-dimensional random vector 70 

using 𝑁 iid observations. In contrast, in genome-wide prediction, the problem involves predicting 71 

marker effects, estimating residual variance(s), and estimating the covariance matrix of an 72 

unobservable random vector (SNP effects) using one 𝑛-dimensional vector with phenotypic 73 

information along with genomic information. Thus, the objective of this study was to develop 74 

methods that adapt the theory of GCovGM to genome-wide prediction in order to account for 75 

correlated marker allele substitution effects.  76 

 77 

Materials and methods 78 

 This section is split into the following subsections. Firstly, due to the fact that GCovGM 79 

theory is not widely known in the realm of quantitative genetics, a brief introduction and details on 80 

the challenge encountered when adapting it to genome-wide prediction are presented. Then, 81 

statistical methods adapting GCovGM to genome-wide prediction are described along with some 82 

approaches to build the graph 𝐺. Finally, datasets used to implement our methods are described.  83 

Gaussian Covariance Graph Models  84 
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Here, the case of a known graph 𝐺 is considered. By known 𝐺 it is meant that the pattern of 85 

zeros in the covariance matrix is actually known or that 𝐺  is defined on the basis of domain-specific 86 

knowledge. Some basic concepts in graph theory are provided in supporting information (Appendix 87 

A); the reader not familiar with this topic is encouraged to read it before reading the rest of the paper. 88 

Hereinafter, the operator |∙| represents the determinant when the argument is a matrix and 89 

cardinality when the argument is a set. Let 𝒀1, 𝒀2, … , 𝒀𝑁 be a set of vectors in ℝ𝑝 identically and 90 

independently distributed 𝑀𝑉𝑁(0, Σ), the target is to estimate Σ. The graph 𝐺 determines the null 91 

entries of Σ as explained above and consequently the parameter space is defined as follows. Let 𝐺 =92 

(𝑉, 𝐸) be an undirected graph with vertex set 𝑉 and edge set 𝐸, then Σ  lies in the cone ℙ𝐺 =93 

{𝐴: 𝐴 ∈ ℙ+ 𝑎𝑛𝑑 𝐴𝑖𝑗 = 0 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 (𝑖, 𝑗) ∉ 𝐸}, where ℙ+ is the space of positive definite matrices. 94 

Thus, ℙ𝐺 corresponds to the set of all positive definite matrices having null entries whenever the 95 

corresponding variables do not share an edge in 𝐺.  Maximum likelihood estimation is possible only 96 

when 𝑁 > 𝑝 and because of the constraints that it imposes when adapting GCovGM in genome-wide 97 

prediction (see supplementary material, Appendix B) this paper focuses on Bayesian approaches 98 

only.   99 

Bayesian estimation 100 

For natural exponential families (as in concentration graph models) a class of conjugate 101 

priors corresponding to the Diaconis-Ylvisaker prior (Diaconis and Yilvisaker, 1979) is frequently 102 

used. However, covariance graph models correspond to curved exponential families instead of 103 

natural exponential families. It is easily checked because 𝐿(Σ) ∝ exp (−
𝑁

2
𝑡𝑟(Σ−1𝑆) −104 

𝑁

2
𝑙𝑜𝑔|Σ|) , Σ ∈ ℙ𝐺 ,  where 𝑆 is the sample covariance matrix, notice that 𝐿(Σ) does not have the form 105 

of a natural exponential family. Silva and Ghahramani (2009) introduced the family of conjugate 106 

priors known as inverse 𝐺-Wishart (𝐼𝐺𝑊(𝑈, 𝛿)) whose probability density function (pdf) has the 107 
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following form: 𝜋𝑈,𝛿(Σ) ∝ exp (−
𝑡𝑟(Σ−1𝑈)

2
−

𝛿

2
𝑙𝑜𝑔|Σ|) , Σ ∈ ℙ𝐺. Let 𝑌 ≔ (𝒀1, 𝒀2, … , 𝒀𝑁). Under this 108 

prior: 𝜋𝑈,𝛿(Σ|𝑌) ∝ 𝐿(Σ)𝜋𝑈,𝛿(Σ)  ∝ exp (−
1

2
𝑡𝑟(Σ−1(𝑈 + 𝑁𝑆)) −

𝑁+𝛿

2
𝑙𝑜𝑔|Σ|) , Σ ∈ ℙ𝐺. This 109 

corresponds to a 𝐼𝐺𝑊(𝑈, 𝛿) distribution, 𝑈 ≔ 𝑈 + 𝑁𝑆, 𝛿 ≔ 𝑁 + 𝛿. An important issue that has to 110 

be considered now is for which values of matrix 𝑈 and the shape parameter 𝛿,  𝜋𝑈,𝛿(∙) is a valid 111 

density. To find sufficient conditions the modified Cholesky decomposition of Σ, Σ = 𝐿𝐷𝐿′, where 𝐿 112 

is a lower triangular matrix with diagonal entries equal to one and 𝐷 is a strictly positive diagonal 113 

matrix,  is used. Then, we have the following transformation (a bijection) {Σ𝑖𝑗}𝑖≥𝑗,(𝑖,𝑗)∈𝐸
→114 

({𝐿𝑖𝑗}𝑖>𝑗,(𝑖,𝑗)∈𝐸
, 𝐷), which induces  the density 𝜋𝑈,𝛿(𝐿, 𝐷) ∝ exp (−𝑡𝑟(𝐷−1𝐿−1𝑈(𝐿′)−1) −115 

1

2
∑ (𝛿 + 2𝑛𝑗)𝑙𝑜𝑔𝐷𝑗𝑗

𝑝
𝑗=1 ) where 𝑛𝑗 = |{𝑖: 𝑖 > 𝑗, (𝑖, 𝑗) ∈ 𝐸}| ∀ 𝑗 = 1,2, … , 𝑝 − 1. From the 116 

mathematical point of view, the problem is to find sufficient conditions for the following integral to 117 

be finite: 118 

∫ ∫ 𝜋𝑈,𝛿(𝐿, 𝐷)𝑑𝐷𝑑𝐿

ℝ+
𝑝ℝ|𝐸|

, 119 

after some manipulations, it can be shown that these conditions are the following (Khare and 120 

Rajaratnam, 2011). 1) 𝑈 ∈ ℙ+, 2) 𝛿 − 2𝑛𝑗 > 𝑣𝑘 + 2 ∀ 𝑗 = 1,2, … , 𝑝 − 1, ∀ 𝑘 = 2,3,… , 𝑝, where 121 

𝑣𝑘 = |{𝑖 < 𝑘: (𝑖, 𝑘) ∈ 𝐸}|. Thus, the edge set of 𝐺 defines the set of values that the shape parameter 122 

𝛿 can take because from the second condition above it follows that 𝛿 > 𝑣∗ + 2𝑛∗ + 2 where 𝑣∗ =123 

max
2≤𝑘≤𝑝

{𝑣𝑘} , 𝑛∗ = max
1≤𝑗≤𝑝−1

{𝑛𝑗}. For covariance graph models, there is a block Gibbs sampler algorithm 124 

to draw samples from the posterior. This sampler is based on partitioning the covariance matrix as: 125 

Σ = [
Σ11 Σ.1

′

Σ.1 Σ−1,−1
] and it uses the following result. Let 𝜷1: = (Σ1𝑗)(1,𝑗)∈𝐸

, i.e., a vector containing 126 

the unconstrained (non-null) covariance parameters for variable 1, 𝛾1 = Σ11 − 𝚺.1
′ Σ−1,−1

−1 𝚺.1, and 𝑄1 = 127 

a matrix of zeros and ones such that: 𝚺.1 = 𝑄1𝜷1, then: 128 
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𝜷1|𝑄1, 𝛾1, Σ−1,−1~𝑀𝑉𝑁(𝐴−1𝑄1
′Σ−1,−1

−1 𝑼.1, 𝛾1𝐴
−1) and 𝛾1|𝑄1, 𝜷1, Σ−1,−1~𝐼𝐺 (

𝛿

2
−129 

1,
𝑈11−2𝑼.1

′ Σ−1,−1
−1 𝑄1𝜷1+𝜷1

′ 𝐴𝜷1

2
), where 𝐴 ≔ 𝑄1

′Σ−1,−1
−1 𝑈−1,−1Σ−1,−1

−1 𝑄1 and 𝐼𝐺(∙,∙)  denotes the Inverse 130 

Gamma (∙,∙) distribution. Using this result and permutations, the partition can be done for the 𝑝 131 

random variables in every step. Hence, this is not a standard Gibbs sampler because partitions change 132 

in every step; however, convergence can be established using results from Asmussen and Glynn 133 

(2011). Notice the role of graph 𝐺 when constructing this block Gibbs sampler, it defines  𝜷𝑗 and  134 

𝑄𝑗, 𝑗 = 1,2… , 𝑝.  135 

The Khare-Rajaratnam family of flexible priors for decomposable graphs 136 

When 𝐺 is decomposable and its vertices are ordered according to a perfect elimination 137 

scheme (Khare and Rajaratnam, 2012), there exists a wider family of more flexible priors developed 138 

by Khare and Rajaratnam (2011). The parameter 𝛿 of the 𝐼𝐺𝑊(𝑈, 𝛿) family is common for all 𝐷𝑖𝑖; 139 

however, for decomposable graphs a more flexible prior with pdf of the form 𝜋̅𝑈,𝜹(Σ) ∝140 

exp (−
1

2
𝑡𝑟(Σ−1𝑈) − ∑

𝛿𝑖

2
𝑙𝑜𝑔𝐷𝑖𝑖(Σ)

𝑝
𝑖=1 ) , Σ ∈ ℙ𝐺 , 𝑈 ∈ ℙ+, 𝜹 = (𝛿1, 𝛿2, … , 𝛿𝑃) can be used. In this 141 

prior density, every 𝐷𝑖𝑖  has its own shape parameter 𝛿𝑖. The price paid for this extra flexibility is that 142 

the graph 𝐺 has to be decomposable. When considering the modified Cholesky decomposition of the 143 

covariance matrix, the density in terms of 𝐿 and 𝐷 is: 144 

𝜋̅𝑈,𝜹(𝐿, 𝐷) ∝ exp(−
1

2
𝑡𝑟((𝐿′)−1𝐷−1𝐿−1𝑈) − ∑

𝛿𝑖 − 2𝑛𝑖

2
𝑙𝑜𝑔𝐷𝑖𝑖

𝑝

𝑖=1

) , 𝐿 ∈ ℒ𝐺 , 𝐷 ∈ 𝒟  145 

Sufficient conditions for this to be a proper density are: 𝑈 ∈ ℙ+, 𝛿𝑖 > 2𝑛𝑖 + 𝑣𝑖 + 2 (Khare 146 

and Rajaratnam, 2011). This prior is conjugate because the posterior density, given by: 147 

𝜋(𝐿, 𝐷|𝑌) ∝ exp(−
1

2
𝑡𝑟((𝐿′)−1𝐷−1𝐿−1(𝑈 + 𝑁𝑆)) − ∑

𝑁 + 𝛿𝑖 − 2𝑛𝑖

2
𝑙𝑜𝑔𝐷𝑖𝑖

𝑝

𝑖=1

) , 𝐿 ∈ ℒ𝐺 , 𝐷 ∈ 𝒟,  148 
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is a  𝜋̅𝑈̃,𝜹̃(𝐿, 𝐷) density, where 𝑈 is as defined above and  𝜹̃𝑝×1 = {𝛿𝑖} = 𝑁 + 𝛿𝑖 − 2𝑛𝑖. Hereinafter, 149 

this family of priors will be denoted as GWKR(𝜹,𝑈). If in addition to be decomposable the graph is 150 

also homogeneous, direct sampling from the posterior can be performed (this case is discussed later), 151 

otherwise MCMC methods are used to draw samples from the posterior. Details of a block Gibbs 152 

sampler and the proof of its convergence can be found in Khare and Rajaratnam (2011). The full 153 

conditional distributions used in Khare and Rajaratnam’s Gibbs sampler (Khare and Rajaratnam, 154 

2011) are the following. Let 𝐺 = (𝑉, 𝐸) be a decomposable graph with its vertices ordered according 155 

to a perfect elimination scheme (see Appendix A), let 𝐿𝐷𝐿′ be the modified Cholesky decomposition 156 

of the covariance matrix Σ and let 𝐿.𝑣
𝐺 = (𝐿𝑢𝑣)𝑢>𝑣,(𝑢,𝑣)∈𝐸 , 𝑣 = 1,2,… , 𝑝 − 1. Then: 157 

𝐿.𝑣
𝐺 |𝐿 ∖𝐿.𝑣

𝐺 , 𝐷, 𝑌~𝑁(𝜇𝑣,𝐺 , 𝑀𝑣,𝐺) ∀ 𝑣 = 1,2, … , 𝑝 − 1, where 158 

𝜇𝑢
𝑣,𝐺 = 𝜇𝑢

𝑣 + ∑ ∑ 𝑀𝑢𝑢′
𝑣,𝐺 (𝐿−1𝑈̃(𝐿′)−1)

𝑣𝑣
𝑤>𝑣:(𝑤,𝑣)∉𝐸 

𝑜𝑟 𝑤<𝑣: (𝐿−1)𝑣𝑤=0
𝑢′>𝑣:(𝑢′,𝑣)∈𝐸

((𝐿𝐷𝐿′)−1)𝑢′𝑤𝜇𝑤
𝑣  ∀ 𝑢 > 𝑣, (𝑢, 𝑣) ∈ 𝐸 159 

𝜇𝑢
𝑣 =

(𝐿−1𝑈̃)
𝑣𝑢

(𝐿−1𝑈̃(𝐿′)−1)𝑣𝑣
 ∀ 𝑢 such that (𝐿−1)𝑣𝑢 = 0, ((𝑀𝑣,𝐺)−1)𝑢𝑢′ = (𝐿−1𝑈(𝐿′)−1)

𝑣𝑣
((𝐿𝐷𝐿′)−1)𝑣𝑣 160 

∀ 𝑢, 𝑢′ > 𝑣, (𝑢, 𝑣), (𝑢′, 𝑣) ∈ 𝐸 and 𝐷𝑖𝑖|𝐿, 𝑌~𝐼𝐺 (𝛿𝑖 2⁄ , (𝐿−1𝑈̃(𝐿′)−1)
𝑖𝑖

2⁄  ) , 𝑖 = 1,2,… , 𝑝. In the 161 

definition of  𝜇𝑣,𝐺, notation 𝑤: (𝐿−1)𝑣𝑤 = 0 refers to functional zeros, that is, (𝐿−1)𝑣𝑤 is zero as a 162 

function of the entries of 𝐿. Finally, operator “𝐵 ∖ 𝐴” is the relative complement of set A with respect 163 

to a set B, also known as the difference of sets A and B; it denotes elements in B but not in A.  164 

Covariance graph models for homogeneous graphs 165 

For covariance graph models, certain properties of the graph 𝐺 = (𝑉, 𝐸) have appealing 166 

mathematical consequences on the estimation problem. Covariance graph models take advantage of 167 

the fact that homogeneous graphs admit a Hasse ordering of their nodes (see Appendix A). The 168 

importance of having a graph with this sort of ordering is summarized in the following theorem 169 

(Khare and Rajaratnam, 2011). Let 𝐺 = (𝑉, 𝐸), be a homogeneous graph with a Hasse ordering of its 170 
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nodes. Then, Σ = 𝐿𝐷𝐿′ ∈ ℙ𝐺 ⟺ 𝐿 ∈ ℒ𝐺 ⟺ 𝐿−1 ∈ ℒ𝐺, that is, matrices 𝐿 and 𝐿−1 preserve the 171 

pattern of zeros in Σ. This theorem is very relevant for the estimation problem we are dealing with 172 

because when 𝐺 is homogeneous, it permits to easily obtain direct samples from the posterior by 173 

reparametrization in terms of 𝑇 = 𝐿−1. Let 𝒙𝑖: = {𝑇𝑖𝑗}𝑗<𝑖,(𝑖,𝑗)∈𝐸
, then, it follows that given 𝐷 the 174 

random vectors 𝒙1, 𝒙2, … , 𝒙𝑚−1 are mutually independent and distributed as follows 175 

𝒙𝑖|𝐷~𝑀𝑉𝑁((𝑈<𝑖)−1𝑼.𝑖
<, 𝐷𝑖𝑖(𝑈

<𝑖)−1). In addition, 𝐷11, 𝐷22, … , 𝐷𝑝𝑝 are also mutually independent 176 

with the following marginal distributions 𝐷𝑖𝑖~𝐼𝐺 (
𝛿−2𝑛𝑖−𝑣𝑖

2
− 1,

𝑈𝑖𝑖−(𝑼.𝑖
<)′(𝑈<𝑖)

−1
𝑼.𝑖

<

2
), where 𝑣𝑖 =177 

|{𝑗: 𝑗 < 𝑖, (𝑖, 𝑗) ∈ 𝐸}| and 𝑈<𝑖, 𝑼.𝑖
< and 𝑈𝑖𝑖 correspond to the elements of matrix 𝑈 when it is 178 

partitioned as: (
𝑈<𝑖 𝑼.𝑖

<

(𝑼.𝑖
<)′ 𝑈𝑖𝑖

), 𝑈<𝑖 = (𝑈𝑗𝑘)𝑗,𝑘<𝑖,(𝑖,𝑗),(𝑖,𝑘)∈𝐸
, and 𝑼.𝑖

< = (𝑈𝑗𝑖)𝑗<𝑖,(𝑖,𝑗)∈𝐸
. From these 179 

conditional and marginal distributions, direct sampling can be performed.  180 

We want to close this section by emphasizing that the existence of a more flexible family of 181 

prior distributions for decomposable GCovGM and the simplification of the estimation problem in 182 

the case of homogeneous GCovGM are examples of the benefits of encoding the covariance structure 183 

in terms of a graph because by taking advantage of some of its properties, the estimation problem can 184 

be modified in such a way that appealing features (e.g., more generality, simplification of algorithms, 185 

closed form expressions) emerge.  186 

Adapting GCovGM to genome-wide prediction 187 

 In this section, we explain why GCovGM theory cannot be directly applied to genome-wide 188 

prediction, and we describe the challenges that have to be overtaken when adapting this theory to 189 

account for correlated marker effects.  The key point is that the estimation problem is not the same as 190 

the one described in the previous sections; hereinafter, this estimation problem will be referred to as 191 

the standard problem. Now, we describe the statistical problem found in genome-wide prediction. 192 

The model considered here is the following multiple linear regression model: 193 
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                                                                               𝒚 = 𝑊𝒈 + 𝒆                                                                           (1) 194 

where 𝒚 ∈ ℝ𝑛 is an observable random vector containing response variables (e.g., corrected 195 

phenotypes or deregressed BV), 𝒈 ∈ ℝ𝑚 is an unknown vector of marker allele substitution effects, 196 

𝒆 ∈ ℝ𝑛 is a vector of residuals, 𝑊𝑛×𝑚 is a matrix whose entries correspond to one to one mappings 197 

from the set of genotypes to a subset of the integers for every individual at every locus 𝑊 = {𝑤𝑖𝑗} =198 

{

1, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐵𝐵 
0, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐵𝐴

−1, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐴𝐴
, where 𝑤𝑖𝑗 is map corresponding to the genotype of the 𝑖𝑡ℎ individual for 199 

the 𝑗𝑡ℎ marker. The distributional assumptions are: 𝒈|Σ~𝑀𝑉𝑁(0, Σ) and 𝒆|𝜎2~𝑀𝑉𝑁(0, 𝜎2𝐼) which 200 

implies 𝒚|𝒈,𝑊, 𝜎2~𝑀𝑉𝑁(𝑊𝒈, 𝜎2𝐼). Recall that in the standard problem, the target is to estimate the 201 

covariance matrix of an observable vector-valued random variable under the assumption of 202 

multivariate normality and to this end, a sample of size 𝑁 > 1 of independent and identically 203 

distributed random vectors is used. On the other hand, the problem being addressed in this study is to 204 

predict the allelic effects of molecular markers accounting for correlation among these random 205 

variables using phenotypic (𝒚) and genomic (𝑊) data. This requires estimating the covariance matrix 206 

of marker allele substitution effects and the residual variance. Typically, phenotypic data correspond 207 

to a single 𝑛-dimensional vector. Because marker allele substitution effects are unknown, from the 208 

statistical point of view, the target is estimating the covariance matrix (Σ) of an unobservable 𝑚-209 

dimensional random variable (𝒈) as well as the residual variance (𝜎2), and to predict 𝒈 using a single 210 

𝑛-dimensional vector of phenotypes and the genomic information contained in 𝑊. Hence, the 211 

problem considered in this study is quite different to the standard problem and consequently, 212 

GCovGM theory cannot be applied directly to genome-wide prediction. Thus, when considering the 213 

theory of GCovGM as a means to model correlated marker effects, statistical methods adapting it to 214 

the genome-wide prediction problem have to be developed.  215 
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Finally, it is worth mentioning that Zhang et al. (2013) proposed methods to estimate covariance 216 

matrices corresponding to the sum of a low rank symmetric matrix and a sparse matrix, which is the 217 

case of the phenotypic covariance matrix 𝑉𝑎𝑟[𝑦] ≔ 𝑉 = 𝑊Σ𝑊′ + 𝜎2𝐼,  but these methods require a 218 

sample size larger than one and do not estimate Σ directly.  219 

A hierarchical Bayes formulation 220 

The flexibility of Hierarchical Bayesian modeling permits to cope with the problem of 221 

adapting GCovGM to genome wide prediction; it provides a simple and principled solution. 222 

Basically, the approach involves modification of the joint conditional prior of marker effects, that is, 223 

the conditional prior of 𝒈. The parametric Bayesian linear regression models conventionally used in 224 

genome-wide prediction share the same sampling distribution and differ in the priors posed over 225 

marker effects. Due to this fact, this family of models is known as the “Bayesian alphabet” (Gianola 226 

et al., 2009). All these models specify the joint conditional prior distribution of marker effects as the 227 

product of the conditional priors of each marker, that is, joint priors are built under the assumption of 228 

conditional independence. These priors are typically Gaussian, finite mixtures of Gaussian 229 

distributions or finite mixtures of point mass at zero and a Gaussian distribution (the so-called spike 230 

and slab priors). Thus, they depend on unknown variance components associated with the Gaussian 231 

distributions and the finite mixture priors also involve parameters corresponding to mixing 232 

probabilities. Here, in order to take into account correlation between marker effects we formulate a 233 

hierarchical model where the joint conditional prior of 𝒈 corresponds to a multivariate Gaussian 234 

distribution with a non-diagonal covariance matrix whose structure is dictated by a known undirected 235 

graph 𝐺. Thus, 𝐺 reflects marginal independence assumptions made about marker effects. We 236 

consider the two families of distributions presented above the IGW and the GWKR. Consequently, 237 

our models can be thought of as new members of the Bayesian alphabet because they also assume a 238 

multivariate Gaussian sampling distribution and differ from existing models in the specification of 239 
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the prior distribution of marker effects. The residual variance is given the following conjugate prior: 240 

𝜎2~𝐼𝐺 (
𝑎

2
,
𝑏

2
). Regarding the covariance matrix of marker effects, under the conventional GCovGM 241 

problem, Khare and Rajaratnam (2011) provided recursive equations to find the posterior mean in 242 

closed form for homogeneous graphs. However, as explained in the previous section, the target here 243 

is estimating the covariance matrix of an unobservable random vector which leads to a different 244 

problem; therefore, even for this sort of graphs sampling from the joint posterior distribution is 245 

required. To this end, the following simple but useful property permits the use of a Gibbs sampler. 246 

Notice that under model 1 it follows that the full conditional distribution of Σ satisfies 𝜋(𝛴|𝐸𝑙𝑠𝑒) =247 

𝜋(𝛴|𝒈, 𝐺). This property, and the conjugacy of the priors considered here (IGW and GWKR), imply 248 

that the full conditional of Σ pertains to the same family of the prior. Therefore, because it is possible 249 

to obtain samples from these families and all other full conditionals are standard distributions, a 250 

Gibbs sampler can be implemented (Robert and Casella, 2010). Under the model termed Bayes 251 

GCov:  Σ|𝐺~𝐼𝐺𝑊(𝛿,𝑈) which can be used for general graphs (i.e., non-decomposable graphs). 252 

Then, the joint posterior has the following form: 253 

𝜋(𝒈, 𝜎2, Σ|𝒚, 𝐺) ∝ (𝜎2)−
𝑛
2 exp(

−1

2𝜎2
(𝒚 − 𝑊𝒈)′(𝒚 − 𝑊𝒈)) |Σ|−1 2⁄ exp (

−1

2
𝒈′Σ−1𝒈) 254 

× exp (−
𝑡𝑟(𝛴−1𝑈)

2
−

𝛿

2
𝑙𝑜𝑔|Σ|) (𝜎2)−(

𝑏
2
+1) exp (

−𝑎

2𝜎2
) 255 

and 𝛴|𝐸𝑙𝑠𝑒~𝐼𝐺𝑊(𝛿∗, 𝑈∗), 𝑈∗ ≔ 𝑈 + 𝒈𝒈′, 𝛿∗ ≔ 𝛿 + 1. If 𝐺 is decomposable and the conditional 256 

prior for 𝛴 is a GWKR(𝜹,𝑈) distribution, then this variation of the model is referred to as Bayes 257 

GCov-KR. In this case, the full conditional distribution of Σ is GWKR(𝜹∗, 𝑈∗),  where 𝜹∗
𝑚×1 ≔258 

{𝛿𝑖
∗} = 1 + 𝛿𝑖 − 2𝑛𝑖. Finally, under the conditional prior 𝐼𝐺𝑊(𝛿, 𝑈), if the graph is homogeneous, 259 

the model is denoted as Bayes GCov-H just to stress the fact that this is a homogenous GCovGM and 260 

therefore the model is reparametrized in terms of the modified Cholesky decomposition of 𝛴. In this 261 
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case, the Gibbs sampler is more efficient due to the fact that direct samples from the full conditional 262 

distribution of 𝛴 can be drawn.   263 

We close this section by emphasizing the following connection between our models and the 264 

model known as Bayes A (Meuwissen et al., 2001) which assumes independent marker effects. This 265 

model independently assigns the same scaled inverse chi-squared distribution with parameters (𝑣, 𝑆) 266 

to the variances of marker effects. Notice that under the assumption of uncorrelated marker effects, 267 

that is, assuming 𝐸 = ∅, which implies Σ = 𝑑𝑖𝑎𝑔(𝜎1
2, … , 𝜎𝑚

2 ), the 𝐼𝐺𝑊(𝛿,𝑈) prior reduces to 268 

𝜋(Σ|𝐺) ∝ ∏exp(−
𝑈𝑗𝑗

2𝜎𝑗
2)

𝑚

𝑗=1

(𝜎𝑗
2)

−
𝛿
2 . 269 

Now, recall the restriction 𝛿 − 2𝑛𝑗 > 𝑣𝑗 + 2  which implies 𝛿 > 2; therefore,  𝜋(Σ|𝐺) is the product 270 

of 𝑚 inverse gamma densities with rate parameter 𝑈𝑗𝑗 2⁄  and shape parameter 𝛿 2⁄ − 1, 1 ≤ 𝑗 ≤ 𝑚. 271 

In particular, if 𝑈 = 𝐼𝑚 (the identity matrix of dimension 𝑚 × 𝑚), then, this prior density 272 

corresponds to the product of 𝑚 scaled inverse chi-squared densities with parameter (𝛿 −273 

2, 1 (𝛿 − 2)⁄ ). Similarly, in this situation the GWKR(𝜹,𝑈) prior amounts to posing independent 274 

scaled inverse chi-squared priors with parameters (𝛿𝑗 − 2, 1 (𝛿𝑗 − 2)⁄ ), 1 ≤ 𝑗 ≤ 𝑚. Thus, when 275 

assuming uncorrelated marker effects and 𝑈 = 𝐼𝑚, Bayes GCov (and therefore Bayes GCov-H) 276 

reduces to Bayes A assuming 𝜎1
2, … , 𝜎𝑚

2  
𝑖𝑖𝑑
~ scaled inverse chi-squared (𝛿 − 2, 1 (𝛿 − 2)⁄ ). Finally, 277 

Bayes GCov-KR reduces to a model that could be seen as a variation of Bayes A where the prior 278 

distributions of the variances of maker effects have different parameters, i.e., 𝜎1
2, … , 𝜎𝑚

2  
𝑖𝑛𝑑
~ scaled 279 

inverse chi-squared (𝛿𝑗 − 2, 1 (𝛿𝑗 − 2)⁄ ), 1 ≤ 𝑗 ≤ 𝑚. 280 

Some criteria to define 𝑮 281 
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One of the first steps to carry out analyses with our models is defining the graph 𝐺, that is, defining 282 

the marginal covariance structure of allelic effects. To this end, some approaches based on genetic 283 

criteria are presented in this section. The first one is based on the idea of spatial correlation (Gianola 284 

et al. 2003, Yang and Tempelman 2012). Using a physical or linkage map, a window is defined based 285 

on a given map distance, or a given number of markers and it is slid across each chromosome. The 286 

order of markers is dictated by the physical or linkage map. This strategy induces a differentially 287 

banded or a banded covariance matrix. A second approach is based on the use of biological 288 

information. Using tools such as gene annotation information, markers can be clustered based on 289 

their function using approximations like those presented in Do et al. (2015), Peñagaricano et al. 290 

(2015), Abdollahi‑Arpanahi et al. (2016), and Mcleaod et al. (2016). This creates groups or sets of 291 

loci and there are two options: permit correlations among effects of markers in different blocks or 292 

not. Finally, linkage disequilibrium between loci can be used.  In this case, one of the metrics used to 293 

assess LD is chosen and those pairs of loci having a metric greater than a predefined threshold will 294 

be neighbors in 𝐺.  295 

Simulation study 296 

 One of the main issues related to GCovGM is their computational burden in certain cases, 297 

e.g., when dealing with general graphs. In this paper, our main objective was to develop the 298 

covariance graph methodology for genome-wide prediction. Scaling the computational efficiency 299 

of the proposed approach for large scale implementation is an object of future research. 300 

Consequently, to ensure computational tractability, two small datasets were simulated in order to 301 

implement the proposed models. A single genome formed by 5 chromosomes of 10 cM length each, 302 

with 1605 biallleic markers and 1000 biallelic QTL was simulated. This genome was created via a 303 

forward-in-time approach using software QMSim (Sargolzaei and Schenkel, 2013). To create the 304 

population, 4000 historical generations of size 1000 (500 males and 500 females) were simulated in 305 
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order to reach mutation-drift equilibrium and to induce LD (Sargolzaei and Schenkel, 2013). 306 

Subsequently, 65 founders (20 males and 45 females) were randomly chosen and three generations of 307 

random mating were simulated. The total number of individuals was 200. Using this population, 308 

phenotypic records were created as the sum of the additive genetic value and an error term using two 309 

different approaches to simulated QTL effects which created two datasets that hereinafter will be 310 

referred to as dataset 1 and dataset 2. For dataset 1, QTL effects were drawn from independent zero 311 

mean Gaussian distributions and were scaled such that the additive genetic variance was equal to 50. 312 

On the other hand, for dataset 2, QTL allele substitution effects were simultaneously drawn from a 313 

multivariate Gaussian distribution with null vector mean and a banded covariance matrix with 314 

bandwidth of size 10. These effects were then scaled in order to have an additive genetic variance of 315 

50. In both datasets, residuals were drawn from independent Gaussian distributions with null mean 316 

and variance equal to 50, consequently, heritability was 0.5. In dataset 1, models considered only 317 

marker effects, that is, QTL genotypes were not used and only markers with a minor allele frequency 318 

larger than 0.08 were considered in the analyses. In contrast, the analyses carried out using dataset 2 319 

considered only QTL effects (i.e., SNP genotypes were not used); like in scenario 1, QTL with minor 320 

allele frequency smaller or equal than 0.08 were discarded. Ten replicates of each dataset were 321 

simulated. The graph 𝐺 was based on windows defined by a fixed number of marker loci (6, 322 

dataset1) or QTL (6, dataset 2), which induces a decomposable-non-homogeneous graph; therefore, 323 

models Bayes GCov-KR and Bayes GCov were fitted. Bayes A, a Bayesian model assuming 324 

uncorrelated effects, which is frequently used in genome-wide prediction, was also fitted. Training 325 

sets were formed by individuals from generations zero and one, and validation sets were comprised 326 

of individuals from generation 2.  327 

 Predictive performance was assessed using the following criteria. Pearson correlation of 328 

phenotypes and predicted additive genetic values in the validation set (predictive ability) and the 329 
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Pearson correlation between true and predicted additive genetic values (accuracy) in training and 330 

validation sets. In each analysis, 15000 MCMC samples (first 5000 were considered burn in) were 331 

obtained using the Gibbs samplers described above. Analyses were performed using in-house R 332 

scripts (R Core Team, 2015).  333 

 334 

Results 335 

 The average (across replicates) number of SNP and QTL considered in the analyses (i.e., 336 

having a minor allele frequency larger than 0.08) was 1487.4 and 927 respectively. Table 1 337 

summarizes the performance of the models fitted to datasets 1 and 2. According to average predictive 338 

ability (APA), average accuracy in the training set (AAT) and average accuracy in the validation set 339 

(AAV), our models clearly outperformed Bayes A in the two simulated datasets, differences being 340 

more marked in the case of independent QTL effects (dataset 1). In these datasets, the flexibility of 341 

the GWKR priors yielded a better predictive performance. Also, the performance of our methods 342 

tended to be less variable; Bayes A showed a smaller variation only for APA in dataset 2.  343 

 344 

Discussion 345 

General comments about the models 346 

 In this study, the theory of GCovGM was adapted to genome-wide prediction through 347 

hierarchical Bayesian modeling. This development permits to account for correlated marker allele 348 

substitution effects in a flexible way. This flexibility is due to the ability of our models to 349 

accommodate covariance structures arising from biological considerations such as information from 350 

metabolic pathways and not only from the assumption of spatial correlation as has been done in 351 

previous studies (Gianola et al., 2003; Yang and Tempelman, 2012). Thus, covariances between 352 

effects of markers which are not physically linked are permitted. Furthermore, the possibility of 353 
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defining the graph 𝐺 using tools such as gene annotation provides a way to incorporate biological 354 

information in the prediction process. The use of biological information (e.g., genome annotation) in 355 

genome-wide prediction has been used in previous studies (Do et al.,2015; Abdollahi‑Arpanahi et al., 356 

2016; Mcleaod et al., 2016), but they did not use this information to account for correlation among 357 

marker effects. These studies reported modest, moderate or null increments in predictive 358 

performance when incorporating biological information in the prediction problem.  359 

Several approaches to define the graph based on biological principles were presented. These 360 

approaches involve the assumption of spatial correlation and the aforementioned use of existing 361 

bioinformatics tools to create “functional” sets of SNP whose effects are correlated. In general, the 362 

second strategy would induce graphs with no special properties. However, due to the theoretical and 363 

numerical advantages of decomposable graphs discussed previously, it is convenient to work with 364 

this sort of graphs whenever possible. To this end, in a submitted paper (Martínez et al., 2016), we 365 

have proven two propositions and a corollary that provide conditions on the edges set and the 366 

ordering of markers, such that the induced graph is decomposable. For the sake of completeness, 367 

these propositions and the corollary are presented in Appendix B. Proposition 1 in Appendix B is the 368 

most general, but when 𝐺 is defined using biological information and subsets of different 369 

“functional” SNP sets are allowed to be correlated, its conditions are more difficult to satisfy. On the 370 

other hand, proposition 2 in Appendix B and its corollary are more restrictive in terms of the 371 

covariance structure, but they provide easier ways to order markers and define the edge set, that 372 

guarantee decomposability. Once the “functional” sets have been defined, if these conditions are not 373 

satisfied, these theoretical results provide a basis to find a decomposable super-graph containing the 374 

original graph 𝐺, an idea that has been used in graphical models (Lauritzen, 1996). Such a super-375 

graph has been referred to as the cover of 𝐺 (Khare and Rajaratnam, 2012).  376 
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In GCovGM, the family of homogeneous graphs is the one with more attractive properties. 377 

This is why the implementation of Bayes GCov-H is easier and faster because direct sampling of 𝛴 is 378 

feasible. However, finding this kind of graphs is, in general, not an easy problem. An example of a 379 

homogeneous graph is a rooted tree where all nodes are children of a single parent (the root). Thus, 380 

under the approach of using biological information to define the graph 𝐺, a homogeneous graph can 381 

easily be found as follows: The tree structure mentioned above is imposed to each “functional” set 382 

and no correlations between effects of markers in different sets are allowed. It also holds when each 383 

“functional” set is assumed to be a complete. All the strategies mentioned above might appear 384 

restrictive, but notice that assuming independent marker effects amounts to imposing a covariance 385 

structure as well. In fact it is a special case of our approach when the edge set is the empty set.  386 

Here, the focus was on Bayesian models because under the GCovGM framework, they can 387 

deal with the “big p small n” setting. However, in Appendix C, a frequentist approach to find the 388 

empirical BLUP of 𝒈 is presented. This formulation is based on the EM algorithm (Dempster et al., 389 

1977) combined with GCovGM theory and it permits obtaining estimators of dispersion parameters Σ 390 

and 𝜎2 which are used to build the mixed model equations corresponding to model 1 whose solution 391 

yields the empirical BLUP of 𝒈 (Henderson,1963). This formulation involves a partition of data 392 

induced by the assumption that different groups (e.g., half-sib families) have different sets of marker 393 

effects. Such an assumption has also been considered by other authors like Gianola et al. (2003). 394 

Even with the aid of bioinformatics, biochemistry and physiology to construct the graph 𝐺, it 395 

may not reflect the actual underlying covariance structure, but important correlations might be 396 

captured resulting in an improvement of the accuracy of genome-wide prediction. Covariance model 397 

selection involves finding the pattern of zeros and estimating the non-zero elements of either the 398 

precision or the covariance matrix (Bickel and Levina 2008; Khare et al., 2013). Model selection in 399 

GCovGM has not been as well studied as its counterpart in Gaussian concentration graph models. 400 
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There exist some frequentist methods that induce sparsity based on penalized likelihood approaches 401 

(Bien and Tibshirani, 2011) and others based on the idea of inducing sparsity in the parameter 𝐿 of 402 

the modified Cholesky decomposition of 𝛴 (Rothman et al., 2010). From the Bayesian perspective, 403 

some methods based on the Bayesian Lasso have been proposed, e.g., Wang (2012), but their main 404 

limitation is the computational burden. In order to overcome this problem, Wang (2015) proposed a 405 

method to perform covariance model selection with improved computational efficiency. On the other 406 

hand, Silva and Kalaitzes (2015) developed an approach to improve the efficiency of MCMC 407 

algorithms used to perform Bayesian inference and showed its application in covariance model 408 

selection, and Silva (2013) proposed a method based on acyclic directed mixed graphs (a 409 

generalization of directed acyclic graphs) that can be used to estimate the covariance matrix when the 410 

pattern of zeros is unknown. Some of these methods could be implemented in genome-wide 411 

prediction following approaches similar to those presented in this study.  412 

Another set of relevant problems that create the need for extending the models proposed here 413 

are the following. Sparse estimation of the covariance matrix via graphical models when priors for 414 

marker effects correspond to finite mixtures like the so-called spike and slab priors, cases where the 415 

assumption of Gaussian distribution of 𝒚 is not suitable (e.g., binary variables, count data), and the 416 

implementation of Gaussian copula graphical models (Dobra and Lenkoski, 2011) which could be 417 

used to formulate a hierarchical model that permits getting rid of making assumptions about the 418 

parametric representation of the prior distribution of marker allele substitution effects. However, it is 419 

important to notice that until now, these models have been developed to estimate the precision 420 

matrix; to our knowledge, estimation of the covariance matrix using this kind of models has not been 421 

investigated. 422 

Extension to multiallelic loci 423 
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 Here, biallelic loci were considered, but in some cases multiallelic loci have to be dealt with. 424 

In the future, models could be fit using genotypes for actual genes instead of molecular markers. In 425 

such a case, there could be more than two alleles per locus. A similar situation occurs when fitting 426 

effects of haplotypes built from two or more consecutive markers (Meuwiseen et al., 2001; Calus et 427 

al., 2008). The methods developed here can be easily extended to the multiallelic case. If there are 𝑎𝑘  428 

alleles at locus 𝑘, then the corresponding columns of the design matrix are formed by defining  𝑎𝑘 −429 

1 variables as follows: 430 

𝑊𝑘 = {𝑤𝑖𝑗
𝑘} = {

1, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐴𝑗𝐴𝑗 

0, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = 𝐴𝑗 −

−1, 𝑖𝑓 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 = − −

, 𝑗 = 1,2,… , 𝑎𝑘 − 1 , 431 

where 𝑤𝑖𝑗
𝑘  is the genotype of the 𝑖𝑡ℎ individual for the 𝑗𝑡ℎ allele of locus 𝑘 and " − " represents an 432 

allele different from 𝐴𝑗. The graph 𝐺 can be built based on the ideas discussed above, with extra 433 

considerations at the intra-locus level. For example, it could be assumed that effects of alleles of the 434 

same locus are all correlated. 435 

Data analyses 436 

In general, Bayes GCov and Bayes GCov-KR outperformed Bayes A. Differences between 437 

our models and Bayes A were more marked when QTL effects were independent and models 438 

considered SNP effects (dataset 1). In this scenario, independent QTL effects were simulated, but 439 

models were fitted in terms of SNP effects; consequently, allelic effects of markers in high LD with 440 

the same QTL or set of QTL’s could be correlated. This correlation may be the reason behind the 441 

superior performance of our models when compared to Bayes A. On the other hand, in the ideal 442 

scenario where the model considers the causal variants (the QTL) instead of markers (i.e., models 443 

fitted to dataset 2) the benefit of accounting for marginal correlation was smaller as suggested by a 444 

smaller difference in the three criteria used to assess predictive performance. This behavior may 445 

suggest that when considering the causal variants instead of proxies like the SNP, models assuming 446 
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independent effects yield an acceptable predictive performance even when the true covariance matrix 447 

is non-diagonal. Hopefully, this ideal scenario where the causal variants determining a phenotype, or 448 

at least most of them, are known will be reached in the near future. The largest difference between 449 

the method Bayes A and our methods (15.7%) was observed for AAV in dataset 1, while the smallest 450 

one (0.5%) was observed for AAT in dataset 2, in both cases, when comparing it with Bayes GCov-451 

KR. Although Bayes GCov-KR had higher APA, AVA and ATA values in these simulated datasets, 452 

notice that the differences compared to Bayes G-Cov were small, being slightly larger in dataset 2; 453 

therefore, in these simulations the gain in fitting a more complex model which considers as many 454 

shape parameters as markers did not yield a remarkable gain in accuracy or predictive ability. The 455 

gains in accuracy in the validation set observed in dataset 1 are larger than those found by Yang and 456 

Tempelman (2012) when comparing their antedependence models with their independent marker 457 

effects counterparts Bayes A and Bayes B, whereas gains in accuracy observed in dataset 2 were 458 

comparable (they found increments in accuracy of breeding values in the testing population up to 459 

3%).  The simulated data in Yang and Tempelman (2012) were similar to dataset 1, where it is 460 

expected that correlation among SNP effects arises from physical proximity to the same causal 461 

variants. They also considered a heritability value of 0.5. However, Yang and Tempelman (2012) 462 

considered a much smaller number of QTL (30). In addition, they considered models fitting different 463 

subsets of SNP and they found cases where Bayes B (a model assuming independent effects) 464 

outperformed their model ante-Bayes A (which accounts for correlated marker effects). They 465 

attributed these results to the small number of simulated QTL because in cases where the number of 466 

QTL controlling the phenotype is relatively small, models posing spike and slab priors over marker 467 

allele substitution effects, like Bayes B, tend to perform better. In a mice population, Yang and 468 

Tempelman (2012) also found that Bayes B outperformed ante-Bayes A in terms of predictive 469 

ability. Finally, the study of Gianola et al. (2003) did not consider data analysis.  470 

 471 
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Final remarks 472 

 This paper introduces the theory of GCovGM in the context of genome-wide prediction 473 

which permits to account for correlated marker effects in a very flexible way in terms of the marginal 474 

covariance structure. Models developed here also allow incorporating biological information in the 475 

prediction process through its use when building graph 𝐺.  476 
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Table 1 Average (over 10 replicates) predictive abilities (APA), accuracies in training (AAT) and 563 

validation (AAV) sets for simulated datasets 1 and 2 (standard deviations in brackets). 564 

Model 
Dataset 1 Dataset 2 

APA AAT AAV APA AAT AAV 

Bayes GCov 
0.432 

(0.075) 

0.739 

(0.056) 

0.573 

(0.078) 

0.432 

(0.128) 

0.716 

(0.038) 

0.557 

(0.099) 

Bayes GCov-KR 
0.441 

(0.071) 

0.740 

(0.058) 

0.573 

(0.075) 

0.444 

(0.094) 

0.743 

(0.056) 

0.566 

(0.089) 

Bayes A 
0.352 

(0.161) 

0.684 

(0.064) 

0.417 

(0.081) 

0.404 

(0.048) 

0.711 

(0.051) 

0.526 

(0.123) 

 565 

 566 
Appendix A: Basic Concepts in Graph Theory 567 

 568 

Undirected graph. An undirected graph 𝐺 is defined as a collection of two objects 𝐺 = (𝑉, 𝐸) 569 

where 𝑉 is the set of vertices (finite) and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges satisfying:  570 

(𝑢, 𝑣) ∈ 𝐸 ⟺ (𝑣, 𝑢) ∈ 𝐸. 571 

Neighbor vertices. Let 𝐺 = (𝑉, 𝐸) be an undirected graph. The vertices 𝑢, 𝑣 ∈ 𝑉 are said to be 572 

neighbors if (𝑢, 𝑣) ∈ 𝐸. 573 

P-path. A p-path is a collection of p distinct vertices 𝑢1, 𝑢2, … , 𝑢𝑝 such that (𝑢𝑖, 𝑢𝑖+1) ∈ 𝐸, 𝑖 =574 

1,2,… , 𝑝 − 1, that is, (𝑢𝑖 , 𝑢𝑖+1) are neighbors for   𝑖 = 1,2,… , 𝑝 − 1. 575 

P-cycle. A p-cycle is a collection of p distinct vertices 𝑢1, 𝑢2, … , 𝑢𝑝 such that (𝑢𝑖 , 𝑢𝑖+1) ∈ 𝐸, 𝑖 =576 

1,2,… , 𝑝 − 1 and (𝑢𝑝, 𝑢1) ∈ 𝐸 577 

Clique. A subset 𝑉0 ⊂ 𝑉 is a clique if (𝑢, 𝑣) ∈ 𝐸 ∀ 𝑢, 𝑣 ∈ 𝑉0.  578 

Maximal clique. A subset  𝑉0 ⊂ 𝑉 is defined to be a maximal clique if 𝑉0 is a clique and there does 579 

not exist a clique 𝑉̅ such that 𝑉0 ⊂ 𝑉̅ ⊆ 𝑉. 580 

Ordered graphs. Let 𝐺 = (𝑉, 𝐸) and let 𝜎 be an ordering of 𝑉, that is, a bijection from 𝑉 to 581 

{1,2, … , |𝑉|}. Then, the ordered graph 𝐺𝜎 = ({1,2,… , |𝑉|}, 𝐸𝜎) is defined as follows: (𝑖, 𝑗) ∈582 

𝐸𝜎  𝑖𝑓𝑓 (𝜎−1(𝑖), 𝜎−1, (𝑗)) ∈ 𝐸. 583 

Perfect elimination ordering. An ordering 𝜎 of a graph 𝐺 = (𝑉, 𝐸) is defined to be a perfect 584 

elimination ordering if a triplet {𝑖, 𝑗, 𝑘} with 𝑖 > 𝑗 > 𝑘 such that (𝑖, 𝑗) ∉ 𝐸𝜎 and (𝑖, 𝑘), (𝑗, 𝑘) ∈ 𝐸𝜎 585 

does not exist.  586 

Subgraph. The graph 𝐺′ = (𝑉′, 𝐸′) is said to be a subgraph of graph 𝐺 = (𝑉, 𝐸) if 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆587 

𝐸. 588 

Induced subgraph. Consider the graph 𝐺 = (𝑉, 𝐸) and a subset 𝐴 ⊆ 𝑉. Define 𝐸𝐴 = (𝐴 × 𝐴) ∩ 𝐸. 589 

The subgraph 𝐺𝐴 = (𝐴, 𝐸𝐴) is defined to be a subgraph of 𝐺 induced by 𝐴. Decomposable graph. 590 

An undirected graph 𝐺 = (𝑉, 𝐸) is a decomposable graph if it does not contain a cycle of length 591 

greater than or equal to four as an induced subgraph. It turns out that decomposable graphs are 592 
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characterized by the existence of a perfect elimination ordering of their vertices; therefore, a graph 593 

𝐺 = (𝑉, 𝐸) is decomposable iff its vertices admit a perfect elimination ordering. 594 

Connected graph. A graph 𝐺 is said to be connected if any pair of distinct vertices in 𝐺 are 595 

connected, that is, there exists a path between them. 596 

Directed edges. An edge is said to be directed if (𝑢, 𝑣) ∉ 𝐸 whenever (𝑣, 𝑢) ∈ 𝐸. If (𝑣, 𝑢) is a 597 

directed edge then 𝑣 is said to be a parent of 𝑢 and 𝑢 is said to be a child of v.  598 

Directed graph. A graph 𝒟 = (𝑉, 𝐸) such that its edges are directed is defined as a directed graph.  599 

Directed acyclic graph. A directed acyclic graph (DAG) is a directed graph with no cycles.  600 

Tree. A tree  is a connected graph with no cycle of length greater or equal than 3. 601 

Rooted tree. A rooted tree is a tree in which a particular node is distinguished from the others and 602 

designated the root of the tree. This node is the ancestor of all other nodes in the tree. An ancestor of 603 

a node 𝑢 in a rooted tree with root node 𝑟 is any node in the path from 𝑟 to 𝑢.  604 

Homogeneous graph.  An undirected graph 𝐺 = (𝑉, 𝐸) is defined to be homogeneous if for all 605 

(𝑢, 𝑣) ∈ 𝐸, either: 606 

{𝑖: 𝑖 = 𝑢 𝑜𝑟 (𝑖, 𝑢) ∈ 𝐸} ⊆ {𝑖: 𝑖 = 𝑣 𝑜𝑟 (𝑖, 𝑣) ∈ 𝐸} 607 

or 608 

{𝑖: 𝑖 = 𝑣 𝑜𝑟 (𝑖, 𝑣) ∈ 𝐸} ⊆ {𝑖: 𝑖 = 𝑢 𝑜𝑟 (𝑖, 𝑢) ∈ 𝐸}. 609 

An equivalent definition is the following. A graph 𝐺 = (𝑉, 𝐸) is said to be homogeneous if it is 610 

decomposable and it does not have a 4-path as an induced subgraph. Homogeneous graphs have an 611 

equivalent representation in terms of directed rooted trees called Hasse diagrams.   612 

Hasse diagram. A Hasse diagram is built as follows. For 𝑖 ∈ 𝑉, let  𝒩(𝑢) ≔ {𝑖: 𝑖 = 𝑢 𝑜𝑟 (𝑖, 𝑢) ∈613 

𝐸}. Whenever 𝒩(𝑢) ⊆ 𝒩(𝑣) we write 𝑣 → 𝑢. If 𝑢 → 𝑣 and 𝑣 → 𝑢 it is said that there is a 614 

equivalence relation between 𝑢 and 𝑣. Using this relation, equivalence classes are created. For 615 

example, if 𝒩(𝑢) = 𝒩(𝑣), then 𝑢 and 𝑣 are in the same equivalence class. The equivalence classes 616 

are the nodes of the Hasse diagram, formally, if 𝑢̅ denotes the equivalence class containing node 𝑢, 617 

then the Hasse diagram of 𝐺 is a directed graph with node set  𝑉𝐻 ≔ {𝑢̅: 𝑢 ∈ 𝐸}. The edge set 𝐸𝐻 is 618 

defined as follows. If 𝑢̅ ≠ 𝑣̅, 𝑢 → 𝑣, and ∄ 𝑘 such that 𝑢 → 𝑘 → 𝑣 then put a directed edge from 𝑢 to 619 

𝑣.  620 

Hasse perfect vertex elimination scheme or Hasse ordering. Once the Hasse diagram of 𝐺 has 621 

being built, the nodes of 𝐺 are ordered in the following way. The ordering is descending starting 622 

from the root of the tree; therefore, nodes pertaining to equivalence classes on the top of the Hasse 623 

diagram are assigned the largest levels. Within every equivalence class with more than one node, the 624 

ordering is arbitrary. Hence, the ordering is not unique. Any ordering that gives an ancestor a higher 625 

level than any of its descendants in the Hasse diagram of 𝐺 is defined to be a Hasse perfect vertex 626 

elimination scheme or simply a Hasse ordering of the nodes of 𝐺. 627 

 628 

Appendix B: Maximum likelihood estimation in covariance graph models 629 

 630 

Maximum likelihood estimation of 𝚺 for general graphs, standard problem 631 

If the sample size 𝑁 is larger than 𝑝, then maximum likelihood estimation of Σ is feasible. 632 

After removing constant terms from the negative of the log-likelihood the following is the objective 633 

function to be minimized: 𝑙∗(Σ) = 𝑡𝑟(Σ−1𝑆) + 𝑙𝑜𝑔|Σ|, Σ ∈ ℙ𝐺, where 𝑆 is the sample covariance 634 
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matrix. Notice that the objective involves Σ−1 instead of Σ. This objective function is not convex, 635 

which makes this minimization more difficult than the minimization problem for concentration graph 636 

models. One important feature of covariance graph models is that they correspond to curved 637 

exponential families instead of the well-studied exponential families as is the case of concentration 638 

graph models (Khare and Rajaratnam 2011), it poses a more challenging problem.   639 

An iterative conditional fitting (ICF) algorithm to minimize 𝑙∗(Σ) was developed by 640 

Chaudhuri et al. (2007); however, because we are dealing with a non-convex optimization problem, 641 

convergence to a global or even a local minimum is not guaranteed. 642 

The algorithm is based on the following partition of Σ: 643 

                                                                     Σ = [
Σ11 Σ.1

′

Σ.1 Σ−1,−1
]                                                           (𝐵. 1) 644 

where Σ11 is the 1,1 entry of Σ, 𝚺.𝟏 is the first column of Σ without the first entry and Σ−1,−1 is the 645 

submatrix of Σ resulting from deleting its first row and column. Using the standard rules for inversion 646 

by partitioning:  647 

Σ−1 =

[
 
 
 
 

1

𝛾1

−𝚺.1
′ Σ−1,−1

−1

𝛾1

−Σ−1,−1
−1 𝚺.1

′

𝛾1

Σ−1,−1
−1 + Σ−1,−1

−1 𝚺.1𝚺.1
′ Σ−1,−1

−1

𝛾1 ]
 
 
 
 

 648 

where 𝛾1 = Σ11 − 𝚺.1
′ Σ−1,−1

−1 𝚺.1. Notice that knowing Σ, we can get (𝚺.1, Σ−1,−1, 𝛾1) and vice versa; 649 

consequently, we have a one to one transformation. By using permutations, the same partition can be 650 

performed for every one of the 𝑝  random variables represented in graph 𝐺. The high level of the 651 

algorithm is the following: 652 

1) Partition Σ as (𝚺.1, Σ−1,−1, 𝛾1), 2) minimize 𝑙∗(Σ) with respect to 𝚺.1 treating as fixed the current 653 

values of Σ−1,−1 and 𝛾1 and 3) minimize 𝑙∗(Σ) with respect to 𝛾1 fixing the current values of Σ.1 and 654 

Σ−1,−1. The same is repeated for the 𝑝 variables and it corresponds to one iteration of the algorithm. 655 

The minimization problem is solved by minimizing the following quadratic form with respect to 𝜷1 656 

(Chaudhuri et al.,2007): 657 

−1

𝛾1

(2𝜷1
′ 𝑄1

′Σ−1,−1
−1 𝑺.1 − 𝜷1

′ 𝑄1
′Σ−1,−1

−1 𝑆−1,−1Σ−1,−1
−1 𝑄1𝜷1) 658 

where 𝜷1: = (Σ1𝑗)(1,𝑗)∈𝐸
, 𝑺.1 and 𝑆−1,−1 are elements obtained after partitioning 𝑆 as Σ was 659 

partitioned in (𝐵. 1) and 𝑄1 is a matrix of zeros such that: 𝚺.𝟏 = 𝑄1𝜷𝟏. This is a standard problem 660 

and its solution is 𝜷̂1 = (𝑄1
′Σ−1,−1

−1 𝑆−1,−1Σ−1,−1
−1 𝑄1)

−1
𝑄1

′Σ−1,−1
−1 𝑺.1. On the other hand, the solution to 661 

the second minimization is: 𝛾̂1 = 𝑆11 − 2𝚺.1
′ Σ−1,−1

−1 𝑺.1 + Σ.1
′ Σ−1,−1

−1 𝑆−1,−1Σ−1,−1
−1 𝚺.1. Kauermann (1996) 662 

proposed to modify the objective function in order to make it a function of Σ, which makes the 663 

problem convex. The new objective function has the form: 𝑙(Σ) = 𝑡𝑟(Σ𝑆−1) + 𝑙𝑜𝑔|Σ|, Σ ∈ ℙ𝐺. A 664 

trick based on using the maximal cliques of 𝐺 is applied to solve this problem and the solution is 665 

known as the Kauermann’s dual estimator. Under certain conditions, convergence of the ICF 666 

algorithm at least to a local stationary point can be proved (Drton et al., 2006).  667 

 668 

Maximum likelihood estimation of 𝚺 for homogenous graphs, standard problem 669 
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Recall that for homogeneous graphs, Σ = 𝐿𝐷𝐿′ ∈ ℙ𝐺 ⟺ 𝐿 ∈ ℒ𝐺 ⟺ 𝐿−1 ∈ ℒ𝐺; therefore, the 670 

objective function is written in terms of (𝐿, 𝐷) instead of Σ. Also, recall that after removing constant 671 

terms from the negative log-likelihood we get: 𝑙∗(Σ) = 𝑡𝑟(Σ−1𝑆) + 𝑙𝑜𝑔|Σ|, Σ ∈ ℙ𝐺. The bijection 672 

from ℙ𝐺 to ℒ𝐺 × 𝒟 induces: 673 

𝑙∗(𝐿, 𝐷) = 𝑡𝑟((𝐿′)−1𝐷−1𝐿−1𝑆) + 𝑙𝑜𝑔|𝐷|, 𝐿 ∈ ℒ𝐺 , 𝐷 ∈ 𝒟  674 

reparameterization in terms of 𝑇 = 𝐿−1 yields: 675 

𝑙∗(𝐿, 𝐷) = 𝑡𝑟(𝑇′𝐷−1𝑇𝑆) + 𝑙𝑜𝑔|𝐷|, 𝑇 ∈ ℒ𝐺 , 𝐷 ∈ 𝒟  676 

                                                        = ∑
1

𝐷𝑖𝑖

(𝑻𝑖.𝑆𝑻𝑖.
′ ) + 𝑙𝑜𝑔

𝑝

𝑖=1

𝐷𝑖𝑖                                                   (𝐵. 2) 677 

where 𝑻𝑖. Is the 𝑖𝑡ℎ row of 𝑇.  678 

To obtain the MLE of Σ, every summand in (𝐵. 2) is minimized with respect to 𝐷𝑖𝑖  and 𝑻𝑖.. 679 

Define 𝒙𝑖: = {𝑇𝑖𝑗}𝑗<𝑖,(𝑖,𝑗)∈𝐸
; 𝑁<(𝑖) ≔ {𝑗: 𝑗 < 𝑖, (𝑖, 𝑗) ∈ 𝐸} and construct the following matrix from 680 

the sample covariance matrix: 681 

                                                              𝑆𝑖 = (
𝑆<𝑖 𝑆.𝑖

<

(𝑆.𝑖
<)′ 𝑆𝑖𝑖

)                                                            (𝐵. 3) 682 

where 𝑺.𝑖
< = (𝑆𝑘𝑖)𝑘<𝑖,(𝑖,𝑘)∈𝐸 , 𝑆<𝑖 = (𝑆𝑘𝑙)𝑘,𝑙∈𝑁<(𝑖). Then, the MLE are: 683 

𝒙̂𝑖 = (𝑆<𝑖)−1𝑺.𝑖
< 684 

𝐷̂𝑖𝑖 = 𝑆𝑖𝑖 − (𝑺.𝑖
<)′(𝑆<𝑖)−1𝑺.𝑖

< 685 

Combining all 𝐷̂𝑖𝑖  and 𝒙̂𝑖 we can build 𝐷̂ and 𝑇̂ and using them we have Σ̂ = 𝐿̂𝐷̂𝐿̂′. 686 

 687 

Maximum likelihood estimation of 𝚺 in genome-wide prediction 688 

 Unlike the Bayesian approach, envisaging a frequentist solution to the problem of adapting 689 

GCGM to genome-wide prediction under the model presented in the manuscript is not 690 

straightforward and we could not find a direct and principled method to cope with this problem. 691 

Therefore, some ad hoc extra assumptions were done in order to provide a frequentist formulation. 692 

The method proposed here involves two steps. The first one combines the EM algorithm (Dempster 693 

et al., 1977) with GCovGM to estimate covariance components. The second one involves plugging 694 

these estimates into mixed model equations corresponding to model 1 in order to obtain the empirical 695 

BLUP of 𝒈 (Henderson, 1963).  696 

According to the rationale of the EM-algorithm, we define 𝒈 as the augmented or missing data, then 697 

we find the maximizers of the complete likelihood as if 𝒈 were observable and finally we compute 698 

their expected values with respect to the distribution of the missing or augmented data given the 699 

observed data. As mentioned in the manuscript, maximum likelihood estimation of Σ is only possible 700 

if 𝑁 > 𝑚. In model 1, we have a single 𝑛-dimensional vector 𝒚 and the target is to estimate the 701 

residual variance and the covariance matrix of the 𝑚-dimensional vector 𝒈; therefore, in terms of the 702 

standard problem: 𝑁=1.Thus, an ad hoc solution is to assume that data can be split into 𝑓 > 𝑚 703 

groups such that each group has a different vector of marker effects, that is, 𝒚𝑖 = 𝑊𝑖𝒈𝑖 + 𝒆𝑖, ∀ 𝑖 =704 

1,2,… , 𝑓. Currently, as more and more animals are genotyped, for SNP panels of moderate density 705 

(e.g., 50K) the case 𝑛 > 𝑚 can be found. For example, this is the case of the Holstein population in 706 

the US. However, this is not the most common situation and it is important to notice that it does not 707 
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imply that 𝑓 > 𝑚 which is the necessary condition to carry out maximum likelihood estimation of Σ. 708 

One of the simplest ways to split a population into 𝑓 groups is by considering families (e.g., half-sibs 709 

or full-sibs) as in Gianola et al. (2003). Currently, the requirement  𝑓 > 𝑚 will be met by very few 710 

populations when considering a relatively small number of markers and this is the reason for not 711 

considering the frequentist approach in the manuscript. Notwithstanding, in this appendix we provide 712 

an approach to carry out maximum likelihood estimation of the dispersion parameter  𝜽 ≔ (Σ, 𝜎2) in 713 

a genome-wide prediction model based on multiple linear regression which later permits to obtain the 714 

empirical BLUP of 𝒈.  715 

It is also assumed that: 𝒈1, … , 𝒈𝑓 are iid 𝑀𝑉𝑁(0, Σ), 𝒆1, … , 𝒆𝑓 are independent 716 

𝑀𝑉𝑁(0, 𝜎2𝐼𝑛𝑖
) random variables and 𝐶𝑜𝑣(𝑔𝑖, 𝑒𝑖′) = 0, ∀  1 ≤ 𝑖, 𝑖′ ≤ 𝑓, where 𝑛𝑖 is the number of 717 

observations in group 𝑖; therefore, ∑ 𝑛𝑖
𝑓
𝑖=1 = 𝑛. Under these assumptions, the complete log-718 

likelihood can be written as: 719 

       𝑙(𝜎2, Σ) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 −
𝑛

2
𝑙𝑜𝑔𝜎2 +

𝑓

2
(−𝑙𝑜𝑔|Σ| − 𝑡𝑟(Σ−1𝑆𝑔)) −

‖𝒚 − 𝑊∗𝒈∗‖2
2

2𝜎2
     (𝐵. 4) 720 

𝑆𝑔 =
1

𝑓
∑𝒈𝑖𝒈𝑖′

𝑓

𝑖=1

, 𝒈∗ ≔ (𝒈1′⋯𝒈𝑓′)
′
,𝑊∗ = 𝐵𝑙𝑜𝑐𝑘 𝐷𝑖𝑎𝑔. {𝑊𝑖}

𝑛      
𝑖 = 1

. 721 

 The expected values of sufficient statistics for the covariance parameters taken with respect 722 

to the conditional distribution of the missing data given the observed data have to be found. The 723 

sufficient statistic for 𝜽 is (𝑆𝑔, 𝒆∗′𝒆∗), 𝒆∗ = 𝒚 − 𝑊∗𝒈∗. Also, given 𝒚,  𝒈1, … , 𝒈𝑓 are independent 724 

with the following distributions: 𝒈𝑖|𝒚𝑖~𝑀𝑉𝑁 (𝐾𝑖
−1 𝑊𝑖

′𝒚𝑖

𝜎2
, 𝐾𝑖

−1), where 𝐾𝑖 ≔
𝑊𝑖

′𝑊𝑖

𝜎2
+ Σ−1. Similarly, 725 

it follows that  𝒆∗|𝒚~𝑀𝑉𝑁(𝜎2𝑉−1𝒚, 𝜎2(𝐼 − 𝜎2𝑉−1)), where 𝑉 = 𝑊∗′𝐼𝑓⨂Σ𝑊∗ + 𝑅. Hence, 726 

                                        𝐸[𝑆𝑔|𝒚] =
1

𝑓
∑𝐾𝑖

−1

𝑓

𝑖=1

[𝐼𝑚 +
1

(𝜎2)2
𝑊𝑖

′𝑦𝑖𝑦𝑖
′𝑊𝑖𝐾𝑖

−1]                               (𝐵. 5) 727 

                                      𝐸[𝒆∗′𝒆∗|𝒚] = 𝜎2(𝑛 − 𝜎2𝑡𝑟(𝑉−1) + 𝜎2𝒚′𝑉−1𝑉−1𝒚)                              (𝐵. 6) 728 

Applying the Woodbury’s identity, 𝐸[𝑆𝑔|𝒚] can be alternatively expressed as: 729 

                               𝐸[𝑆𝑔|𝒚] =
1

𝑓
Σ{𝑓𝐼𝑚 − [∑𝑊𝑖

′𝑉𝑖
−1(𝐼𝑛𝑖

− 𝒚𝑖𝒚𝑖
′𝑉𝑖

−1)𝑊𝑖

𝑓

𝑖=1

] Σ}                      (𝐵. 7) 730 

where 𝑉𝑖 ≔ 𝑊𝑖Σ𝑊𝑖
′ + 𝜎2𝐼𝑛𝑖

. It does not require inversion of Σ, it requires inverting  𝑓 𝑛𝑖 × 𝑛𝑖 731 

matrices. The expectation step of this EM algorithm consists of using either B.5 or B.7 to compute 732 

𝐸[𝑆𝑔|𝒚] and B.6 to compute 𝐸[𝒆∗′𝒆∗|𝒚], the maximization step is the one involving GCovGM. At 733 

iteration 𝑡, the maximization step involves the following computations: 734 

(𝜎̂2)(𝑡+1) =
𝒒̂(𝑡)

𝑛
, 𝒒̂(𝑡) ≔ 𝐸[𝒆∗′𝒆∗|𝒚] |

𝜽 = 𝜽(𝑡) 735 

Σ̂(𝑡+1) = ℎ (𝑆̂𝑔
(𝑡)

) , 𝑆̂𝑔
(𝑡)

≔ 𝐸[𝑆𝑔|𝒚] |
𝜽 = 𝜽(𝑡) 736 

where Σ̂(𝑡+1) is computed using methods explained before. For homogeneous graphs, function ℎ(∙) 737 

has closed forms after reparametrizing the objective function in terms of (𝑇, 𝐷) as shown previously 738 

in this section. Once the algorithm converges and the maximum likelihood estimates of Σ and 𝜎2 are 739 



 

31 

obtained, these are plugged in the mixed model equations corresponding to model 1 to obtain the 740 

empirical BLUP of 𝒈 (Henderson, 1963): 741 

 742 

𝒈̂ = (𝑊′𝑊 + 𝜎̂2Σ̂−1)
−1

𝑊′𝒚. 743 

 744 
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Appendix C: Conditions to find decomposable graphs 753 

 754 

The following proposition establishes which approaches will induce decomposable graphs. 755 

Hereinafter, the “functional blocks” mentioned in approach the approach considering the use of gene 756 

annotation will be referred to as blocks. In this approach, when effects of markers in different blocks 757 

are not allowed to be correlated, the corresponding strategy will be referred to as approach F1. On the 758 

other hand, when the effects of subsets or markers in different blocks are assumed to be correlated, 759 

the corresponding strategy will be referred to as approach F2. 760 

 If a block contains a subset of markers with effects correlated with the effects of a subset of 761 

markers in another block, these blocks are said to be linked. Let 𝐵 be the total number of blocks and  762 

ℒ be the set of pairs of linked blocks. Let Ψ be the set of blocks linked with at least two other blocks, 763 

∀ 𝑙 ∈ Ψ let Γ𝑙   be the set of blocks linked to block 𝑙 and  ∀𝑎 ∈ Γ𝑙 ,  let 𝐶𝑙𝑎
be the subset of markers in 764 

block 𝑙 whose effects are correlated with effects of a subset of markers in block 𝑎, 1 ≤ 𝑎 ≤ 𝐵, 𝑎 ≠ 𝑙.  765 

Proposition 1  766 

The graphs induced under approaches considering correlation of groups of nearby markers 767 

and approach F1, are decomposable. In addition the graph induced under the approach F2 is 768 

decomposable if there exists an ordering of markers  𝜎′ that along with the edge set satisfy the 769 

following conditions.   770 

Condition 1.1 For all possible triplets of linked blocks {𝑙, 𝑙′, 𝑙′′} such that 𝐶𝑙
𝑙′

≠ 𝐶𝑙
𝑙′′

, 771 

𝐶𝑙′𝑙
≠ 𝐶𝑙′

𝑙′′
, 𝐶𝑙′′𝑙

≠ 𝐶𝑙′′
𝑙′

, and the sets 𝐼𝑙 ≔ 𝐶𝑙
𝑙′

∩ 𝐶𝑙
𝑙′′

, 𝐼𝑙′ ≔ 𝐶𝑙′𝑙
∩ 𝐶𝑙′

𝑙′′
 and 𝐼𝑙′′ ≔ 𝐶𝑙′′𝑙

∩ 𝐶𝑙′′
𝑙′

, 772 

are all non-empty, the following never happens: 𝜎′(𝑖) > 𝜎′(𝑗) > 𝜎′(𝑘), 𝑖 ∈ 𝐶𝑙
𝑙′′

∩ 𝐼𝑙
𝑐, 𝑗 ∈ 𝐶𝑙′𝑙

 or 773 

𝑖 ∈ 𝐶𝑙
𝑙′′

, 𝑗 ∈ 𝐶𝑙′𝑙
∩ 𝐼𝑙′

𝑐 , and 𝑘 ∈ 𝐼𝑙′′; if there are triplets of linked blocks {𝑙, 𝑙′, 𝑙′′} such that exactly 774 

one of the three sets {𝐼𝑙, 𝐼𝑙′ , 𝐼𝑙′′}, say 𝐼𝑙  is empty, then: min{𝜎′(𝑘), 𝜎′(𝑖), 𝜎′(𝑗)} = 𝜎′(𝑘), ∀ 𝑘 ∈775 

𝐶𝑙
𝑙′

∪ 𝐶𝑙
𝑙′′

 ∀ 𝑗 ∈ 𝐼𝑙′   ∀ 𝑖 ∈  𝐼𝑙′′ and if exactly two of these sets, say {𝐼𝑙, 𝐼𝑙′} are empty, then for 776 



 

32 

either 𝑙 or 𝑙′, say 𝑙, 𝜎′(𝑘) < 𝜎′(𝑖) ∀𝑘 ∈ 𝐶𝑙
𝑙′

∪ 𝐶𝑙
𝑙′′

 ∀𝑖 ∈ 𝐼𝑙′′ . Superindex 𝐶 indicates the 777 

complement with respect to the index set of the corresponding block. 778 

Condition 1.2 For every possible triplet of blocks {𝑙, 𝑙′, 𝑙′′} the following does not 779 

happen: 𝜎′(𝑘) < 𝜎′(𝑗) < 𝜎′(𝑖), 𝑘 ∈ 𝐼𝑙 , 𝑗 ∈ 𝐶𝑙′𝑙
, 𝑖 ∈ 𝐶𝑙′′𝑙

, 𝐶𝑙′ 
𝑙′′

= ∅. 780 

Condition 1.3 For every duplet of linked blocks {𝑙, 𝑙′} the following does not hold: ∃ 𝑖 ∈781 

𝑙, {𝑗, 𝑘} ∈ 𝑙′ such that 𝜎′(𝑖) > 𝜎′(𝑗) > 𝜎′(𝑘), 𝑖 ∈ 𝐶𝑙
𝑙′
, 𝑗 ∈ 𝐶

𝑙′𝑙

𝐶 , 𝑘 ∈ 𝐶𝑙′𝑙
.    782 

Condition 1.4 For each pair of linked blocks (𝑙, 𝑙′), 𝐶𝑙
𝑙′

× 𝐶𝑙′𝑙
∈ 𝐸𝜎, that is, the effect of 783 

each marker in 𝐶𝑙
𝑙′

 is correlated with the effects of all marker in 𝐶𝑙′𝑙
. 784 

Moreover, conditions 1.1, 1.2 and 1.3 are necessary whereas condition 1.4 is not. 785 

This proposition involves all possible orderings of markers. However, if markers are ordered 786 

in such a way that markers in the same block are given consecutive indices, the number of possible 787 

orderings is reduced. Thus, in order to provide a simpler way to order markers, the following 788 

proposition only requires the existence of an ordering of the blocks and a structure on the edges set 789 

satisfying certain conditions that permit to find a perfect elimination ordering of markers.  790 

Proposition 2 791 

If there exists an ordering 𝜌 of the blocks which coupled with the structure of the edges set 792 

satisfy condition 1.4 plus the following conditions: 793 

Condition 2.1 𝐶𝑙𝑎
= ⋯ = 𝐶𝑙𝑚

≔ 𝐶𝑙  ∀ 𝑙 ∈ Ψ 794 

Condition 2.2 For every possible triplet of blocks {𝑙, 𝑙′, 𝑙′′} the following does not happen: 795 

(𝑙, 𝑙′), (𝑙, 𝑙′′) ∈ 𝐿, (𝑙′, 𝑙′′) ∉ 𝐿, 𝜌(𝑙) < 𝜌(𝑙′) < 𝜌(𝑙′′). 796 

Then the following ordering strategy (denoted by 𝜎) of marker loci is a perfect elimination 797 

ordering: once blocks have been ordered according to 𝜌, markers are ordered in such a way that 798 

the smaller the index of a block the smaller the indices of the markers pertaining to that block. 799 

The ordering inside each block is done as follows: markers in 𝐶𝑙 are given the largest indices in 800 

block 𝑙. In addition, under this ordering strategy, condition 2.2 is also necessary for 𝜎 to be a 801 

perfect elimination ordering whereas condition 2.1 is not.  802 

Corollary to Proposition 2  803 

Consider the “super graph” formed by regarding the blocks as super nodes and ℒ as a “super 804 

vertices set”. Then, under conditions 2.1 and 1.4, if the “super vertices set” admits a perfect 805 

elimination ordering, the ordering defined in proposition 2 corresponds to a perfect elimination 806 

scheme.  807 

 808 


